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Abstract: The paper deals with the particle filter in state estimation of a discrete-time nonlinear
non-Gaussian system. The goal of the paper is to design a sample size adaptation technique to
guarantee the quality of an empirical probability density function (pdf) which approximates
a target filtering pdf. The quality is measured by inaccuracy (cross-information) between the
empirical pdf and the filtering pdf. It is shown that for increasing sample size the inaccuracy
converges to the Shannon differential entropy (SDE) of the filtering pdf. The proposed technique
adapts the sample size to keep a difference between the inaccuracy and the SDE within pre-
specified bounds with a pre-specified probability. The particle filter with the proposed sample
size adaptation technique is illustrated in a numerical example.

1. INTRODUCTION

Recursive state estimation of discrete-time nonlinear
stochastic dynamic systems from noisy measurement data
has been the subject of a considerable research interest
over the last three decades. General solution of the state
estimation problem is described by the Bayesian recursive
relations (BRR). The closed form solution of the BRR
is available for a few special cases only so usually an
approximative solution has to be applied.

Since the nineties, the particle filter (PF) has dominated
in recursive nonlinear state estimation due to its easy
implementation in very general settings and cheap and
formidable computational power. The PF solves the BRR
using Monte Carlo (MC) methods, particularly using the
importance sampling method, and approximates the con-
tinuous state space by a swarm of samples (particles) with
associated relative weights.

The fundamental paper dealing with the MC solution
of the BRR was published by Gordon et al. [1993] who
proposed the first effective PF called the bootstrap filter.
Many improvements of the bootstrap filter have been pro-
posed since that time, see for example Doucet et al. [2001].
Among these improvements, in particular the design of
the sampling probability density function (pdf) as one of
the key parameters of the PF has to be mentioned. An
overview of sampling pdf’s can be found in Simandl and
Straka [2007].

Another key parameter of the PF significantly affecting
estimate quality is sample size (i.e. the number of the par-
ticles), nonetheless efficient sample size setting has been
disregarded for a long time. The sample size is usually de-
termined empirically. Some advances in a suitable sample
size setting were achieved in Simandl and Straka [2002]
where the time-invariant sample size was considered and
the Cramér Rao bound [Simandl et al., 2001] was used
as a gauge for quality evaluation of the PF. Sample size

adaptation (SSA) techniques were treated for example in
Koller and Fratkina [1998], Fox [2003], Soto [2005], Straka
and Simandl [2006]. These papers focused on sample size
adaptation with respect to a point estimate quality usually
measured by mean square error (MSE).

The goal of this paper is to propose a sample size adap-
tation technique that focuses on pdf estimation. The in-
tention is to adapt the number of samples while keeping
a distance between the empirical pdf produced by the
PF and the target filtering pdf fixed. To measure the
distance, inaccuracy will be used as a key component of
the Kullback-Leibler distance where it serves for actual
comparison of the pdf’s.

The paper is organized as follows: State estimation by
the PF and a short survey of the SSA techniques are
given in Section 2. Then the proposed SSA technique
with a fixed empirical density quality is presented in
Section 3 which consists of the basic idea of the technique,
specification of the distance between the empirical pdf and
the target filtering pdf, and computational issues. Further,
an application of the proposed SSA technique is illustrated
in a numerical example in Section 4 and finally, Section 5
concludes the paper.

2. STATE ESTIMATION BY THE PARTICLE FILTER

This section deals with the state estimation using the PF
and a brief survey of several SSA techniques proposed so
far.

Consider the discrete time nonlinear stochastic system
given by the state equation (1) and the measurement
equation (2):

xk+1 = fk(xk, ek), k = 0, 1, 2, . . . (1)

zk = hk(xk,vk), k = 0, 1, 2, . . . , (2)
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where the vectors xk ∈ R
n and zk ∈ R

m represent a
state of the system and a measurement at time k, re-
spectively, ek ∈ R

n and vk ∈ R
m are state and measure-

ment white noises, mutually independent and independent
of x0, with known pdf’s p(ek) and p(vk), respectively,
fk : R

n × R
n → R

n, hk : R
n × R

m → R
m are known vec-

tor functions and the pdf p(x0) of the initial state x0 is
known. The system given by (1) and (2) can be alterna-
tively described by the transition pdf p(xk|xk−1) and the
measurement pdf p(zk|xk).

The general solution of the state estimation problem in the
form of the filtering pdf p(xk|z

k) with zk , [zT
0 , . . . , zT

k ]T is
provided by the BRR. The PF is based on the importance
sampling method [Tanner, 1996] which means that to find
a property of an unknown arbitrary target pdf p(x), firstly
N samples are drawn from a sampling (proposal) pdf π(x),

then the weights w(x) ∝ p(x)
π(x) are attached to the samples,

and finally the property is approximated using the samples
and the weights. The idea of the PF in nonlinear state esti-
mation is to approximate the target filtering pdf p(xk|z

k)
by the empirical filtering pdf rNk

(xk|z
k) which is given by

Nk random samples of the state {x
(i)
k }Nk

i=1 and associated

weights {wk(x
(i)
k )}Nk

i=1. The general algorithm of the PF
[Liu et al., 2001] can be summarized in Alg. 1 as follows:

Alg. 1: particle filter

Sampling:

• If k = 0, draw N0 samples {x
(i)
0 }N0

i=1 from the prior
pdf p(x0|z

−1) = p(x0).

• If k > 0, draw Nk samples {x
(i)
k }Nk

i=1 from the global

sampling pdf π(xk|x
∗(1:Nk−1)
k , zk) where

π(xk|x
∗(1:Nk−1)
k−1 ,zk)=

Nk−1∑

i=1

v
(i)
k−1π(xk|x

∗(i)
k−1,zk). (3)

Weighting:

• If k = 0, compute the weights {w̃0(x
(i)
0 )}N0

i=1

w̃0(x
(i)
0 ) = p(z0|x

(i)
0 ). (4)

• If k > 0, the weights {wk(x
(i)
k )}Nk

i=1 are calculated
using the following relation

w̃k(x
(i)
k ) =

p(zk|x
(i)
k )p(x

(i)
k |x

∗(ji)
k−1 )

v
(ji)
k−1π(x

(i)
k |x

∗(ji)
k−1 , zk)

. (5)

The weights are normalized, i.e.

wk(x
(i)
k ) = w̃k(x

(i)
k )/

∑Nk

j=1 w̃k(x
(j)
k ). The empirical pdf

rNk
(xk|z

k) is given by the samples {x
(i)
k }Nk

i=1 and the

weights {wk(x
(i)
k )}Nk

i=1 as

rNk
(xk|z

k) =

Nk∑

i=1

wk(x
(i)
k )δ(xk − x

(i)
k ),

where δ(·) is the Dirac function defined as δ(x) = 0 for
x 6= 0 and

∫
δ(x)dx = 1.

Resampling: Generate a new set {x
∗(i)
k }Nk

i=1 by re-

sampling with replacement Nk times from {x
(i)
k }Nk

i=1

with probability Prob(x
∗(i)
k =x

(i)
k ) = wk(x

(i)
k ) and set

wk(x
∗(i)
k ) = 1

Nk

. Replace the sets {x
(i)
k }Nk

i=1 and

{wk(x
(i)
k )}Nk

i=1 by the resampled sets {x
∗(i)
k }Nk

i=1 and

{wk(x
∗(i)
k )}Nk

i=1 respectively.

Increase k and iterate to step Sampling.

Note that the algorithm uses a general sampling pdf

π(xk+1|x
∗(1:Nk)
k , zk+1) based on utilization of the cur-

rent measurement zk+1. This general sampling pdf covers

either the prior sampling pdf with v
(i)
k−1 = 1/N and

π(xk|x
∗(i)
k−1, zk) = p(xk|x

∗(i)
k−1), or other sampling pdf’s, e.g.

the optimal sampling pdf or the auxiliary sampling pdf. A
detailed survey of sampling pdf’s can be found in Simandl
and Straka [2007].

2.1 Sample size specification

The sample size Nk represents a key parameter of the PF
significantly affecting estimate quality. It can be changed
to a suitable value at each time instant before the sampling
step of Alg. 1. There are several papers dealing with
a suitable sample size specification and the proposed
techniques are briefly described in this subsection.

Setting a suitable sample size according to an analysis that
is carried out beforehand was proposed in Simandl and
Straka [2002]. The procedure considers a time-invariant
sample size and assesses quality of the PF estimates for
various sample sizes according to the distance between
the MSE matrix of the state estimate conditional mean
and the Cramér-Rao bound. No sample size adaptation
is conducted during the estimation process but rather a
suitable sample size is specified in advance.

In Koller and Fratkina [1998] an SSA technique was
published based on the idea that it would be suitable to
keep a fixed sum of likelihoods (i.e. unnormalized weights)
of the whole sample set instead of keeping a fixed sample
size. The intention is that the samples with low weights do
not match the target pdf and therefore more samples are
necessary for a quality estimate and vice versa.

In Fox [2003] another sample size adaptation technique
called Kullbak-Leibler divergence (KLD) sampling was
proposed. It adapts the sample size to bound the error
between the true pdf and the empirical pdf by ε with
probability 1− δ. The error is measured by the KLD. The
technique assumes that the true pdf can be represented
by a discrete piecewise pdf. The drawback of the proposed
technique is that the samples of the empirical pdf are
assumed to be drawn directly from the target pdf and the
relation for sample size calculation utilizes the number of
bins with support as the only information concerning the
true pdf. Therefore, the KLD sampling technique can be
referred to as an adaptation with respect to complexity of
the target pdf, without taking into account the sampling
pdf.

In Soto [2005] the KLD sampling technique was elaborated
further to grasp the fact that the samples of the empirical
pdf are drawn from a sampling pdf which is different
from the target pdf. To take into account this fact, the
relative accuracy of the estimator between sampling from
the target pdf and the sampling pdf was utilized. The
accuracy was considered in terms of the point estimate
quality.
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In Straka and Simandl [2004] the localization-based sample
size adaptation (LB-SSA) was proposed based on moni-
toring quality of the samples generated from the sampling
pdf. The quality of the sample set is assessed according to
the samples position. Roughly speaking, firstly a criterion
is set up with respect to the measurement pdf. Conse-
quently, the samples are being drawn from the sampling
density until the criterion respecting their position is met.
The LB-SSA allows the estimate quality to be independent
of the PF sampling pdf. This means that the PF with a
sampling pdf close to the target pdf uses fewer samples
than the PF with a sampling pdf which is far from the
target pdf.

In Straka and Simandl [2006] another SSA technique was
proposed to attain independence of estimate quality from
the sampling pdf. The technique is based on a fixed
efficient sample size and is much simpler than the LB-SSA
technique.

So it can be seen that there are several techniques dealing
with sample size adaptation from the viewpoint of a
point estimate and its error but none taking the PF
as a technique for estimation of the whole filtering pdf
and respecting this fact during sample size adaptation.
Note that the pdf estimate provides besides the mean of
the state many additional pieces of information like for
example modes, high-order moments, etc.

3. SAMPLE SIZE ADAPTATION FOR FIXED
EMPIRICAL DENSITY QUALITY

As it was mentioned earlier, SSA techniques usually fo-
cus on estimation quality measured by MSE of a point
estimate, usually mean. The aim of the SSA technique
proposed in this paper is to focus on estimation of a
complete pdf. As the PF approximates the target filtering
pdf p(xk|z

k) by the empirical filtering pdf rNk
(xk|z

k), the
idea is to measure quality of this approximation and keep
the quality fixed by adapting sample size. To measure
the quality, a suitable criterion has to be chosen. The
Kullback-Leibler (KL) distance given by

D(p1, p2)
△
=

∫

p1(x) log
p1(x)

p2(x)
dx (6)

is a generic choice of information measure to quantify
a discrepancy between two pdf’s p1(x) and p2(x). The
KL distance can be also written as a difference of two
components

D(p1, p2) =

∫

p1(x) log
1

p2(x)
dx

︸ ︷︷ ︸

K(p1,p2)

−

∫

p1(x) log
1

p1(x)
dx

︸ ︷︷ ︸

H(p1)

(7)

where the former K(p1, p2) is inaccuracy [Kerridge, 1961]
and the latter H(p1) is the Shannon differential entropy
(SDE). The inaccuracy measures actual discrepancy be-
tween the pdf’s p1(x) and p2(x), while the SDE measures
entropy of p1(x). The inaccuracy has opportune form for
the comparison of rN (xk|z

k) and p(xk|z
k) as the empiri-

cal pdf is a mixture of Dirac functions and the relation∫
δ(x − a)f(x)dx = f(a) holds. The SDE component of

the KL distance will be dropped as H(rN ) = −∞. It
must be noted that the inaccuracy alone may be negative
nevertheless it still provides a measure of disagreement
between the pdf’s.

3.1 SDE as a limiting value of inaccuracy

For the sake of clarity, consider only the importance sam-
pling method for the derivation of the adaptation tech-
nique and subsequently, the proposed technique will be
transfered into the PF framework. The sampling density
will be denoted as π(x), the target (filtering) density p(x)
and the importance weight w(x). Note that the weight

is unnormalized, i.e. w(x) = c p(x)
π(x) ∝ p(x)

π(x) where c =

Eπ{w(x)}. Suppose N samples {x(i)}N
i=1 are drawn from

π(x); then the empirical pdf rN (x) approximating p(x) is
given as

rN (x) =
1
N

∑N
i=1 w(x(i))δ(x − x(i))
1
N

∑N
j=1 w(x(j))

. (8)

The inaccuracy K(rN , p) given by

K(rN , p) =

∫ 1
N

∑N
i=1 w(x(i))δ(x − x(i))
1
N

∑N
j=1 w(x(j))

log
1

p(x)
dx (9)

can be written as

K(rN , p) =

1
N

∑N
i=1 w(x(i)) log 1

p(x(i))

1
N

∑N
j=1 w(x(j))

. (10)

Since the set of samples {x(i)}N
i=1 together with the set of

weights {w(x(i))}N
i=1 approximate the target pdf p(x), the

inaccuracy in (10) can be seen as an MC approximation
of the integral

∫
p(x) log 1

p(x)dx, which corresponds to

K(p, p), based on the importance sampling method. With
N → ∞ the inaccuracy K(rN , p) approaches K(p, p) =
H(p).

lim
N→∞

K(rN , p) = K(p, p) = H(p).

Due to the fact that inaccuracy may be negative, it is hard
to specify its desired value. Nonetheless, it is possible to
take advantage of the fact that the inaccuracy approaches
the SDE and the idea of measuring a distance between
the empirical pdf rN (x) and the target pdf p(x) through
the inaccuracy can be converted to measuring a distance
between the inaccuracy K(rN , p) and the SDE H(p) =
K(p, p). As the inaccuracy K(rN , p) is a random variable,
the distance must be understood in a probabilistic sense.
Setting up a constraint of this distance while adapting
sample size represents the main idea of the proposed SSA
which will be denoted information measure SSA (IM-SSA).

The distance between K(rN , p) and H(p) will be measured
through their difference for which

lim
N→∞

(K(rN , p) − H(p)) = 0

holds. The aim of the adaptation procedure is to allow
the user to specify a probability that the difference will
be within a user specified bounds. This corresponds to
adapting sample size with respect to a user specified
quantile of the difference.

3.2 Quantile of a difference between inaccuracy and SDE

The difference between the inaccuracy K(rN , p) and the
SDE H(p) is given as
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K(rN , p) − H(p) =

1
N

∑N
i=1 w(x(i))

(

log 1
p(x(i))

− H(p)
)

1
N

∑N
j=1 w(x(j))

.

(11)
Let us denote the ratio in (11) by R. Both nomina-
tor and denominator in (11) are given by sample means
and according to the central limit theorem (CLT), for
N → ∞ they converge to a Gaussian distribution.
Note that the CLT can only be applied if means and
variances of the terms in the sums are finite. Denote

Y = 1
N

∑N
i=1

[

w(x(i))
(

log( 1
p(x(i) ) − H(p)

)]

and W =

1
N

∑N
i=1 w(x(i)), i.e. Y = W (L − H(p)) and W = w(x)

with L = log( 1
p(x) ), then according to the CLT

p(Y ) −−−−→
N→∞

N{Y : µY , σ2
Y
}

p(W ) −−−−→
N→∞

N{W : µW , σ2
W
},

where µY = µY , µW = µW σ2
Y

=
σ2

Y

N and σ2
W

=
σ2

W

N with

µY =0 (12)

µW =Eπ(W ) (13)

σ2
Y =Eπ(W 2L2) − 2Eπ(W 2L)

Eπ(WL)

Eπ(W )
+

Eπ(W 2)
E

2
π(WL)

E2
π(W )

(14)

σ2
W =Eπ(W 2) − E

2
π(W ). (15)

A quantile of the ratio R in (11) as a function of N can
not be computed directly due to intricate distribution
of R, nevertheless the Geary-Hinkley transformation to
normality [Hayya et al., 1975] can be applied. It says
that, under a certain condition, the random variable R
given by a ratio of two possibly correlated, normal random
variables Y and W may be transformed to a standard
normal variable T using the transformation

T =
µW R − µY

√

σ2
W

R2 − 2cov(Y , W )R + σ2
Y

=
µW R − µY

√
σ2

W

N R2 − 2 cov(Y,W )
N R +

σ2
Y

N

. (16)

The covariance cov(Y , W ) = cov(Y,W )
N can be expressed as

cov(Y,W ) = Eπ(W 2L) − Eπ(W 2)
Eπ(WL)

Eπ(W )
. (17)

The transformation (16) holds even for quantiles, i.e.

t1−δ/2 =
µW r1−δ/2 − µY

√
σ2

W

N r2
1−δ/2 − 2 cov(Y,W )

N r1−δ/2 +
σ2

Y

N

, (18)

where t1−δ/2 is 1−δ/2 quantile of the standard normal
distribution and r1−δ/2 is 1−δ/2 quantile of the distribution
of R. The equation (18) represents a relation between a
quantile of the standard normal distribution, a quantile
of R = K(rN , p) − H(p) and sample size N . Therefore, it
is possible to introduce the following relation for sample
size N :

N = t21−δ/2

σ2
W r2

1−δ/2 − 2cov(Y, W )r1−δ/2 + σ2
Y

(µW r1−δ/2 − µY )2
. (19)

The sample size N given by (19) is necessary for the
difference K(rN , p) − H(p) to be within the interval
(−r1−δ/2,+r1−δ/2) with probability 1−δ.

The constraint for the sample size N is given by the
confidence coefficient 1−δ and the value of 1−δ/2 quantile
r1−δ/2 which are both chosen by the user.

Note that according to Hayya et al. [1975] the transfor-
mation (16) holds as long as the coefficient of variation of
the denominator W , denoted CW = σW /µW is less than
0.39. If this condition does not apply, the quantile can be
computed numerically but not in terms of a function of the
sample size N . In such a case, it is possible to determine
an upper bound for the sample size N using Chebychev’s
inequality

Prob(|K(rN , p) − H(p)| ≥ ε) ≤
√

var (K(rN , p) − H(p))/ε,

in the following form

N =
1

ε2δ
var(K(rN , p) − H(p)). (20)

The relation states that if sample size N given by (20) is
used, then

Prob(|K(rN , p) − H(p)| ≥ ε) ≤ δ.

The term var(K(rN , p) − H(p)) in (20) can be computed
using the standard delta method for ratio statistics as

varπ(K(rN , p) − H(p)) ≈
(

varπ(WL)

E2
π(W )

− 2
Eπ(WL)covπ(W, WL)

E3
π(W )

+
E

2
π(WL)varπ(W )

E4
π(W )

)

(21)

which can be further explored using second order raw
moments as

varπ(K(RN , p) − H(p)) ≈
(

Eπ(W 2L2)

E2
π(W )

− 2
Eπ(WL)Eπ(W 2L)

E3
π(W )

+
E

2
π(WL)Eπ(W 2)

E4
π(W )

)

=
σ2

Y

E2
π(W )

. (22)

Note that for the sample size given by (20) no informa-
tion concerning distribution of K(rN , p) − H(p) is used;
therefore this condition for the sample size is loose and
the relation (19) should be used if possible.

As the terms σ2
Y and cov(Y,W ) in (19) and (22) depend

on the target pdf p(x) which is unknown, the following

substitution p(x) = w(x)π(x)
c will be used and after a few

arrangements the terms can be expressed as

σ2
Y =Eπ(W 2L̃2) − 2Eπ(W 2L̃)

Eπ(WL̃)

Eπ(W )
+

Eπ(W 2)
E

2
π(WL̃)

E2
π(W )

cov(Y, W ) =lEπ(W 2) + Eπ(W 2L̃)

− Eπ(W 2)
lEπ(W ) + Eπ(WL̃)

Eπ(W )

with L̃ = log 1
w(x)π(x) and l = log (Eπ(W )).
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3.3 Computational issues

To implement the proposed IM-SSA in the PF framework,
several issues must be discussed. First of all, let us restate
individual terms used in the sample size adaptation (19):

Eπ(W ) =

∫

w(xk)π(xk|z
k)dxk (23)

Eπ(W 2) =

∫

w(xk)2π(xk|z
k)dxk (24)

Eπ(WL̃) =

∫

w(xk) log( 1
w(xk)π(xk|zk)

)π(xk|z
k)dxk (25)

Eπ(W 2L̃) =

∫

w(xk)2 log( 1
w(xk)π(xk|zk)

)π(xk|z
k)dxk

(26)

Eπ(W 2L̃2) =

∫

w(xk)2 log2( 1
w(xk)π(xk|zk)

)π(xk|z
k)dxk.

(27)

Value of the integrals (23-27) cannot be usually com-
puted analytically, therefore they must be calculated ei-
ther numerically or using MC integration. In the case
of the numerical integration, calculation of π(x) =

π(xk|x
∗(1:Nk−1)
k−1 ,zk) at an arbitrary point for large Nk−1

can be computationally demanding as Nk−1 evaluations
of local sampling densities is required for each point. A
simple solution to this problem is approximation of the
global sampling density by a piecewise linear function
which evaluation at an arbitrary point is modest from the
computational point of view.

MC integration of the expectations (23-27) is preferable
especially for high dimension of the state xk. To calculate
the expectations using MC integration, generate NMC

samples from π(xk|x
∗(1:Nk−1)
k−1 ,zk), utilize them to compute

Nk according to (19) and finally, the remaining Nk−NMC

samples are drawn.

The PF with IM-SSA will be denoted as the information
measure adaptive PF (IM-APF) and its algorithm can be
summarized as

Alg. 2: information measure adaptive particle filter

Sample size adaptation: Compute value of the inte-
grals (23-27). Choose the confidence coefficient 1−δ and
length of the interval r1−δ/2 and calculate the sample
size Nk according to (19).

Sampling: Corresponds to Alg. 1
Weighting: Corresponds to Alg. 1
Resampling: Corresponds to Alg. 1

Increase k and iterate to step Sample size adapta-
tion.

Note that for k = 0 the sampling density is π(x) =
p(x0|z

−1) and the weight w(x) is given by (4). For k > 0
the sampling density π(x) is given by (3) and the weight
w(x) by (5).

4. NUMERICAL EXAMPLE

To illustrate the proposed IM-SSA, a scalar nonlinear
Gaussian system is considered:

xk+1 = ϕ1xk + 1 + sin(ωπk) + ek

zk = ϕ2x
2
k + vk

with p(x0) = N{x0; 0, 12}, p(ek) = G{ek, 3, 2}, p(vk) =
N{vk; 0, 1}, ϕ1 = 0.5, ϕ2 = 0.2, ω = 0.04. The state is
estimated by the PF for k = 0, . . . 29. The PF considers
p(x0|z

−1) = p(x0) and prior sampling density. The system
was simulated 1000 times. Due to lack of space the IM-
APF is compared with the unadapted PF only. The IM-
APF considered the confidence coefficient 1 − δ/2 = 0.99
and r1−δ/2 = 1. To compare IM-APF and the unadapted
PF meaningfully, the sample size for the unadapted PF
was calculated in the following way. Firstly, an average
NAV of all the sample sizes of the IM-APF was calculated
and rounded, i.e.

NAV = ⌈ 1
30

1
1000

29∑

k=0

1000∑

s=1

Nk(s)⌉ = 410,

where Nk(s) is sample size of the IM-APF in s-th simu-
lation at the time instant k. Consequently, the unadapted
PF was applied twice with N = NAV , and N = 2 ·NAV . It
should be remembered that the unadapted PF uses some
information obtained from the IM-APF (NAV ) but does
not adapt the sample size N in time.

To compute the true filtering pdf p(xk|z
k) used for com-

parison of the results, the point-mass method [Simandl
et al., 2006] was used with a large number of grid points.
Therefore, its filtering pdf estimate can be treated as the
true filtering pdf.

Fig. 1 contains 0.99 quantiles of the difference K(rNk
) −

H(p) calculated from the simulations for the IM-APF
(solid) and unadapted PF with N = NAV (dot-dashed),
and N = 2 · NAV (dashed). An example of IM-APF
sample size evolution for several simulations is given in
Fig. 2 (dashed), together with an shaded area formed by
95% sample sizes. From Fig. 1 it is clear that the IM-APF
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Fig. 1. 0.99 quantiles of the difference between inaccuracy
and SDE

adapts the sample size to keep the difference K(rNk
) −

H(p) within the interval (−r0.99, r0.99), r0.99 = 1 with
probability 0.99. The unadapted PF with the same sample
size on average as the IM-APF provides much worse results
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Table 1. Comparison of point estimates quality

IM-APF PF, N = NAV PF, N = 2 · NAV

MSE 0.555 0.748 0.588

var(SE) 31.868 131.795 86.854

in terms of empirical pdf quality than the IM-APF. If the
sample size of the unadapted PF is considered twice as
large as the average NAV , then the empirical pdf quality is
approximately the same as with the IM-APF. Therefore,
in this case the unadapted PF requires more than twice
as many samples as the IM-APF to guarantee the same
quality of the empirical pdf.

As a matter of interest, the quality of point estimates of the
state, i.e. mean, is shown in Table 1. The notation MSE
represents average mean squared error estimate and the
notation var(SE) represents average variance of squared
error which exposes variability of the squared error. Both
indicators demonstrate superiority of the IM-APF over
both unadapted PF’s.

5. CONCLUSION

The paper dealt with the particle filter for nonlinear state
estimation problem. The information measure sample size
adaptation technique was proposed to keep quality of the
empirical filtering pdf fixed. The ground of the technique
is the Kullback-Leibler distance which can be decomposed
into inaccuracy and Shannon differential entropy. The
technique is based on the fact that the inaccuracy between
the empirical pdf and the target filtering pdf approaches
the Shannon differential entropy of the filtering pdf for
infinity sample size. The difference between the inaccu-
racy and the Shannon entropy is utilized for measuring
quality of the empirical filtering pdf. The proposed relation
for sample size adaptation guarantees that the difference
is within a user-specified boundary with a user-specified
probability. The paper also discussed implementation is-
sues of the proposed sample size adaptation technique.
The particle filter with the information measure sample
size adaptation technique was illustrated in a numerical
example.

ACKNOWLEDGEMENTS

The work was supported by the Ministry of Education,
Youth and Sports of the Czech Republic, project No.
1M0572.

REFERENCES

A. Doucet, N. De Freitas, and N. Gordon, editors. Sequen-
tial Monte Carlo Methods in Practice. Springer, 2001.
(Ed. Doucet A., de Freitas N., and Gordon N.).

D. Fox. Adapting the sample size in particle filters
through kld-sampling. International Journal of Robotics
Research, 22:985–1003, 2003.

N. Gordon, D. Salmond, and A. F. M. Smith. Novel
approach to nonlinear/ non-gaussian bayesian state es-
timation. IEE Proceedings-F, 140:107–113, 1993.

J. Hayya, D Armstrong, and N Gressis. A note on the
ratio of two normally distributed variables. Management
Science, 21(11):338–1341, 7 1975.

D. F. Kerridge. Inaccuracy and inference. J. Royal Statist.
Society, (23):184–194, 1961.

D. Koller and R. Fratkina. Using learning for approxima-
tion in stochastic processes. In Proc. 15th International
Conf. on Machine Learning, pages 287–295. Morgan
Kaufmann, San Francisco, CA, 1998.

J. S. Liu, R. Cheng, and T. Logvinenko. Sequential
Monte Carlo Methods in Practice, chapter A Theoretical
Framework for Sequential Importance Sampling with
Resampling, pages 225–246. Statistics for Engineering
and Information Science. Springer, 2001. (Ed. Doucet
A., de Freitas N., and Gordon N.).

M. Simandl and O. Straka. Nonlinear estimation by
particle filters and cramér-rao bound. In Proceedings of
the 15th Triennial World Congress of the IFAC, pages
79–84, Barcelona, 2002.

M. Simandl and O. Straka. Sampling densities of particle
filter: a survey and comparison. In Proceedings of the
26th American Control Conference (ACC), pages 4437–
4442. AACC, 7 2007.

M. Simandl, J. Kralovec, and P. Tichavsky. Filtering, pre-
dictive and smoothing cramér-rao bounds for discrete-
time nonlinear dynamic filters. Automatica, 37(11):
1703–1716, 2001.

M. Simandl, J. Kralovec, and T. Soderstrom. Advanced
point – mass method for nonlinear state estimation.
Automatica, 42(7):1133–1145, 2006.

A. Soto. Self adaptive particle filter. In Proceedings of
the International Joint Conference on Artificial Intelli-
gence, pages 1398–1406. International Joint Conference
on Artificial Intelligence, 2005.

O. Straka and M. Simandl. Sample size adaptation for
particle filters. In A. Nebylov, editor, Preprints of the
16th Symposium on Automatic Control in Aerospace,
volume 1, pages 444–449, Saint Petersburg, Russia,
2004.

O. Straka and M. Simandl. Adaptive particle filter based
on fixed efficient sample size. In Preprints of the 14th
IFAC Symposium on System Identification, Newcastle,
2006.

M. A. Tanner. Tools for Statistical Inference. Springer
Series in Statistics. Springer Verlag, New York, 3rd
edition edition, 1996.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

6489


