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Abstract: We investigate convergence properties of a proposed distributed model predictive
control (DMPC) scheme, where agents negotiate to compute an optimal consensus point using
an incremental subgradient method based on primal decomposition as described in Johansson
et al. [2006, 2007]. The objective of the distributed control strategy is to agree upon and achieve
an optimal common output value for a group of agents in the presence of constraints on the
agent dynamics using local predictive controllers. Stability analysis using a receding horizon
implementation of the distributed optimal consensus scheme is performed. Conditions are given
under which convergence can be obtained even if the negotiations do not reach full consensus.

1. INTRODUCTION

Engineered systems are becoming increasingly complex
and larger in size, which presents a need for the distri-
bution of decision-making processes that interact with or
are part of these large-scale technologies and applications.
An important problem that arises among such distributed
decision-making systems (often called agents), is related
to consensus-seeking and rendezvous, which has received
a high level of interest in the recent literature [Olfati-
Saber et al., 2007]. The consensus-seeking and rendezvous
problem consists of designing distributed control strate-
gies such that the state or output of a group of agents
asymptotically converge to a common value, a consensus
point, which is agreed upon either a priori or on-the-fly
using some negotiation scheme. In this paper, we assume
that a consensus point is not fixed in advance, but is
rather determined by an optimal control problem. We
focus on the combination of model predictive controllers
and subgradient-based negotiation of optimal consensus
(along the lines of the work in Johansson et al. [2007]), and
investigate conditions for asymptotic convergence of such
distributed control schemes. We propose an algorithm for
distributed model predictive consensus, which guarantees
convergence under reasonable assumptions given a suffi-
cient number of subgradient iterations can be performed
without interruption.

We will model agents as constrained linear dynamical sys-
tems and build on the decentralized negotiation algorithm
described in Johansson et al. [2007] to compute exactly
or at least approach the optimal consensus point. This
negotiation algorithm relies on primal decomposition of
the optimal consensus and control problem and makes use
of distributed implementation of an incremental subgra-
dient method. Each agent performs individual planning
of its trajectory and negotiates with neighbors to find an
optimal or near optimal consensus point, before applying
a control signal.

The paper is structured as follows. Section 2 introduces
the optimal consensus problem and some basic notation
and assumptions. The decentralized negotiation scheme of
Johansson et al. [2007] is summarized in Section 3 along
with a decentralized receding horizon implementation of
the optimal consensus problem. Stability of the proposed
decentralized negotiation and control scheme is studied in
Section 4 for both converged and interrupted negotiations.
Finally, Section 5 presents our conclusions.

2. PROBLEM FORMULATION

Consider N > 1 dynamic agents whose dynamics are
described by the following discrete-time state equations

xi
t+1 = Aixi

t + Biui
t,

yi
t = Cixi

t,
(1)

for i = 1, . . . , N , where Ai ∈ R
ni

×ni

, Bi ∈ R
ni

×mi

and

Ci ∈ R
p×ni

. We assume that the states and inputs of each
agent are constrained to lie in polyhedral sets

xi
t ∈ X

i, ui
t ∈ U

i, t ≥ 0. (2)

Definition 1. [Johansson et al., 2007] The dynamic agents
described by (1) reach consensus at time T if

yi
T+k = θ, ∀k ≥ 0, i = 1, . . . , N,

ui
T+k = ui

T , ∀k ≥ 0, i = 1, . . . , N,
(3)

where θ lies in a compact and convex set Θ ⊂ R
p.

In this paper, the consensus point θ is a vector that
specifies, for example, the position and velocity the agents
shall converge to.

Our objective is to find a consensus point θ ∈ Θ ⊂ R
p and

a sequence of inputs ui
0, . . . , u

i
T−1, with i = 1, . . . , N and

ui
t ∈ U

i for all t = 1, . . . , T −1, such that all agent outputs
are equal at time T :

yi
T = θ, i = 1, . . . , N. (4)
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We will also require each agent to be at an equilibrium
at time T and denote the state and control equilibrium
pairs of the i-th agent corresponding to a θ value with
(

xi
e(θ), u

i
e(θ)

)

. The set of equilibria for each agent i =
1, . . . , N thus will be a function of θ on the domain Θ:

E i(θ) =
(

xi
e(θ), u

i
e(θ)

)

=
{

x ∈ R
ni

, u ∈ R
mi

| x = Aix + Biu, Cix = θ
}

.

(5)

We assume that the following cost function is associated
with the i-th system:

V i
(

xi
k, ui

k, θ
)

=
(

xi
k − xi

e(θ)
)⊺

Qi
(

xi
k − xi

e(θ)
)

+
(

ui
k − ui

e(θ)
)⊺

Ri
(

ui
k − ui

e(θ)
)

,
(6)

where Qi ∈ R
ni

×ni

and Ri ∈ R
mi

×mi

are positive definite
symmetric matrices (i.e., we penalize deviations from the
equilibrium states corresponding to the consensus point
and the use of control effort).

Assumption 1. Each agent dynamics (Ai, Bi) is control-

lable and systems (Ai, (Qi)
1

2 ) are observable.

We then formulate the following finite-time optimal con-
trol problem at time t based on Johansson et al. [2007]:

Problem 1. Let T > 0 be fixed. Determine control vectors
ui

k,t, k = 0, . . . , T−1, for all i = 1, . . . , N and the consensus
point θt, which solve the following optimization problem:

min
Ut,θt

N
∑

i=1

T−1
∑

k=0

V i
(

xi
k,t, u

i
k,t, θt

)

subj. to xi
k+1,t = Aixi

k,t + Biui
k,t, (7a)

yi
k,t = Cixi

k,t,

xi
k,t ∈ X

i, k = 1, . . . , T, (7b)

ui
k,t ∈ U

i, k = 0, . . . , T − 1, (7c)

yi
T,t = θt, (7d)

xi
T,t = xi

e(θt), (7e)

xi
0,t = xi

t, (7f)

i = 1, . . . , N,

θt ∈ Θ, (7g)

where Ut , [u0,t, . . . , uT−1,t] ∈ R
T

∑

i
mi

with uk,t ,

[u1
k,t, . . . , u

N
k,t], denotes part of the optimization vector

containing control inputs, xi
k,t denotes the state vector

of the i-th agent predicted at time t + k obtained by
starting from the state xi

t and applying to system (1)
the input sequence ui

0,t, . . . , u
i
k−1,t. The full optimization

vector consists of the vector Ut defined above and the
consensus variable θt. The subscript t will be significant
later in Section 3, when this problem will be solved
repeatedly in a receding horizon fashion.

By implementing the solution to Problem 1, agents reach
consensus at time T in the sense of Definition 1. We
will make the following assumptions on the feasibility of
reaching the consensus point by all agents:

Assumption 2. The rendezvous time horizon T is large
enough so that all θt in the set Θ are feasible, i.e., reachable
consensus equilibrium points for all agents.

Assumption 3. For all θt ∈ Θ and i = 1, . . . , N , there
exists a sequence ui

0, . . . , u
i
T−1 in the relative interior of

U i such that yi
T = θ.

This means that it should be possible to reach θt without
saturating the control signal (not necessarily in an optimal
way).

The solution of Problem 1 was distributed among the
agents in Johansson et al. [2007] by using primal decom-
position in combination with an incremental subgradient
method [Bertsekas et al., 2003]. First, a multiparametric
solution of the individual optimization problems was de-
fined as

qi(xi
t, θt) = min

Ut

T−1
∑

k=0

V i
(

xi
k,t, u

i
k,t, θt

)

subj. to (7a)− (7g), k = 1, . . . , T − 1.

(8)

The optimal consensus problem in (7) can then be written
as

q∗(xt) = min
θt

N
∑

i=1

qi(xi
t, θt)

subj. to θt ∈ Θ.

(9)

The set of optimal consensus points is defined as

Θ∗

t =

{

θt ∈ Θ

∣

∣

∣

∣

∣

N
∑

i=1

qi(xi
t, θt) = q∗(xt)

}

. (10)

It can be established that the cost function qi(·) defined
in (8) is a convex function and a subgradient gi for qi(·)
at θt is given by the Lagrange multipliers corresponding
to the terminal point constraint.

A principal method for solving problem (8) is the subgra-
dient method

θt(k + 1) = PΘ

[

θt(k)− α(k)

N
∑

i=1

gi(k)

]

(11)

where gi(k) is a subgradient of qi at θt(k), α(k) is a positive
stepsize, and PΘ denotes projection on the set Θ ⊂ R

p. In
the following, we will consider the incremental subgradient
method proposed in Nedić and Bertsekas [2001b]. It is
similar to the standard subgradient method (11), the main
difference being that at each iteration k, θt is changed
incrementally, through a sequence of N steps. Each step
is a subgradient iteration for a single component function
qi, and there is one step per component function. Thus,
an iteration can be viewed as a cycle of N subiterations.
If θt(k) is the vector obtained after k cycles, the vector
θt(k + 1) obtained after one more cycle is

θt(k + 1) = ϑN
t (k), (12)

where ϑN
t (k) is obtained after the N steps

ϑi
t(k) = PΘ

[

ϑi−1
t (k)− α(k)gi(k)

]

,

gi(k) ∈ ∂qi(xi
t, ϑ

i−1
t (k)), i = 1, . . . , N,

(13)

starting with
ϑ0

t (k) = θt(k), (14)

where ∂qi(xi
t, ϑ

i−1
t (k)) denotes the subdifferential (set of

all subgradients) of qi at the point ϑi−1
t (k). The updates

described by (13) are referred to as the subiterations of
the k-th cycle.
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We will make the following assumptions, which will allow
us to formulate well-posed problems and characterize the
number of subgradient iterations needed for convergence
to a certain tolerance.

Assumption 4. (Existence of an Optimal Solution). The
optimal solution set Θ∗

t is nonempty.

Assumption 5. (Subgradient Boundedness). There exists
a scalar β such that

‖gi‖ ≤ β, (15)

∀gi ∈ ∂qi
(

xi
t, θt(k)

)

∪ ∂qi
(

xi
t, ϑ

i−1
t (k)

)

,

i = 1, . . . , N, k ≥ 0,

where N is the number of subiterations in each cycle.

Since we assume that the set Θ is compact, Assumptions
4 and 5 are automatically satisfied.

Definition 2. We will denote the Euclidean distance from
a point z to the set Θ∗

t by dist(z, Θ∗

t ).

Definition 3. A function γ(·), defined on nonnegative re-
als, is a K function if it is continuous, strictly increasing
with γ(0) = 0.

In the next section, we briefly describe the agreement
mechanism of Johansson et al. [2007] and propose a closed-
loop feedback control policy, which can be used in a
receding horizon fashion, interleaved with subgradient-
based negotiation of optimal consensus point updates.

3. DECENTRALIZED NEGOTIATION AND
RECEDING HORIZON IMPLEMENTATION SCHEME

The optimal consensus point θ∗t can be computed in a
distributed way using the incremental subgradient method
described in (12)-(14). Reference [Johansson et al., 2007]
describes an algorithm, where an estimate of the optimal
consensus point is passed around between agents. Upon
receiving an estimate from its neighbor, an agent solves the
optimization problem (8) to evaluate its cost of reaching
the suggested consensus point and to compute an asso-
ciated subgradient (Lagrange multiplier of terminal point
constraint). The agent then performs a subiteration by
updating the consensus estimate according to (13) and
passing the estimate to the next agent. Each agent only
computes a subgradient with respect to its own part of the
objective function and not the global objective function.
The convergence of the incremental subgradient algorithm
is guaranteed if the agents can be organized into a cycle
graph (for more details see Johansson et al. [2007]).

Remark 1. Besides some technical assumptions given in
Johansson et al. [2006], the primal decomposition scheme
and convergence to the optimal solution of (7) using se-
quential local subgradient iterations is possible due to
decoupled and independently constrained agent dynamics.
Furthermore, the overall objective function is decompos-
able into a sum of terms that share only a single coupling
variable, θt. Thus fixing a θt value in the cost and con-
straints separates the optimal control problem into local
ones.

The control solution U∗

t corresponding to a negotiated
optimal consensus point θ∗t provides an open-loop control
strategy for finite-time optimal consensus. However, this

solution is sensitive to model mismatch and disturbances,
which suggests considering a receding horizon implemen-
tation and repeated solution of the finite-time optimal
consensus problem due to its feedback nature. Our goal in
such an approach is to guarantee constraint fulfillment and
asymptotic convergence to a consensus point by repeatedly
solving optimal consensus problems and implementing the
first sample of the control solution.

More formally, let U∗

t = [u∗

0,t, . . . , u
∗

T−1,t] and θ∗t be an

optimal solution of (7) at time t. Then, the first sample of
U∗

t is applied to the collection of agents:

ut = u∗

0,t. (16)

The optimization (7) is repeated at time t + 1, based on
the new state xt+1.

Remark 2. Stability of such a combination of DMPC and
incremental subgradient methods is not a trivial question,
especially since the terminal constraint value in the reced-
ing horizon scheme based on (7) is an optimization variable
as well. The main point of the following investigation
is to rule out a scenario where repeatedly solving and
implementing the first step of a finite-time optimal control
solution with changing terminal constraint value eventu-
ally results in divergence or lack of stability. Compared to
the work in Johansson et al. [2006], this question arises
because we are no longer considering only the open-loop
implementation of a control sequence that terminates with
the value ue(θ

∗

t ) at time T , but one that is updated every
time step (along with θ∗t ), based on new measurements in
a receding horizon fashion.

4. STABILITY ANALYSIS

In this section we will be primarily interested in establish-
ing conditions for asymptotic convergence of the combined
DMPC and consensus algorithm to the set of equilibria
defined as

E =
(

E i(θ), . . . , EN (θ), θ
)

, θ ∈ Θ. (17)

4.1 Fully Converged Negotiations

For now, we will assume that in each implementation
cycle (i.e., at sampling time t), the distributed negotiations
on the optimal consensus value θ∗t have converged before
the implementation of the corresponding control actions.
In other words, the optimal solution of problem (7) is
attained by every agent in each time step by means of the
distributed consensus algorithm of Johansson et al. [2006].
This allows us to consider the overall system as a whole for
stability analysis, using the following aggregate dynamics

xt+1 = Axt + But,

yt = Cxt,
(18)

where A = diag(Ai) ∈ R

∑

i
ni

×

∑

i
ni

, B = diag(Bi) ∈

R

∑

i
ni

×

∑

i
mi

and C = diag(Ci) ∈ R
pN×

∑

i
ni

. The
states and inputs of the overall system are constrained
by

xt ∈ X =
∏

i

X i, ut ∈ U =
∏

i

U i, t ≥ 0, (19)

where the symbol
∏

denotes the standard Cartesian
product of sets. Note that according to (4), consensus for
the aggregate system dynamics means yT = CxT = 1N ⊗
θ∗t .
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Stability analysis in this case pertains to the study of
the receding horizon control scheme given in (7) and (16)
with a terminal point constraint to one of its optimization
variables θt. This will be performed next.

The set of states at time k feasible for Problem 1 is given
by

Xk = {x | ∃u ∈ U such that Ax + Bu ∈ Xk+1} ∩ X ,

with (20)

XT−1 = {x | ∃u ∈ U and θ ∈ Θ such that

x = Ax + Bu and C(Ax + Bu) = 1N ⊗ θ} ∩ X .

Denote with
c(xt) = u∗

0,t, (21)

the control law obtained by applying the receding horizon
control policy in (7) and (16) with cost function (6) for
each agent, when the current state is xt = [x1

t , . . . , x
N
t ].

Consider the aggregate dynamical model (18) and denote
with

xt+1 = Axt + Bc(xt), (22)

the closed-loop dynamics of the entire system. In the
following theorem, we state sufficient conditions for the
asymptotic convergence of the closed-loop system to the
set of equilibria E .

Theorem 1. Assume that

(A0) Qi ≻ 0, Ri ≻ 0 for all i = 1, . . . , N .
(A1) For all θt ∈ Θ there exists a unique equilibrium

xi
e(θt) ∈ X

i, ui
e(θt) ∈ U

i for all i = 1, . . . , N such that
xi

e = Aixi
e + Biui

e and Cixi
e = θt.

(A2) The state and input constraint sets X i and U i

contain all xi
e and ui

e equilibrium pairs in their interior,
respectively, for all i = 1, . . . , N .

Then, the closed-loop system (22) asymptotically con-
verges to the set of equilibria E with domain of attraction
X0.

Proof: We introduce the following notation:

J i
(

xi
t, U

i
t , θt

)

=
T−1
∑

k=0

V i
(

xi
k,t, u

i
k,t, θt

)

(23)

and

J(xt, Ut, θt) =

N
∑

i=1

J i
(

xi
t, U

i
t , θt

)

. (24)

The optimal value function obtained from solving problem
(7) at time t will thus be denoted as J∗(xt, U

∗

t , θ∗t ).

We will show first that the optimal value function
J∗(xt, U

∗

t , θ∗t ) decreases along the closed-loop trajectories
of the overall system at each time step J∗(xt+1, U

∗

t+1, θ
∗

t+1) ≤
J∗(xt, U

∗

t , θ∗t ), if the assumptions of the theorem hold.

Let the initial state at time t be xt = x0,t ∈ X0 and
let U∗

t = [u∗

0,t, . . . , u
∗

T−1,t] and θ∗t be the optimizers of

problem (7). Denote with x∗

t = [x0,t, x
∗

1,t, . . . , x
∗

T,t] the
corresponding optimal state trajectory, with 1N ⊗ θ∗t =
Cx∗

T,t. Let xt+1 = x∗

1,t = Ax0,t + Bu∗

0,t and consider

problem (7) for time t + 1. We will construct an up-
per bound for J∗(xt+1, U

∗

t+1, θ
∗

t+1). Consider the sequence
Ut+1 = [u∗

1,t, . . . , u
∗

T−1,t, v] and the corresponding state
trajectory resulting from the initial state xt+1, xt+1 =
[x∗

1,t, . . . , x
∗

T,t, Ax∗

T,t +Bv]. The input Ut+1 will be feasible

for the problem at t + 1 if and only if v ∈ U keeps
C(Ax∗

T,t+Bv) equal to some 1N⊗θ with θ ∈ Θ at step T of

the prediction, i.e., C(Ax∗

T,t +Bv) = 1N ⊗θ. Such v exists

by hypothesis (A1). Since x∗

T,t is an equilibrium of the
system, this also allows us to choose a feasible v, for which
in fact C(Ax∗

T,t + Bv) = 1N ⊗ θ∗t . This is accomplished by

noticing that x∗

T,t = xe(θ
∗

t ) and selecting

v = ue(θ
∗

t ). (25)

J(xt+1, Ut+1, θ
∗

t ) will be an upper bound for the optimal
J∗(xt+1, U

∗

t+1, θ
∗

t+1). Since trajectories generated by U∗

t

and Ut+1 overlap (except for the first and last sampling
intervals), it is immediate to show that

J∗(xt+1, U
∗

t+1, θ
∗

t+1)

≤J(xt+1, Ut+1, θ
∗

t )

=J∗(xt, U
∗

t , θ∗t )− (x0,t − xe(θ
∗

t ))⊺Q(x0,t − xe(θ
∗

t ))

− (u∗

0,t − ue(θ
∗

t ))⊺R(u∗

0,t − ue(θ
∗

t ))

+ ((Ax∗

T,t + Bv)− xe(θ
∗

t ))⊺Q((Ax∗

T,t + Bv)− xe(θ
∗

t ))

+ (v − ue(θ
∗

t ))⊺R(v − ue(θ
∗

t )),
(26)

where Q = diag(Qi) ∈ R

∑

i
ni

×

∑

i
ni

, R = diag(Ri) ∈

R

∑

i
mi

×

∑

i
mi

. Choosing the particular v value given in
(25) leads to Ax∗

T,t + Bv − xe(θ
∗

t ) = 0, so equation (26)
becomes

J∗(xt+1, U
∗

t+1, θ
∗

t+1)− J∗(xt, U
∗

t , θ∗t )

≤− (x0,t − xe(θ
∗

t ))⊺Q(x0,t − xe(θ
∗

t ))

− (u∗

0,t − ue(θ
∗

t ))⊺R(u∗

0,t − ue(θ
∗

t ))

≤− γ(‖(xt − xe(θ), ut − ue(θ))‖), ∀xt ∈ Xt.

(27)

where γ is a class K function. This inequality along
with hypothesis (A0) on the matrices Q and R ensure
that J∗(xt, U

∗

t , θ∗t ) decreases along the state trajecto-
ries of the closed-loop system (22) for any xt ∈ Xt.
Since J∗(xt, U

∗

t , θ∗t ) ≥ 0 for all xt, U
∗

t , θ∗t , it follows that
J∗(xt, U

∗

t , θ∗t ) → J⋆ as t → ∞, where J⋆ is a nonneg-
ative constant. We conclude that J∗(xt+1, U

∗

t+1, θ
∗

t+1) −
J∗(xt, U

∗

t , θ∗t )→ 0 as t→∞ and this implies that γ(‖(xt−
xe(θ), ut − ue(θ))‖)→ 0. From γ(·) being a K function, it
follows that xt − xe(θ), ut − ue(θ)→ 0 as t→∞. 2

4.2 Interrupted Negotiations

In case the distributed negotiation process is interrupted
(e.g., due to execution time constraints) or otherwise al-
lowed to run only for a finite number of iterations before
the control inputs are implemented, the θi

t values do not
converge to a common optimal value θ∗t . This means that
individual agents will issue control commands that will
guide them to possibly close but different terminal consen-
sus points. In such a situation, we desire to find conditions
under which repeated negotiation and implementation of
intermediate consensus results will still allow asymptotic
convergence to a common consensus point for each agent.

We propose an algorithm that fulfills the above objec-
tive if the subgradient iterations in subsequent time steps
approach the optimal consensus point to an increasingly
more accurate level and at the same time the local
MPC solutions satisfy an improvement property along the
closed-loop evolution of the agents’ dynamics. The first
requirement ensures that the mismatch between different
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interrupted θi
t values diminishes as t → ∞. The second

requirement is analogous to the standard suboptimal MPC
scheme in Scokaert et al. [1999], where it is established
that feasibility of such an improvement constraint implies
stability of the receding horizon control scheme.

In the following, we will denote the last (i.e., implemented)
final consensus point reached by agent i in the subgra-
dient negotiation process of time instance t by θi

t. This
intermediate consensus point is not optimal for the global
optimization problem (7), but due to Assumptions 2-3 it
is certainly feasible for the following local problem:

min
θi

t

qi
(

xi
t, θ

i
t

)

(28a)

subj. to θi
t ∈ Θ. (28b)

Distinguishing between the local θi
t variables allows the

original global optimization problem (9) to be restated as

min
θt

N
∑

i=1

qi(xi
t, θ

i
t)

subj. to θ1
t = · · · = θN

t ∈ Θ.

(29)

As opposed to the fully converged subgradient scheme
in Section 4.1, the θi

t variables do not converge to the
globally optimal one, thus we cannot rely on optimality of
the MPC scheme to prove global convergence. Instead, an
improvement property as shown in Scokaert et al. [1999],
which is required for asymptotic convergence to the set of
equilibria will be formulated as

N
∑

i=1

(

J i
(

xi
t+1, U

i
t+1, θ

i
t+1

)

− J i
(

xi
t, U

i
t , θ

i
t

))

≤− γ(‖(xt − xe(θ), ut − ue(θ))‖),

(30)

where γ is a class K function. A feasible sequence for such
a constraint always exists based on Assumptions 2-3 and
the earlier developments in Section 4.1.

The value function improvement property in (30) is not
sufficient for convergence to the global optimum, since the
common terminal point constraint is missing and the local
θi∗

t values are in general different. Thus, if the agents’
initial states are close to their local xi

e(θ
i∗
t ) equilibria,

which are significantly different from each other, then
any subgradient-based or other adjustment of the local
terminal point constraints towards the globally optimal θ∗t
value would necessarily result in both local and global cost
increase.

This suggests that an additional requirement besides the
cost improvement property is needed, which ensures that
the θi

t values will also converge over time to a common θt.
This can be accomplished by requiring that in each itera-
tion the subgradient-based negotiation scheme is executed
at least until

‖θi
t − θ∗t ‖ ≤ εt ∀i = 1, . . . , N, (31)

where the approximation bound is updated for instance
according to

εt ≤ ǫ
1

t
, ǫ > 0. (32)

In order to have some information about the required num-
ber of incremental subgradient iterations that guarantee
fulfillment of constraints (30) and (31), we will make use

of the following result from Nedić and Bertsekas [2001a]. It
can be shown that under a strong convexity type assump-
tion, the incremental subgradient method defined earlier
in (12)-(14) with an appropriately chosen stepsize α(k) has
a sublinear convergence rate:

Proposition 2. [Nedić and Bertsekas, 2001a] Let Assump-
tions 4 and 5 hold, and assume that there exists a positive
scalar µ such that

q(xt, θt)− q∗(xt) ≥ µ (dist(θt, Θ
∗

t ))
2
, ∀θt ∈ Θ. (33)

Then for the sequence {θt(k)} generated by the incremen-
tal subgradient method with the stepsize of α(k) = 1

2µ
1

k+1 ,

µ > 0, we have

(dist(θt(k + 1), Θ∗

t ))
2
≤

1 + ln(k + 1)

k + 1

N2β2

4µ2
. (34)

In the following, we describe a scheme, which allows the
two conditions (30) and (31) to be tested based on the
cyclic communication scheme underlying the subgradient-
based negotiation.

In Algorithm 1, agents perform cyclic iterations of the sub-
gradient (SG) method (12)-(14). They execute at least the
number of iterations dictated by the optimal θ∗t approxi-
mation requirement in (31). Satisfaction of the test (31)
is signaled by a flag fSG. If needed, agents continue with
subgradient iterations until the global cost improvement
property in (30) is satisfied. This is signaled by flag fDMPC.

In order to accomplish this, agents pass along besides
their current subiterate ϑi

t(k) of the consensus point in
iteration k at sampling time t, the two binary variables
(flags) fDMPC and fSG corresponding to tests (30) and
(31), and two vectors of dimension N : Jcurr and Jprev.
These vectors contain the individual cost values associated
with the current and previous sampling time, respectively.
Jprev has values corresponding to the cost of using the
final ϑi

t−1(k) consensus points for implementation during
the previous sampling time t − 1. The current cost Jcurr

gets filled up cyclically using the most recent subiterate
ϑi

t(k) for each agent.

When an agent computes its own consensus point subit-
erate, it calculates the corresponding local cost value and
checks the sum of previous and current cost values for
each agent to decide whether the improvement property
(30) is satisfied. If it is, then it sets a flag fDMPC, which
indicates that the improvement property (30) is fulfilled
and every other agent should enter in an implementation
phase, provided that condition (31) is also satisfied. The
message reaches all other agents eventually as they pass
along this information in a cyclic pattern. If property (30)
is not satisfied, then it puts its current cost value entry in
the vector Jcurr and passes it on to the next agent.

Theorem 3. Under the assumptions of Section 2, Algo-
rithm 1 converges asymptotically to the set of equilibria
E .

Proof: The main idea of the proof follows along the lines
of Theorem 1, except for two crucial points. A feasible
sequence for the improvement constraint (30) always ex-
ists based on Assumptions 2-3 and the developments in
Section 4.1. This improvement property guarantees that
even with interrupted negotiations, the distributed MPC
problem converges asymptotically to some set of different
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terminal points (since θi
t are different in this case). How-

ever, these terminal points are guaranteed to form a single
consensus point, attained asymptotically by the repeated
application of the iterative subgradient method, due to
(31) and the compactness of Θ. 2

Algorithm 1: Cyclic incremental DMPC algorithm

Initialize β, µ, ǫ, θi
0;1

fDMPC, fSG ←− false;2

k, t←− 0;3

Jcurr ∈ R
N ←− 0;4

Jprev ∈ R
N ←− −M · 1; /* M is large number */5

loop6

Measure states xi
t;7

repeat8

α(k)←− 1
2µ

1
k+1 ;9

ϑ0
t (k)←− θt(k);10

for i = 1 to N do11

if fDMPC ∧ fSG then12

J i
prev ←− J i

t (x
i
t, U

i
t , ϑ

i
t(k − 1));13

Implement ui∗
0,t(ϑ

i
t(k − 1));14

ϑi
t(k)←− ϑi

t(k − 1)15

else16

Compute a gi(k) ∈ ∂qi(xi
t, ϑ

i−1
t (k));17

ϑi
t(k)←− PΘ

[

ϑi−1
t (k)− α(k)gi(k)

]

;18

J i
curr ←− J i

t (x
i
t, U

i
t , ϑ

i
t(k));19

if
∑N

i=1(J
i
curr − J i

prev) ≤ 0 then20

Set fDMPC true;21

else22

Set fDMPC false;23

end24

end25

end26

θt(k + 1)←− ϑN
t (k);27

if
1+ln(k+1)

k+1
N2β2

4µ2 ≤
ǫ
t

then28

Set fSG true;29

else30

Set fSG false;31

end32

k ←− k + 1;33

until new measurement is available ;34

t←− t + 1;35

k←− 0;36

end loop37

Remark 3. Although Algorithm 1 guarantees global con-
vergence, it requires an increasing number of subgradient
iterations in subsequent time steps in order to approach
the optimal value with a decreasing tolerance. The re-
quirements (30) and (31) are only sufficient conditions
and thus might be somewhat conservative. Decreasing the
initial stepsize of the subgradient iterations may solve this
problem. The increasing number of subgradient iterations
can also be alleviated in practice in the following way:
Once εt gets small enough or another condition indicating
closeness to the global consensus point is satisfied, the θ
consensus point can be fixed for all agents and the scheme
could proceed with a pure decentralized MPC scheme.
This would ensure convergence due to the result shown
in Section 4.1.

5. CONCLUSIONS

We have introduced a distributed model predictive con-
trol (DMPC) framework, where the control objective is
to agree upon and achieve an optimal consensus point
for constrained dynamic agents. The negotiation scheme
makes use of the cyclic incremental subgradient algorithm
described in Johansson et al. [2007]. Convergence prop-
erties of the combined DMPC / incremental subgradient
approach were analyzed and a sufficient minimum number
of subgradient iterations were established. An algorithm
was proposed that ensures convergence of the decentralized
scheme. A numerical implementation example represent-
ing an aerial refueling scenario can be found in Keviczky
and Johansson [2008]. Other applications include dis-
tributed “synchronization”, where agents with constrained
dynamics have to agree upon and achieve simultaneously
an “optimal” consensus value, which is not known a priori.
Our current work considers schemes that relax the cyclic,
sequential communication requirement and rely on paral-
lel, localized iterations.
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