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Abstract: An alternative proof of solvability of the differential equation that is a part of
the Regulator Equation which arises from the solution of the Output Regulation Problem is
presented. The proof uses the standard Hilbert-space based theory of solutions of elliptic partial
differential equations for the case of the linear Output Regulation Problem. In the nonlinear
case, a sequence of linear equations is defined so that their solution converges to the solution of
the nonlinear problem. This is proved using the Banach Contraction Theorem.
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1. INTRODUCTION

The Output Regulation Problem belongs to central prob-
lems of the recent control theory, especially in its nonlinear
version. The aim is to find a control of a plant so that
its output tracks the reference signal. The characteristic
features are the following: the reference signal (and, in
some cases, the disturbances) is generated by the so-called
exosystem, asymptotic tracking is achieved and, lastly, the
method of solution provides the solution for a certain class
of reference signals.

The crucial part is finding a solution of the so-called
Regulator Equation. Its solution describes a ”zero-error”
manifold. To be more precise, assume the state of the
exosystem v and the state of the plant x are given. If x
equals to the solution of the Regulator Equation evaluated
at the point v: x = x(v) then the tracking error equals zero.

The first attempt to the solution of the Output Regulation
Problem can be found in Isidori and Byrnes [1990]. The
Regulator Equation turns out to be a matrix equation in
the linear case, the authors give conditions of existence
of its solution. (For details, see also Isidori [1995]). The
Regulator Equation arising from the nonlinear Output
Regulation Problem is formulated and studied in many
articles, both for minimum as well as for nonminimum
phase systems, see Huang [2000, 2003] and others. (A
thorough presentation of these methods can be found in
Huang [2004].) To solve the Regulator Equation, Taylor
series are used. All the functions involved are decomposed
into a Taylor series. Then, first terms of the solution
can be computed. The results of this method can be
verified only experimentally, no convergence analysis is
provided. Another interesting approach involves use of
neural networks for the solution of the Regulator Equation
Wang and Huang [2001].

1 Supported by MSMT CR through the grant MSMT LA 274
and by the Czech Science Foundation through the grant GA CR
102/07/P413.

There were no attempts to apply the results of the partial
differential equations (PDE) theory, especially those con-
cerning the Finite Element Method (FEM), to the solution
of the Output Regulation Problem. This equation is rather
nonstandard - it is a first-order differential equation that
are not so frequently studied. A greater challenge seems
to be imposed through presence of the algebraic condi-
tion (which will be referred to as the ”algebraic part” in
contrast with the ”differential part” that is composed of
partial differential equations) that is a natural part of the
Regulator Equation. These obstacles might have prevented
use of FEM to the output regulation problem.

The goal of this paper is to fill this gap - to join the
classical theory of partial differential equations with the
Output Regulation Problem. The related approach was
presented in Čelikovský and Rehák [2004]. The solution
of the Regulator Equation was split into two parts: the
solution of the differential part and finding the control
so that the algebraic condition is satisfied. An iterative
approach was chosen: each iteration consisted of a choice
of the feedforward control, then the differential part of the
Regulator Equation was evaluated. At the end, a penalty
functional - the integral of the square of the difference
made in the algebraic condition - is evaluated. This value
is used to change the value of the feedforward in the
next iteration so that the value of the penalty functional
decreases. A stabilization of the system is done before the
start of the iterative algorithm. This is a crucial fact as this
allows to apply the theory described here to the Regulator
Equation obtained by this method. An illustrative example
was added: the controlled system was a mathematical
model of an inverted pendulum on a chart with an added
chart (see Devasia [1996]). A more detailed description of
this method is also contained in Rehák and Čelikovský
[2008].

There are basically two facts that need to be proved:

• Convergence of the iterative method
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• Existence of a solution for each partial differential
equation that is solved in every iteration

While attention is paid to the first point in Rehák and
Čelikovský [2008], namely, certain conditions guaranteeing
convergence of the iterative scheme are introduced, the
second point has not been studied yet. It is the topic of
the presented article.

The main result is that the conditions usually posed on the
controlled system and the exosystem guarantee existence
of the solution of the differential part of the Regulator
Equation. This opens avenue to the alternative solution
of the Regulator Equation with use of numerical methods
that were successfully applied to various kinds of problems
arising from physics, engineering and other fields of science
and technology. One among the most important methods
is the Finite Element Method (FEM). These methods also
provide various kinds of error estimates. The advantage of
this is twofold: firstly, one can prove convergence of the
numerical method, secondly, having numerically solved a
PDE, one can get evaluation of the error that is done which
is in the case of the Output Regulation Problem closely
related to the tracking error.

The article is purely theoretically oriented as the use of the
FEM to the solution of the Regulator Equation has already
been shown before. This paper can thus be considered as
an ex-post justification of the results already obtained.

Let us mention a different approach which was exper-
imentally verified in Rehák et al. [2005]. The algebraic
condition is replaced by a singularly perturbed equation
containing a derivative of the feedforward control. The sys-
tem of (purely) differential equations allows to construct
the Regulator Equation so that it is composed of partial
differential equations only, without presence of any alge-
braic condition. However, the system of equations obtained
by this approach does not seem to possess the properties
required here. Thus, a further analysis is necessary.

For the sake of clarity and simplicity, the described method
is presented for the case of linear systems first. Then, a gen-
eralization to a class of nonlinear systems is made. In the
second case, a sequence of linear problems is constructed
with the property that the sequence of the solutions con-
verge to the solution of the Regulator Equation of the
nonlinear problem. The proof of this convergence is given
by the Banach Fixed Point Theorem.

Let us remark that all equalities are considered in the
”almost everywhere” sense.

2. REGULATOR EQUATION

let n, µ ∈ N and let the smooth functions F, G : Rn → Rn,
h : Rn → R be given. Moreover, let S ∈ Rµ×µ, Q ∈ R1×µ.

Define the controlled system (the plant) by

ẋ = F (x) + G(x)u, x(0) = x(0), y = h(x) (1)

where x(t) ∈ Rn; u(t), y(t) ∈ R. Define also the reference
generator (the exosystem) by

v̇ = Sv, v(0) = v0, reference = Qv. (2)

(Disturbances are not considered in this paper.)

The main goal of the Output Regulation problem is to find
a control u (defined as a function of the state of the plant
and the exosystem) such that, if this control is applied, the
following holds limt→+∞ |y(t) − reference(t)| = 0. (For a
more general setting see Huang [2004].)

In the linear case, it is assumed that the plant is described
by the equation

ẋ = Ax + Bu, y = Hx (3)

with matrices A, B, H having suitable dimensions.

A crucial role in the theory plays the so-called zero-error
manifold. It is a µ-dimensional manifold in the n + 1-
dimensional Euclidean space. It can be described as the
graph of functions that solve the so-called Regulator
Equation:

∂x(v)

∂v
Sv = F (x(v)) + G(x(v))c(v) (4)

0 = h(x(v)) − Qv. (5)

The main characteristic of the zero-error manifold is the
following: if the state of the exosystem at the time t equals
v(t) then the tracking error is zero provided the equalities
x(t) = x(v(t)), u(t) = c(v(t)) hold.

The Regulator Equation consists of two parts: a system of
partial differential equations (PDE) and the output con-
dition which is an algebraic equation (5). The differential
equation (4) is called the differential part of RE in this
text and will be denoted by DRE. This equation exhibits
some features that can be considered ”nonstandard” in the
common theory of PDE:

• It is a first-order PDE,
• It is being solved on the whole domain Rµ,
• This implies no boundary condition is given while a

condition

x(0) = 0 (6)is required.

As stated before the aim of this article is to investigate
solvability of the differential part via the finite-element
method.

2.1 Linear Case

In this case, the Regulator Equation (4,5) attains the form

∂x(v)

∂v
Sv = Ax(v) + Bc(v), (7)

0 = Hx(v) − Qv. (8)

The following assumptions are crucial:
Assumption L1: the matrix A is Hurwitz and eigenvalues
of S are simple and lie on the imaginary axis.

Assumption L2: there exist a diagonal matrix D and a
regular matrix T such that A = T−1DT. Define also the
scalars dii as the diagonal elements of the matrix D.

Assumption L3: there exists a smooth function V :
Rµ → [0, +∞) such that V (0) = 0, V (v) > 0 for v 6= 0,
∇V (v).Sv ≤ 0, V (v) → +∞ if ‖v‖ → +∞.

Using L2, the differential part attains the form

T
∂x

∂v
Sv = DTx(v) + TBc(v).
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The following change of variables is introduced:

ξ(v) = Tx(v). (9)

Observe that T ∂x

∂v
= T

∂T−1ξ(v)
∂v

= ∂ξ(v)
∂v

.

Then the differential part is converted into the form:

∂ξ

∂v
Sv = Dξ(v) + TBc(v). (10)

This equation is solved iteratively. One equation is solved
while the others are kept fixed. Hence the i-th equation to
be solved can be rewritten into the form

∂ξi

∂v
Sv = diiξi(v) + (TBc(v))i (11)

A theorem guaranteeing existence of a solution of a PDE
of this type can be found in Roos et al. [1996], Lemma 1.6.
Before the theorem is cited one has to deal with boundary
conditions for this type of equations.

First, one has to avoid the necessity of solving the Reg-
ulator Equation on the whole space Rµ. Rather, one has
to seek the solution on a bounded domain Ω ⊂ Rµ with
Lipschitz boundary such that 0 ∈ Ω.

Next, denote Sij the element of the matrix S on the i, j
position. Moreover, let b : Rµ → Rµ be defined as follows

b(v) = (

n∑
k=1

S1kvk, . . . ,

n∑
k=1

Sµkvk).

Then note that for every i ∈ {1, . . . , n}:

∂ξi

∂v
Sv = b(v)∇vξi.

For each v ∈ ∂Ω let n(v) denote the outward normal to the
domain Ω at the point v. As in Roos et al. [1996], denote
also

Γ−(Ω) = {v ∈ ∂Ω|b(v).n(v) < 0}

The lemma guaranteeing existence of a solution of (11) is
cited here without proof:

Lemma 1. Let the functions b : Ω̄ → Rn, β : Ω̄ → R are
continuously differentiable, let ϕ ∈ L2(Ω). Assume there
exists a constant ω > 0 such that

β(v) −
1

2
div b(v) ≥ ω ∀v ∈ Ω. (12)

Then the equation

b(v)∇vξ(v) + β(v)ξ(v) = ϕ(v) in Ω,

ξ(v) = ξ0 on Γ̄−(Ω).

has a solution ξ ∈ L2(Ω).

Proof: see Roos et al. [1996], Lemma 1.6. 2

Now let us look how to apply this theorem to the Regulator
Equation. First, note that this theorem implies existence
of a solution of (11) on the domain Ω for every function
c(v) and for every i, thus there is a solution of the system
(10). The function x defined by x(v) = T−1ξ(v) then solves
the original (7).

It remains to clarify the meaning of the conditions posed
on the functions as well as to define the domain Ω precisely.

Remark 2. Under the previous assumptions,
div b(v) = 0, β(v) = −dii > 0. In particular, the condition
(12) is satisfied.

Proof: From the definition of b one has

div b(v) =

µ∑
j=1

∂

∂vj

(

µ∑
k=1

Sjkvk) =

µ∑
j=1

Sjj = Trace S.

As all eigenvalues of the matrix S have zero real part
and all of them are conjugated one has Trace S = 0. The
second statement is obvious from the definition of dii and
the fact that the matrix A is supposed to be stable. 2

Remark 3. Let α > 0, Γα = {v ∈ Rµ|V (v) = α} and
Ωα = Int Γα = {v ∈ Rµ : V (v) < α}. (Here, Int Γ denotes
the interior of the closed curve Γ.) Then, according to the
Assumption L3, there following holds: 0 ∈ Ωα∀α > 0,
Ωα ⊂ Ωβ if α < β, n(v).b(v) = 0∀v ∈ ∂Ωα. The
last relation implies also that Γ̄−(Ωα) is empty, thus no
boundary conditions are to be defined.

The previous results can be summarized in the following
theorem.

Theorem 4. Assume the system (7) is given such that
Assumptions L1, L2, L3 are satisfied and the eigenvalues
of S have zero real parts. Then for every α > 0 and every
c ∈ L2(Ωα) there exists a function x ∈ L2(Ωα) satisfying
(4) in Ωα while no boundary condition is defined.

Finally a useful estimate of the solution will be proved.

Lemma 5. Let the domain Ω be defined as in the previous
theorem. Then there exists a constant C (independent of
the function c) such that for the solution of the equation
(7) holds (the symbol ‖.‖2 denotes the L2(Ω)-norm):

‖x‖2 ≤ C‖c‖2. (13)

Proof: This result will be proved for the transformed
equation (10) first. Let i ∈ {1, . . . , n} be fixed. The i-th
equation in the system (10) will be multiplied by ξi. Then
one can integrate these equations on Ω:∫

Ω

ξi

∂ξi

∂v
Svdv =

∫

Ω

diiξ
2
i + (TB)icξidv.

Note that

ξi

∂ξi

∂v
=

1

2

∂ξ2
i

∂v
Then the Stokes’ theorem is applied on this term. It yields:∫

Ω

(−dii −
1

2
div b)ξ2dv +

∫

∂Ω

ξ2
i b(v).n(v)dSv =

∫

Ω

ξi(TB)icdv.

Due to the assumption, −dii > 0, div b = 0. The boundary
term equals zero as shown in the previous result. The right-
hand side term can be estimated using Hölder inequality.
This yields ‖ξi‖2 ≤ 1

−dii

‖(TB)ic‖2. Thus the inequality

‖ξ‖2 ≤ C‖(TB)‖‖c‖2. (14)

holds for the solution of the vector equation (10) (with a
suitable constant C > 0) and finally, thanks to properties
of the matrix T , for the solution x of the equation (7) as
well. 2

The next task is to verify the condition x(0) = 0. As all
the involved functions are elements of the L2-spaces one
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cannot speak about their values. Instead, one can use the
expression

L(x, 0) = lim
t→0+

1

measBt

∫

Bt

x(v)dv

where the symbol Bt denotes the open ball with radius t
and the center at the origin.

The result is formulated as follows:

Lemma 6. Assume L(c, 0) = 0. Then L(x, 0) = 0.

The assumption implies also that L(TBc, 0) = 0. Thus,
using (14) there exists a constant K > 0 so that ‖ξ‖ ≤
K‖c‖. Hence also for every t > 0 such that Bt ⊂ Ω:

(
1

measBt

∫

Bt

‖ξ‖2dv)
1

2 ≤ K(
1

measBt

∫

Bt

‖c‖2dv)
1

2

On the other hand, using the Jensen’s Inequality:

(
1

measBt

∫

Bt

‖ξ‖2dv)
1

2 ≥
1

measBt

∫

Bt

|ξ|dv.

Remark 7. Let the functions c, x be continuous, moreover
let c(0) = 0. Then ξ(0) = 0. Consequently x(0) = 0, so
that the condition 3 is valid.

This follows from the fact that the equation (7) attains
the form for v = 0: 0 = Dξ. Regularity of D and the
transformation (9) yield the result. 2

2.2 Nonlinear Case

In this subsection, attention is paid to the problem of
solvability of the equation (4) if the right-hand side is
nonlinear. As a nonlinear counterpart of the Theorem 1
is not known to the authors the nonlinear equation (4)
is solved iteratively using the linear case. We assume the
equation is solved on the domain Ω.

Originating in (1), denote by A the Jacobi matrix of F
(evaluated at the origin) and let B = G(0). Moreover,
define the functions f : Rn → Rn and g : Rn → Rn by
f(x) = F (x) − Ax, g(x) = G(x) − B.

The following assumption will be useful:
Assumption N1: there exist positive constants Kf , Kg

such that for every x ∈ Rn the inequalities ‖f(x)‖ ≤
Kf‖x‖, ‖g(x)‖ ≤ Kg‖x‖ hold.

Remark 8. The domain Ω is the domain where the solution
is sought. It always contains origin. As the functions f, g
are O(‖x‖2)-functions in a neighborhood of the origin this
constant diminishes if the domain is smaller.

The equation (4) can be written in form

∂x(v)

∂v
Sv = (15)

Ax(v) + Bc(v) + f(x(v)) + g(x(v))c(v).

The assumptions about the exosystem are the same as in
the previous subsection. Moreover it os assumed that the
matrices A and B satisfy the same conditions as in the
linear case.

Using Theorem 4 one has
Proposition 9. Assume the matrices A,B and S satisfy the
assumptions of the Theorem 4. Then there exists a domain
Ω such as in Theorem 4 such that the equation

∂x(v)

∂v
Sv = (16)

Ax(v) + B(v) + f(x̃(v)) + g(x̃(v))c(v).

has a solution x for every c, x̃ ∈ L2(Ω) on Ω.

Lemma 10. Let x̃1(v), x̃2(v) and c(v) be given. Denote by
xi(v), i ∈ {1, 2} the solution of the equation

∂xi(v)

∂v
Sv = Axi(v) + Bc(v) + f(x̃i(v)) + g(x̃i(v))c(v).

Moreover, assume the functions f , g are Lipschitz contin-
uous with constants Kf > 0, Kg > 0. Then, there exists a
constant K > 0 such that

‖x1 − x2‖ ≤ K‖x̃1 − x̃2‖. (17)

Proof: Denote e(v) = x1(v) − x2(v). Then the function e
satisfies the equation

∂e(v)

∂v
Sv = Ae(v)+

f(x̃1(v)) + g(x̃1(v))c(v) − f(x̃2(v)) − g(x̃2(v))c(v).

According to the estimate given in Theorem 13 there exists
a constant C > 0 such that

‖e‖ ≤ C(‖f(x̃1(v)) − f(x̃2(v))‖+

‖g(x̃1(v))c(v) − g(x̃2(v))c(v)‖ ≤

CKf‖x̃1 − x̃2‖ + CKg‖x̃1 − x̃2‖‖c‖.

Thus setting K = CKf + CKg‖c‖ proves the result. 2

Now one can formulate the final result that guarantees
existence of a solution of the equation (4).

Theorem 11. Let the assumptions L1-L3 and N1 be valid
and, moreover, let K < 1. Under the introduced notation,
the mapping Π : L2(Ω) → L2(Ω) defined by Π(x̃) = x
(where x solves the equation (16) with right-hand side as
defined there) has a fixed point. Consequently, this fixed
point is the solution of the equation (4).

Remark 12. • Note that the constant K depends on the
function c. For a function c with greater norm ‖c‖ the
constant K is greater.

• The functions f and g are O(‖x‖2) functions in a
neighborhood of the origin. Thus, for a sufficiently
small domain Ω the constant K is less that 1.

Lemma 13. Let the assumptions of Theorem 11 are satis-
fied for a certain function c0. There exists a constant C > 0
such that for every c1, c2 ∈ L2(Ω), ‖c1‖, ‖c2‖ ≤ ‖c0‖ holds.
‖x1 −x2‖ ≤ C‖c1 − c2‖. Moreover, there exists a constant

C̃ > 0 such that ‖x1‖ ≤ C‖c1‖

Let xi be a solution of (15) with right-hand side ci. Then
define auxiliary equations

∂ζi

∂v
Sv = Aζi(v) + Bci(v) + f(xi(v)) + g(xi(v))ci(v).

Its solution are the functions ζi. According to Lemma 5
the estimate holds

‖ζ1 − ζ2‖ ≤ C1‖c1 − c2‖ + C2‖x1 − x2‖+

C3‖ζ1 − ζ2‖‖c0‖ + C4‖x1‖‖c1 − c2‖.

The Banach fixed point theorem implies that if Π : X → X
is a contraction with a contractivity constant K ∈ (0, 1)
and having a fixed point x ∈ X then there exists a
continuous nondecreasing function Φ : (0, 1) → (0, +∞)
such that ‖x‖ ≤ Φ(K). Thus, if C2 + C3‖c0‖ < 1 then

‖ζ1 − ζ2‖ ≤
C1 + C4Φ(K)

1 − C2 − C3‖c0‖
‖c1 − c2‖.
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The last statement is obtained by setting c2 ≡ 0,x2 ≡ 0
which implies also ζ2 ≡ 0. 2

3. ALGEBRAIC CONDITION

The algebraic condition (the zero-output condition) is
undoubtedly a fundamental part of the Regulator Equa-
tion. There are basically two ways to satisfy it. The first
approach, adopted by many authors (see e.g. the chapter
3.4 in Huang [2004]), is based on a partial computation
of some variables (up to the relative degree of the plant)
and on their substitution into the differential part. This
allows to reduce the size of the differential equation to be
solved. (In fact, one gets the system of equations (3.67)
in Huang [2004].) However, the crucial property - nonzero
eigenvalues of the Jacobi matrix of the right-hand of the
solved differential equation - may not hold for the resulting
equation. There are two ways of remedy: This property
can be assumed for the system of differential equations
after this substitution. Then, the method described in this
paper can be applied to this system of equations without
any change. However, this assumption is difficult to verify
a-priori. Therefore, the approach described in Čelikovský
and Rehák [2004], Rehák and Čelikovský [2008] seems to
be more suitable. The original system is stabilized using
a state feedback. Then, an iterative process converging to
the solution of the Regulator Equation is started: each
iteration consists of three steps. First, given a value of the
control c(v), the differential part is solved. Then a value
of a penalty functional measuring the error made in the
algebraic condition is computed. Using this, a new value of
the function c(v) is defined to decrease the penalty in the
next step. Hence, the proof of existence of the solution of
the differential part actually guarantees existence of each
iteration in this iterative process.

4. CONCLUSION

An alternative proof of solvability of the differential part of
the Regulator Equation arising from the Output Regula-
tion Problem was presented. This is especially suitable to
be combined with the optimization-based iterative method
that constructs a convergent sequence approaching the
solution of the whole Regulator Equation as this proof
guarantees existence of the iterations.
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