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Abstract: Consensus of a group of agents in a multi-agent system is considered. All agents
are modeled by identical linear nth order dynamical systems and the interconnection topology
between the agents is modeled as a directed weighted graph. We provide answers to the questions
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double integrator case and propose an LMI-based design for group consensus in the general
case. An example is used to illustrate the results.

Keywords: Multi-agent systems; Consensus; Directed graph; LMI.

1. INTRODUCTION

Recently, the consensus problem among multi-agent sys-
tems (MAS) has received a lot of attention in the litera-
ture. The interest in this problem is mainly motivated by
the huge variety of applications in various areas, e.g. un-
manned aerial vehicles, mobile robots, satellites, formation
control, and sensor networks, to name only a few. For a
nice overview of recent results on the topic, see Ren et al.
(2007); Olfati-Saber et al. (2007); Tanner et al. (2007) and
the references therein.

Numerous results have been proposed on consensus for
MASs, most of which consider agents that are modeled
by single or double integrators. However, in some applica-
tions, agents of higher dynamical order are required if con-
sensus of more than two variables is aimed at. While the
consensus problem for agents modeled as integrator chains
of length greater than two was reported quite recently
(Ren et al., 2006), only little attention has been paid to the
inherent instability of integrator chains of length greater
than one. To overcome this problem and for full generality,
it is interesting to investigate the consensus problem con-
sidering agents modeled by general linear time-invariant
(LTI) single-input systems.

It is well known that the interconnection topology among
agents plays a pivotal role in reaching group consensus in a
MAS. Graphs are commonly employed in order to model
the interconnection topology in a MAS (cf. de Gennaro
and Jadbabaie (2006); Ren et al. (2006); Ren and Atkins
(2005); Olfati-Saber (2006)). In the most general setup,
directed and weighted graphs are used. A graph can be
completely characterized by its Laplacian matrix L, hence,
it is important to fully understand the properties of this
matrix, most notably its eigenstructure which is crucial for
the consensus problem.

In the past, research was mainly focused on the analysis
of MAS consensus: Given the interconnection topology
and some consensus algorithm, the question is answered,
whether the states of all agents converge to some common
value, the consensus. For agents modeled as single inte-
grator with arbitrary interconnection topology or double
integrator with an interconnection topology admitting a
real Laplacian spectrum, connectedness of the MAS is

necessary and sufficient for convergence to consensus. In
the general case however, it was reported recently (Ren
and Atkins, 2005) that connectedness of the MAS is only a
necessary condition for convergence to consensus. Whether
or not a sufficiently connected MAS actually converges
to consensus depends on the gains in the consensus algo-
rithm. Therefore, it is required to develop a systematic
method to determine the gains or to find tight bounds on
the gains in the consensus algorithm.

Considering the status of recent consensus research, firstly,
this paper presents conditions for consensus of MASs with
agents modeled as general LTI systems. These conditions
explicitly depend on the gains in the consensus algorithm,
the parameters of the agent model, and the interconnec-
tion topology. To obtain these conditions, we derive the
characteristic equation of the closed-loop consisting of all
agents and a given consensus algorithm. The characteristic
equation enables us to derive conditions on the gains and
to unveil the dynamic evolution of the consensus state.

Secondly, an implication of the left-eigenvector of the
Laplacian matrix corresponding to the zero eigenvalue
is elucidated: Non-zero elements in the left-eigenvector
correspond to agents that can be chosen as the root of a
spanning tree in the graph describing the interconnection
topology of the MAS. This implies that if the ith compo-
nent in the left-eigenvector is non-zero, the ith agent has
some influence on the consensus value. This influence is
quantified by the components of the left-eigenvector.

Thirdly, a systematic way to choose the gains in the
consensus algorithm is proposed for agents modeled as
double integrators and general LTI systems. In the case
of double integrator agents, we present exact convergence
bounds that are tighter than previously proposed bounds.
For agents modeled as general LTI systems, an LMI based
design method for the consensus algorithm is proposed.
Unlike in previous results, in our design methods a desired
convergence rate can be specified.

The remainder of this paper is organized as follows: We
start by presenting some basic facts from graph theory in
Section 2. Section 3 exposes some results on analysis of
consensus algorithms for agents modeled by LTI systems
followed by the presentation of design methods for the
double integrator and the general LTI system case in
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Section 4. The results are illustrated on an example in
Section 5 before Section 6 concludes the paper.

2. PRELIMINARIES

2.1 Notation

Throughout this paper, we write 1 and 0 for the all ones
and all zero vector of appropriate dimension. The ith unit
vector in Rn is denoted ei. The imaginary unit is written
as j :=

√
−1.

2.2 Basic graph theory

To make the paper self-contained, we start by an overview
of concepts from graph theory. We consider weighted and
directed graphs given as G = {V , E , W} where

• V = {1, . . . , N} is a nonempty finite vertex set with
each vertex i representing one agent and the number
of vertices denoted as |V| = N ,

• E ⊆ V × V is a set of ordered pairs of vertices called
edges satisfying (i, j) ∈ E if and only if there is a link
from vertex i called the parent to vertex j called the
child, i.e. information flows from agent i to agent j,

• W : V×V → [0,∞) is a mapping that assigns positive
weights to the edges of G and satisfies W (i, j) 6= 0 if
and only if (i, j) ∈ E .

The graph G is undirected if W (i, j) = W (j, i) for all i, j =

1, . . . , N , it is balanced if
∑N

j=1 W (i, j) =
∑N

j=1 W (j, i)
for i = 1, . . . , N . We assume that there are no selfloops,
i.e. (i, i) 6∈ E , i = 1, . . . , N .

A directed path p in G is a finite sequence of vertices p =
{i1, i2, . . . , il} satisfying (ik, ik+1) ∈ E for k = 1, . . . , l − 1.
Vertex i is an ancestor of vertex j and vertex j is a
descendant of vertex i if there is a directed path from i to j.
We define the sets Pi ⊆ V as the set of parents of i, Ci ⊆ V
as the set of children of i, Ai ⊆ V as the set of ancestors
of i, and Di ⊆ V as the set of descendants of i. A directed
tree is a directed graph where every vertex except for one
distinct vertex, called the root of the tree, has exactly one
parent. Define the restriction W |

Ẽ
: V ×V → [0,∞) of the

mapping W : V × V → [0,∞) to a subset Ẽ ⊆ E as

W |
Ẽ
(i, j) :=

{

W (i, j) if (i, j) ∈ Ẽ ,
0 if (i, j) 6∈ Ẽ .

The graph G is said to contain a spanning tree if there
exists a subset Ẽ ⊆ E such that the graph G̃ = {V , Ẽ, W |

Ẽ
}

is a directed tree. A graph G is strongly connected if any
vertex in V is the root of a spanning tree of G.

The graph G can be completely characterized by its
Laplacian matrix L = D − A where D = [dij ] is the
diagonal matrix of the vertex in-degrees, i.e.

dii =

N∑

j=1

W (j, i), dij = 0 if i 6= j,

and A = [aij ] is the adjacency matrix defined as

aii = 0, aij = W (j, i) if i 6= j.

As all row-sums of L vanish, the Laplacian matrix has
always at least one zero eigenvalue with corresponding
right-eigenvector 1.

The properties of the Laplacian matrix L of an undirected
graph are very well understood (Godsil and Royle, 2004;
Fiedler, 1973). In particular, the connectedness of a graph

can be expressed in terms of the second smallest eigen-
value λ2(L) of the Laplacian, which equals the algebraic
connectivity

a(G) := min
xT 1=0

x 6=0

xT Lx

xT x

of an undirected graph. Adding edges to an undirected
graph, a(G) cannot decrease. In a general directed graph,
however, a(G) cannot be related to graph connectivity
without further knowledge of the topology. Instead, it was
shown recently (Ren et al., 2004) that the eigenvalue with
the second smallest real part can be used to characterize
connectedness of a directed graph. Unfortunately, the
second smallest real part may decrease when new edges
are added to the graph.

The following facts are used throughout the paper:

Fact 1. The zero eigenvalue of L is simple and all the other
eigenvalues have positive real part if and only if G contains
a spanning tree (cf. Ren et al. (2004)).

Fact 2. If G is balanced, the algebraic connectivity satisfies
0 ≤ a(G) ≤ Re(λ2(L)), where λ2(L) is the eigenvalue of
L with the second smallest real part, and a(G) > 0 if and
only if G is connected (cf. Wu (2005)).

In the remainder of this paper, we denote the eigenvalues of
L as λ1(L), . . . , λN (L) with Re(λi(L)) ≤ Re(λi+1(L)), i =
1, . . . , N−1 and λ1(L) = 0. Let pT be a left-eigenvector of
L corresponding to the eigenvalue λ1(L) = 0 and satisfying

pT1 = 1. If G is balanced, then pT = 1
T

N
. If G contains

a spanning tree, pT is uniquely defined because the zero
eigenvalue is simple.

3. CONSENSUS ANALYSIS

We consider a MAS of N linear agents with dynamics

ξ
(n)
i +αn−1ξ

(n−1)
i + · · ·+α0ξi = ui, i = 1, . . . , N, (1)

where ξ
(k)
i denotes the kth derivative of ξi and ui is an

input. Every controllable single-input linear system can
be written as (1).

3.1 The consensus dynamics

In this section we analyze consensus in the group of agents
defined by (1). The group of agents is said to reach
consensus if the following requirement is satisfied:

(I) ξ
(k)
i (t) − ξ

(k)
j (t) → 0 as t → ∞ for all i, j =

1, . . . , N, i 6= j and all k = 0, . . . , n − 1.

In many applications, an additional requirement is that

(II) ξ
(k)
i (t) < ∞ for all t > 0, i = 1, . . . , N , and k =

0, . . . , n − 1.

A consensus algorithm frequently found in literature is
given as

ui =

N∑

j=1

n−1∑

k=0

βkγiW (j, i)(ξ
(k)
j − ξ

(k)
i ) (2)

for i = 1, . . . , N , where βk > 0, k = 0, . . . , n − 1 and γi >
0, i = 1, . . . , N are design parameters to be determined,
while the weights W (j, i), i, j = 1, . . . , N are assumed
to be given by the interconnection topology. The values
γi, i = 1, . . . , N can be interpreted as positive scalings of
the weights of the edges incident to vertex i. Algorithm (2)
uses only state information of agents j satisfying j ∈ Pi to
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determine the input of agent i, i.e. algorithm (2) is local
in nature. Using the definitions

ξ =





ξ1
...

ξN



 , u =





u1
...

uN



 , Γ = diag









γ1
...

γN







 ,

algorithm (2) can be written in matrix form as

u = −
n−1∑

k=0

βkΓLξ(k). (3)

Note that L̃ := ΓL is a Laplacian matrix corresponding to
the graph G̃ = {V , E , W̃} with W̃ (i, j) := γjW (i, j). If G
is strongly connected, γi, i = 1, . . . , N can be chosen such
that G̃ is balanced.

Theorem 3. Given the MAS (1) with algorithm (3), Re-
quirement (I) is satisfied if and only if the polynomial

N∏

j=2

(

sn +

n−1∑

k=0

(αk + βkλj(ΓL))sk

)

︸ ︷︷ ︸

=: pj(s)

(4)

is Hurwitz. In that case all agents converge to a consensus

state, i.e. ξ
(k)
i (t) → ζ(k)(t), i = 1, . . . , N, k = 0, . . . , n − 1

for t → ∞ and the consensus state ζ(t) evolves according
to

ζ(n) + αn−1ζ
(n−1) + · · · + α0ζ = 0 (5)

with initial condition given as the weighted average

ζ(k)(0) = p̃T ξ(k)(0), k = 0, . . . , n − 1 where p̃ = Γ−1
p

pT Γ−11
.

To prove Theorem 3, we need the following Lemma, the
proof of which is omitted due to space limitations:

Lemma 4. Given an (N × N) matrix L and constants
αk, βk, k = 0, . . . , n − 1,

det
(
snI +

n−1∑

k=0

sk(αkI + βkL)
)

=

N∏

i=1

(

sn +

n−1∑

k=0

sk
(
αk + βkλi(L)

))

.

Proof. The closed loop consisting of N agents described
by (1) and the consensus algorithm (3) reads

ξ(n) = −
n−1∑

k=0

(αkI + βkΓL)ξ(k).

Define ζ(t) = p̃T ξ(t), ηi(t) = ξi(t) − ξ1(t), i = 2, . . . , N ,
and η = (η2, . . . , ηN )T , i.e.

(
ζ
η

)

=

(

p̃T

0

)

︸ ︷︷ ︸

=: S1

ξ +

(

0 0T

−1 I

)

︸ ︷︷ ︸

=: S2

ξ = Sξ,

with S = S1 + S2 and

S−1 = T =





1 −p̃2 . . . −p̃N

...
...

. . .
...

1 −p̃2 . . . −p̃N





︸ ︷︷ ︸

=: T1

+

(

0 0T

0 I

)

︸ ︷︷ ︸

=: T2

.

Note that SΓLT = S2ΓLT2. Consequently, we obtain the
transformed dynamics

ζ(n) = −
n−1∑

k=0

αkζ(k), (6)

η(n) = −
n−1∑

k=0

(

αkI + βk (−1 I ) ΓL

(

0T

I

))

η(k). (7)

Requirement (I) is satisfied if and only if η(k)(t) → 0, k =

1, . . . , n− 1 for t → ∞ in which case ξ
(k)
i (t) → ζ(k)(t), i =

1, . . . , N, k = 0, . . . , n − 1 and ζ(t) evolves according to
(5). It remains to verify that the assertions given in the
theorem are satisfied if and only if the η-dynamics (7) is
stable, i.e. the characteristic polynomial of the η-dynamics
is given by (4). To that end, let Kk = −αkI − βkΓL, k =

1, . . . , N and define x =
(
ξT , ξ̇

T
, . . . , (ξ(n−1))T

)T
to write

the closed loop dynamics in state-space form as

ẋ =










0 I 0
. . .

. . .
...

. . . I 0
0 I

K0 · · · · · · Kn−2 Kn−1










︸ ︷︷ ︸

=: M

x.

The characteristic equation of the dynamic matrix M can
be computed using the Schur complement as

det(sI − M) = s(n−1)Ndet

(

sI −
n−1∑

k=0

Kk

sn−1−k

)

= det

(

snI −
n−1∑

k=0

skKk

)

= 0.

Using Lemma 4 and the fact that the first eigenvalue of
ΓL is λ1(ΓL) = 0, the characteristic polynomial can be
rewritten as

(

sn +
n−1∑

k=0

αksk

)

︸ ︷︷ ︸

=: p1(s)

N∏

j=2

pj(s) (8)

where p1(s) corresponds to the ζ-dynamics (6) and hence
the remaining part, which equals to (4), corresponds to
the η-dynamics (7). 2

Corollary 5. Given the MAS (1) with algorithm (3), Re-
quirement (II) is satisfied if and only if (5) is stable, i.e. if
the dynamics of the individual agent given by (1) with
input ui ≡ 0 is stable.

Proof. By Theorem 3, ξ
(k)
i (t) → ζ(k)(t), i = 1, . . . , N, k =

0, . . . , n − 1, i.e. ξ
(k)
i (t) < ∞ iff ζ(k)(t) < ∞. 2

Remark 6. Polynomial (4) has real coefficients even if L

has eigenvalues with non-zero imaginary part: If λi+(L̃)

and λi−(L̃) are complex conjugate eigenvalues of L̃, then
pi+(s) · pi−(s) has real coefficients.

Remark 7. By Theorem 3, the consensus state ζ(t) evolves
independently of the interconnection topology given by L
but the initial condition does depend on the interconnec-
tion topology.

3.2 The consensus state

It was shown in Theorem 3 that the initial value of the
consensus state depends on the left-eigenvector pT of L
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corresponding to the eigenvalue zero. More precisely, agent
i’s initial state has some influence on the consensus state if
and only if pT ei 6= 0. The theorem given below enlightens
this fact from an algebraic graph theory point of view. To
that end, we need the following definitions and lemma (a
direct corollary to the Perron-Frobenius Theorem):

A matrix A is said to be non-negative (positive), denoted
A ≥ 0 (A > 0), if all its elements are non-negative
(positive). Equivalently, a vector x is said to be non-
negative (positive), denoted x ≥ 0 (x > 0), if all its
components are non-negative (positive). A matrix A ≥ 0
is said to be stochastic if A1 = 1; the spectral radius of a
stochastic matrix A is ρ(A) = 1. The graph induced by an
(N ×N) matrix A = [aij ] is the graph G(A) on N vertices
that contains an edge from vertex j to vertex i if and only
if aij 6= 0. A is irreducible if and only if G(A) is strongly
connected.

Lemma 8. (adapted from Horn and Johnson (1985)). If A
is an irreducible stochastic matrix, then λ = 1 = ρ(A) is a
simple eigenvalue, A1 = 1 and ∃q > 0 : qT A = qT .

Theorem 9. Given a graph G with Laplacian matrix L and
a vector p satisfying pT L = 0T and pT1 = 1. Assume G
contains a spanning tree. Then p ≥ 0 and pT ei > 0 if and
only if the ith vertex of G can be chosen as the root of a
spanning tree in G.

Proof. Denote the set of roots of spanning trees in G as
V0 = {i ∈ V|{i}⋃Di = V} ⊆ V with N0 = |V0| > 0 and
define V1 = V \ V0 with N1 = |V1| ≥ 0. There exists no
directed path from any element of V1 to any element of
V0. Thus, without loss of generality, we assume

L =
(

L0 0
L× L1

)

where L0 is a N0 × N0 Laplacian matrix corresponding
to the connections between the elements of V0. Let D0
be the matrix of vertex in-degrees and A0 the adjacency
matrix such that L0 = D0 − A0; L0 corresponds to a
strongly connected graph G0, hence D−1

0 exists and A0

is irreducible. Define L̃0 = D−1
0 L0 = I − D−1

0 A0. Let

Ã0 = D−1
0 A0 which is again an irreducible matrix. From

L̃01 = 0 we deduce Ã01 = 1, hence Ã0 is stochastic.

By Lemma 8, there is a vector q̃0 > 0 such that q̃T
0 Ã0 =

q̃T
0 , which implies q̃T

0 L̃0 = 0T . It follows that q0 =
D−1

0 q̃0 > 0 and qT
0 L0 = 0T . Hence qT = (qT

0 ,0T ) ≥ 0 is a
left-eigenvector of L with qT ei > 0 if i ∈ V0, qT ei = 0 if
i ∈ V1, and qT L = 0T . Finally p = q

qT 1
satisfies pT ei > 0

if and only if i ∈ V0 (pT ei = 0 if i ∈ V1) and p is the
unique vector satisfying pT L = 0T and pT1 = 1. 2

Theorem 9 conveys that the consensus state is influenced
by the initial state of agent i iff there is a directed
path from vertex i to every other vertex in the graph.
Intuitively, as all agents converge to the consensus state,
it can only depend on information that is available to all
agents at least indirectly. Observe that

ζ(k)(0) = p̃T ξ(k)(0) =

∑

i∈V0

pi

γi

ξ
(k)
i (0)

∑

i∈V0

pi

γi

is a weighted average of the initial states of agents corre-
sponding to the vertices in V0 where the weights can be
adjusted arbitrarily by appropriately choosing the values
γi, i ∈ V0. The remaining values γi, i 6∈ V0 do not affect
the consensus state but may affect the eigenvalues of L̃.

4. CONSENSUS DESIGN

So far we reduced the problem of checking convergence
to consensus to investigate whether a given polynomial
is Hurwitz. The coefficients of the polynomial depend on
the interconnection topology, the single agent dynamics,
and the consensus algorithm, namely the values βk, k =
0, . . . , n−1. In this section, we derive methods to determine
the gains βk, k = 0, . . . , n− 1 in the consensus algorithm,
such that convergence to consensus is guaranteed. In the
sequel we assume γi = 1, i = 1, . . . , N , i.e. Γ = I for
simplicity. If γi 6= 1 for some i, all results remain valid
substituting L by L̃.

4.1 Double integrator agents

We first consider the case of double-integrator dynamics

ξ̈i = ui, i = 1, . . . , N (9)

which received a lot of attention in consensus literature
(de Gennaro and Jadbabaie, 2006; Olfati-Saber, 2006; Ren
and Atkins, 2005). Applying the consensus algorithm

ui = β0W (j, i)(ξj − ξi) + β1W (j, i)(ξ̇j − ξ̇i), (10)

we know that the consensus state grows unbounded since
(9) is unstable. For problems where this unboundedness
is acceptable, the following theorem gives a necessary and
sufficient condition for convergence to consensus.

Theorem 10. Assume the group of agents defined by (9)
with consensus algorithm (10) and interconnection topol-
ogy G = {V , E , W}. The agents reach consensus if and only
if G contains a spanning tree, β0 > 0, β1 > 0, and

β2
1

β0
> max

i=2,...,N

1

Re(λi(L))

( |Im(λi(L))|
|λi(L)|

)2

. (11)

Proof. Using Theorem 3 we need to check that
N∏

j=2

(
s2 + β1λj(L)s + β0λj(L)

)

︸ ︷︷ ︸

=: pj(s)

(12)

is Hurwitz if and only if β0 > 0, β1 > 0, (11) holds, and
G contains a spanning tree. Polynomial (12) is Hurwitz if
and only if all real factors of (12) are Hurwitz.

In the first part of the proof, we shall show that (12)
is not Hurwitz if G does not contain a spanning tree.
In the second part of the proof we show that, under
the assumption that G contains a spanning tree, (12) is
Hurwitz if and only if β0 > 0, β1 > 0, and (11) holds.

Part 1: If G does not contain a spanning tree, λ2(L) = 0,
thus p2(s) = s2 is not Hurwitz.

Part 2: In the sequel, we assume that G contains a
spanning tree, thus Re(λi(L)) > 0, i = 2, . . . , N . Assume
Im(λi(L)) = 0 for some i. Then the correpsonding pi(s) is
Hurwitz if and only if β0λi(L) > 0 and β1λi(L) > 0 which
is equivalent to β0 > 0 and β1 > 0.

If Im(λi+(L)) 6= 0 for some i+, ∃i− such that λi+(L) and
λi−(L) are complex conjugate. In that case pi+(s) · pi−(s)
has real coefficients. Let λi±(L) = σi ± jωi, then

pi+(s) · pi−(s) =








s4

s3

s2

s
1








T

·








1
2β1σi

2β0σi + β2
1(σ2

i + ω2
i )

2β0β1(σ
2
i + ω2

i )
β2

0(σ2
i + ω2

i )
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which is Hurwitz if and only if β0 > 0, β1 > 0, and

β2
1

β0
>

1

σi

( |ωi|
|σi + jωi|

)2

. (13)

For ωi = 0, condition (13) reduces to β2
1/β0 > 0 which

is satisfied for any β0 > 0, β1 > 0. Consequently, (13) is
satisfied for i = 2, . . . , N iff (11) is satisfied. Hence, if G
contains a spanning tree, (12) is Hurwitz iff β0 > 0, β1 > 0
and (11) hold. 2

Corollary 11. Assume the group of agents as in Theorem
10 and G balanced. If β1 > 0 and

0 <
β0

β2
1

≤ a(G),

then ξ
(k)
i (t) → ζ(k)(t), i = 1, . . . , N, k = 0, . . . , n − 1.

Proof. Corollary 11 is a direct consequence of Theorem
10 and Fact 2.
Remark 12. Choosing β0 = 1, condition (11) of Theorem
10 reduces to

β1 > max
i=2,...,N

√

1

Re(λi(L))

|Im(λi(L))|
|λi(L)|

As this bound on β1 is necessary and sufficient for consen-
sus, it needs to be tighter than the sufficient bound

β1 > max
i=2,...,N

√
2

|λi(L)| cos(π
2 − tan−1 Re(λi(L))

Im(λi(L)))

of Theorem IV.2 in Ren and Atkins (2005). This fact can
be seen observing that
√

2

|λi(L)| cos(π
2 − tan−1 Re(λi(L))

Im(λi(L)))
=

√

2

Re(λi(L))
.

In fact, given some r > 0, if β1 > 0, β0 = rβ1 > 0, and

β2
1

β0
=

β1

r
≥ max

i=2,...,N

2

Re(λi(L))
(14)

it can be observed after some computation that all roots
si of polynomial (12) satisfy Re(si) ≤ −β0

β1
= −r < 0.

4.2 General LTI single-input systems

For the general case of agents modeled as LTI system (1)
with consensus algorithm (2), an LMI-based method to
find values βk, k = 0, . . . , n−1 that guarantee convergence
to consensus is given in the following theorem.
Theorem 13. Assume the group of agents defined by (1)
with consensus algorithm (3) using Γ = I and intercon-
nection topology G containing a spanning tree. Define

M0 =







0 1
. . .

. . .
0 1

−α0 · · · −αn−2 −αn−1







.

If, for some ν ≥ 0, there exist a matrix Q ∈ RN×N , Q =
QT ≻ 0 and a vector κ ∈ RN such that the LMIs

C0 + Re(λi(L))CR + Im(λi(L))CI ≺ 0 (15)
with

C0 =

(

QMT
0 + M0Q + 2νQ 0

0 QMT
0 + M0Q + 2νQ

)

,

CR = −
(

enκT + κeT
n 0

0 enκT + κeT
n

)

,

CI =

(

0 κeT
n − enκT

enκT − κeT
n 0

)

σ σmin dmax d 2dmax 2d

dmax

d

µ1

µ2 µ3

L2(dmax, σmin)

L2(d, σ)

Re

Im

0
0

Fig. 1. Sets containing the non-zero eigenvalues of L.

are satisfied for i = 2, . . . , N , the agents reach consensus
choosing β = (β0, . . . , βn−1)

T = Q−1κ, and the roots sj

of polynomial (4) satisfy Re(sj) < −ν, j = 1, . . . , nN .

Proof. Assume λi(L) = σi + jωi, i = 2, . . .N . The
characteristic polynomial of

ẇ =
(

M0 0
0 M0

)

︸ ︷︷ ︸

=: M̃

w −
(

σien ωien

−ωien σien

)

︸ ︷︷ ︸

=: B̃

(

βT 0
0 βT

)

︸ ︷︷ ︸

=: K̃

w

is given by p2
i (s) if λi = σi (ωi = 0) or pi+(s) · pi−(s) if

λi± = σi ± jωi. Hence, if there exist a constant ν ≥ 0 and

a matrix P̃ = P̃T ≻ 0 such that

M̃T P̃ + P̃ M̃ − K̃T B̃T P̃ − P̃ B̃K̃ ≺ −2νP̃ , (16)

polynomials p2
i (s) as well as pi+(s) · pi−(s) are Hurwitz

with roots sj satisfying Re(sj) < −ν, j = 1, . . . , 2n. With

P̃ =
(

P 0
0 P

)

, Q = P−1 ≻ 0, κ = Qβ,

LMI condition (16) reduces to (15). 2

The design proposed in Theorem 13 contains some sources
of conservatism due to the fixed block-diagonal structure
of P̃ and most notably because the same P is used for
all λi(L), i = 2, . . . , N . Allowing different matrices Pi

for different eigenvalues λi(L) would result in a nonlinear
matrix inequality due to the terms Pienβ.

Exploiting convexity, the LMI conditions of Theorem 13
can be relaxed to obtain conditions that are easier to
check. Denote L1(L) = conv({λ2(L), . . . , λN (L)}) where
conv(·) is the convex hull. Observe that C(λ) = C0 +
Re(λ)CR + Im(λ)Ci is affine in λ and C(λ) ≺ 0 if and
only if C(λ) ≺ 0 where λ denotes the complex conjugate
of λ. Hence, given values µi ∈ C, i = 1, . . . , q such that
L1(L) ⊆ conv({µ1, . . . , µq, µ1, . . . , µq}), C(µi) ≺ 0, i =
1, . . . , q is a sufficient condition for LMI (15) being satisfied
for i = 2, . . . , N .

By Gershgorin’s disk theorem (see Horn and Johnson
(1985)) we know that λi(L) ∈ B(dmax) := {λ ∈ C :
‖λ − dmax‖ ≤ dmax} for i = 1, . . . , N where dmax =
maxi

∑

j∈Pi
W (j, i) is the maximum vertex in-degree.

Hence, given any σ ≤ σmin := Re(λ2(L)) and any d ≥
dmax, one obtains L1(L) ⊆ L2(d, σ) := {λ ∈ C : Re(λ) ≥
σ}⋂B(d). Let µ1 = σ + jσ

√
2d−σ

σ
, µ2 = d

√
σ

2d−σ
+

jd, and µ3 = 2d + jd to obtain a simple polygon con-
taining L2(d, σ), namely conv({µ1, µ2, µ3, µ1, µ2, µ3}) ⊇
L2(d, σ) ⊇ L1(L). Figure 1 illustrates the sets L2(d, σ),
L2(dmax, σmin), and the values µi, i = 1, . . . , 3. A sufficient
condition for LMI (15) being satisfied for i = 2, . . .N is
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Fig. 2. Graph G of an imploding star with a directed circle.

given by C(µi) ≺ 0, i = 1, . . . , 3. If the interconnection
topology is balanced, one may choose σ = a(G).

5. EXAMPLE

As an example we consider again individual agents mod-
eled as (9). We assume the interconnection topology given
by Figure 2 with all edge weights equal to one. All vertices
on the circle can be chosen as the root of a spanning tree.
The spectrum of the Laplacian L of G reads

λ(L) ∈
{

0,
(2 −

√
3) ± j

2
,
1 ± j

√
3

2
, 1 ± j,

3 ± j
√

3

2
,
(2 +

√
3) ± j

2
, 2, 12

}

.

In accordance with Theorem 9, one obtains the vector
p = (0, 1

12 , . . . , 1
12 )T , i.e. all nodes on the circle have

the same influence on the consensus state while the node
in the center does not influence the consensus state. As
graph G is not balanced, the algebraic connectivity a(G) is
meaningless in this example (in fact a(G) < 0). Conditions
(11) and (14) evaluate to

β2
1

β0
>

7 + 4
√

3

2
≈ 6.96,

β2
1

β0
=

β1

r
>

4

2 −
√

3
≈ 14.93,

respectively. Using the LMI of Theorem 13 with ν = 2,
one obtains β0 ≈ 916.49 and β1 ≈ 245.05 as a solution
with r = β0

β1
≈ 3.740 and β1

r
≈ 65.52 > 14.93. Hence,

we know that Re(si) ≤ −r and Re(si) ≤ −ν by Remark
12 and Theorem 13, respectively; here r > ν, i.e. Remark
12 gives a better estimate of the convergence rate than
Theorem 13. In fact, maxi Re(si) ≈ −3.745 which is very
close to r. Figure 3 shows simulation results for some
initial conditions satisfying pT ξ(0) = ζ(0) = 10 and

pT ξ̇(0) = ζ̇(0) = −1. All agents converge to consensus
exponentially with convergence rate larger than r. The
consensus state evolves according to ζ(t) = ζ(0) + ζ̇(0)t =

10 − t, ζ̇(t) = ζ̇(0) = −1 as expected.

6. SUMMARY

This paper was concerned with the consensus problem
for MASs with agents modeled as general LTI systems.
Motivated by the fact that there exist only few results on
the problem, the present paper generalized several existing
results on consensus with agents modeled as a single or
double integrator. The characteristic equation of the whole
MAS was derived explicitly, which was then used to obtain
a condition on the consensus algorithm ensuring conver-
gence. In addition, a meaningful interpretation for the role
of the left-eigenvector of the Laplacian corresponding to its
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Fig. 3. Simulation results for topology given in Figure 2.

zero eigenvalue was given. Namely this eigenvector quan-
tifies the influence of each agent on the consensus state.
As far as design is concerned, a systematic method was
proposed to choose the gains in the consensus algorithm
such that the MAS reaches consensus asymptotically with
prespecified convergence rate.
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