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Abstract: This paper presents a backstepping control scheme for a new linear axis. Its guided carriage
is driven by a nonlinear mechanism consisting of a rocker with a pair of pneumatic muscle actuators
arranged at both sides. This innovative drive concept allows for an increased workspace as well as
higher carriage velocities as compared to a direct actuation. Modelling leads to a system of nonlinear
differential equations including polynomial approximations of the volume characteristic as well as
the force characteristic of the pneumatic muscles. The proposed control has a cascade structure: The
internal pressure of each pneumatic muscle is controlled by a fast underlying control loop, whereas
in an outer control loop the carriage position and the mean internal pressure of the muscles are
controlled. Remaining model uncertainties as well as nonlinear friction can be counteracted either by
an observer-based disturbance compensation or an adaptive control strategy. Experimental results from
an implementation on a test rig show a high control performance. Copyright c©2008 IFAC
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1. INTRODUCTION

As shown in earlier work (Schindele and Aschemann [2007],
Aschemann and Schindele [2007], Aschemann et al. [2006])
pneumatic muscles in combination with sophisticated nonlin-
ear control can be used in motion control applications where
precise tracking control of desired trajectories is required. Due
to this fact, current research at the University of Rostock fo-
cuses on the use of pneumatic muscles as low-cost actuators
in robotics. Pneumatic muscles are tension actuators consisting
of a fiber-reinforced vulcanised rubber tubing with connection
flanges at both ends. Because of a special fiber arrangement, the
pneumatical muscle contracts with increasing internal pressure,
which can be used for actuation purposes. Pneumatic muscles
offer major advantages in comparison to classical pneumatic
cylinders. They have significantly less weight, there are no
stick-slip effects, the muscles are insensitive to dirty work-
ing environment and they have a larger maximum force. The
nonlinear characteristics of the muscle, however, demand for
nonlinear control, e.g. NMPC in earlier research, see Schindele
and Aschemann [2007]. In Aschemann and Schindele [2007],
a nonlinear control scheme for a one-degree-of-freedom linear
axis directly driven by pneumatic muscles was presented, which
allows for horizontal movements. To increase both the available
workspace and the maximum velocity of the carriage, a new
nonlinear drive mechanism is employed as depicted in fig. 1.
Here, two guideways with roller bearing units allow for recti-
linear movements of the carriage with relatively small friction
forces. The carriage is driven by a rocker. A bearing unit at the
head of the rocker allows for both rotational and translational
relative motion and transmits the drive force to the carriage.
The rocker is actuated by a pair of pneumatic muscles in an an-
tagonistic arrangement. The mounting points of the pneumatic
muscles at the rocker have be defined so as to gain a reasonable
trade-off between increase in maximum velocity and reduction
of the achievable drive force. The mass flow rate of compressed

Fig. 1. High-speed linear axis

air into respectively out of each pneumatic muscle is controlled
by means of a separate proportional valve. The incoming air is
available at a maximum pressure of 7 bar, whereas the outlet
air is discharged at atmospheric pressure, i.e. 1 bar. Pressure
declines in the case of large mass flow rates are avoided by
using an air accumulator for each muscle.
The paper is structured as follows: first, the modelling of the
mechatronic system is addressed. For the nonlinear character-
istics of the pneumatic muscle, i.e. the muscle volume and
the muscle force, polynomial descriptions are used in terms
of contraction length and internal muscle pressure. Second, a
nonlinear cascade control scheme for the linear axis is pro-
posed. Backstepping controllers have been designed for the
inner control loops for the internal muscle pressures as well as
for the outer control loop, where the carriage position and the
mean pressure of the both pneumatic muscles are the controlled
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Fig. 2. Kinematical structure of the high-speed linear axis

variables. The reference pressures for the inner pressure control
loops are provided by the outer control loop. A disturbance
force resulting from remaining modelling errors w.r.t. the force
characteristic of the pneumatic muscles as well as the friction
characteristic of the carriage is compensated either by an adap-
tive estimation scheme or by a nonlinear reduced-order distur-
bance observer. By this, desired trajectories for both carriage
position and mean pressure can be tracked with high accuracy
as shown by experimental results from an implementation at a
test rig.

2. MODELLING OF THE MECHATRONIC SYSTEM

As for modelling, the mechatronic system under consideration
is divided in a mechanical and a pneumatic subsystem, which
are coupled by the drive torque resulting from the tension
forces of the pair of pneumatic muscles. In contrast to the
model of Carbonell et al. [2001], the dynamics of the pneumatic
subsystem is taken into consideration as well.

2.1 Modelling of the mechanical subsystem

The chosen mechanical model for the high-speed linear axis
consists of the following three elements (fig. 2): a rigid body
for the rocker as actuated link (mass mR, reduced mass moment
of inertia w.r.t. the rocker joint JR, distance sR to the centre
of gravity CR, varying length of the link lR), a single lumped
mass for the lateral connecting rods (mass mA, centre of gravity
distance lA to the rocker joint) and a lumped mass for the
carriage (mass mC).
The inertial yz-coordinate system is chosen in the base joint of
the rocker. The mounting points of the pneumatic muscles at
the rocker are characterised by the distance lA in longitudinal
direction and the perpendicular distance b of the lateral con-
necting rods as shown in fig. 2. The motion of the high-speed
axis is completely described by the generalised coordinate ϕ(t),
which denotes the inclination of the rocker w.r.t. the plumb
line. The carriage position is related to the rocker angle by the
horizontal component zC(t) = l · tanϕ(t), where l denotes the
length between the mounts at the head and the bottom of the
rocker at carriage position zC = 0.
The equation of motion directly follows from Lagrange’s equa-
tions in form of a second order differential equation

J(ϕ)ϕ̈ + k(ϕ, ϕ̇) = τ − τU , (1)

with the resulting mass moment of inertia J(ϕ) = mC · l2 · (1+
tanϕ2)2 + JR + mA · l2

A and the term k(ϕ, ϕ̇) = 2 ·mC · l2 · (1 +

tanϕ2)2 · tanϕ · ϕ̇2 − (mR/2 · l + mA · lA) · g · sinϕ , which takes
into account the centrifugal as well as the gravity forces. The
drive torque τ resulting from the muscle forces FMi, i = {l,r}
can be stated as

τ =
→
e x ·(FMr·

→
r Fr ×

→
e Mr +FMl ·

→
r Fl ×

→
e Ml) , (2)

with the unity vector
→
e x= [1,0,0]T in x-direction and the unity

vectors
→
e Mi=

→
d Mi /dMi in direction of the pneumatic muscle

forces. The position vectors
→
r Fi describe the connecting points,

where the muscle forces act on the rocker.
All remaining model uncertainties are taken into account by
the disturbance torque τU . On the one hand, these uncertainties
stem from approximation errors concerning the static muscle
force characteristics and non-modelled viscoelastic effects of
the vulcanised rubber material. On the other hand, time-varying
damping and friction acting on the carriage as well as on the
rocker depend in a complex manner on lots of influence fac-
tors and cannot be accurately represented by a simple friction
model.

2.2 Modelling of the pneumatic subsystem

A mass flow ṁMi, i = {l,r} into the pneumatic muscle leads to
an increase in internal pressure pMi, and a contraction ∆ℓMi of
the muscle in longitudinal direction due to specially arranged
fibers. The maximum contraction length ∆ℓM,max is given by
25% of the uncontracted length. This contraction effect can be
exploited to generate forces. The force FMi and the volume VMi

of a pneumatic muscle depend nonlinear on the according inter-
nal pressure pMi and the contraction length ∆ℓMi. The definition
of the contraction length can be derived from fig. 2. Given the
length of the uncontracted muscle ℓM , the contraction length
of a pneumatic muscle can be calculated with the distance

dMi = |
→
d Mi | between both connecting points of each muscle

i = {l,r}. Simple geometrical considerations lead to the length
of the left respectively right pneumatic muscle

dMi =
√

d2
Miy +d2

Miz , (3)

with dMiy = −ℓA ·cosϕ ±b · sinϕ + ℓA and dMiz = −ℓA · sinϕ ∓
b · cosϕ ± a. As a result, the contraction lengths for both
pneumatic muscles are related to the rocker angle

∆ℓMi = ℓM −dMi(ϕ) . (4)

The dynamics of the internal muscle pressure follows directly
from a mass flow balance in combination with the energy equa-
tion for the compressed air in the muscle. As the internal muscle
pressure is limited by a maximum value of pMi,max = 7 bar,
the ideal gas equation represents an accurate description of
the thermodynamic behaviour. The thermodynamic process is
modelled as a polytropic change of state with n = 1.26 as
identified polytropic exponent. The identified volume charac-
teristic (fig. 3) of the pneumatic muscle can be described by
a polynomial function of both contraction length ∆ℓMi and the
muscle pressure pMi

VMi (∆ℓMi, pMi) =
3

∑
j=0

a j ·∆ℓ j
Mi ·

1

∑
k=0

bk · pk
Mi. (5)

The resulting state equation for the internal muscle pressure in
the muscle i is given by
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Fig. 3. Identified volume characteristic of the pneumatic muscle
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Fig. 4. Identified force characteristic of the pneumatic muscle

ṗMi =
n

VMi +n · ∂VMi

∂ pMi
· pMi

[RL ·TMi · ṁMi

−
∂VMi

∂∆ℓMi

·
∂∆ℓMi

∂ϕ
· pMi · ϕ̇

]

, (6)

where RL denotes the gas constant of air. The internal tem-
perature TMi can be approximated with good accuracy by the
constant temperature T0 of the ambiance, see Göttert [2004].
In this way, temperature measurements can be avoided, and the
implementational effort is significantly reduced.
The force characteristic FMi (pMi,∆ℓMi) of a pneumatic muscle
states the resulting tension force for given internal pressure pMi

as well as given contraction length ∆ℓMi and represents the
connection of the mechanical and the pneumatic system part.
The nonlinear force characteristic (fig. 4) has been identified by
static measurements and, then, approximated by the following
polynomial description

FMi (pMi,∆ℓMi) =
3

∑
m=0

(am ·∆ℓm
Mi) · pMi −

4

∑
n=0

(bn ·∆ℓn
Mi)

= F̄Mi (∆ℓMi) · pMi − fMi (∆ℓMi) .

(7)

3. BACKSTEPPING CONTROL DESIGN

Backstepping is a recursive procedure based on Lyapunov’s sta-
bility theory, see Sepulchre et al. [1997]. Step-by-step, system
states are chosen as virtual inputs to stabilise the corresponding
subsystems. In this way a clf (Control Lyapunov Function) for
the considered system is constructed and the control law is
determined. Backstepping design can be applied to different
classes of systems, e.g. systems in the so called strict feedback
form, see Smaoui et al. [2004]. An overview of backstepping
control is given by Krstić et al. [1995] or Khalil [1996].

3.1 Control of internal muscle pressure

The pneumatic subsystem represents a differential flat system
with the internal muscle pressure as flat output, see Aschemann
and Hofer [2006]. Hence, equation (6) can be solved for the
mass flow as control input. As a result the mass flow ṁMi is
given by the following inverse model depending on the flat
output and its first time derivative

ṁMi =
1

kui (∆ℓMi, pMi)
· [νi1 (ṗMid ,ei1)

+ kpi

(
∆ℓMi,∆ℓ̇Mi, pMi

)
· pMi] ,

(8)

with νi1 = ṗMi as the control input. For the pneumatic subsys-
tem the dynamics of the tracking error ei1 = pMid − pMi , i =
{1,2}, has to be stabilised

ėi1 = ṗMid − ṗMi , (9)

where αi1 = ṗMi serves as virtual input, which has to guarantee
the convergence of the pressure error ei1 to zero via special
feedback design. Therefore, a quadratic Lyapunov function is
chosen

V (ei1) =
1

2
· e2

i1 > 0 . (10)

Its time derivative has to be negative definite

V̇ (ei1) = ei1 · ėi1 = ei1 · (ṗMid −αi1)
︸ ︷︷ ︸

!
=−ai1·ei1

. (11)

Accordingly, the bracket in (11) is set to −ai1 · ei1 with the
positive parameter ai1 > 0, which can be used to specify the
control dynamics. Solving for the virtual control input results
in

αi1 = ṗMid +ai1 · ei1 . (12)

For the pneumatic subsystems no further steps are needed.
The stabilizing control law is given by equation (12), whereas
the control input νi1 = αi1 has to be inserted in the inverse
dynamics (8).

3.2 Control of the carriage position

The mechanical system part also represents a differential flat
system with the rocker angle ϕ and the mean pressure pM =
(pMl + pMr)/2 as flat outputs, see Aschemann and Hofer
[2006]. Subsequent differentiation of the first flat output until
one of the control inputs appear leads to

y1 = ϕ , ẏ1 = ϕ̇ , (13)

ÿ1 =
1

J(ϕ)
[−k (ϕ, ϕ̇)+ τ − τU ]

= ϕ̈ (ϕ, ϕ̇, pMl , pMr,τU ) , (14)
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whereas the second variable directly depends on the pressures
as control inputs

y2 = pM =
1

2
(pMl + pMr) . (15)

The inverse dynamics can be obtained by solving the equations
(14) and (15) for the input variables pMl and pMr. Hence, the
input vector u, depending on the angle ϕ , the angular velocity
ϕ̇ , the desired mean pressure pMd and the control input ν2 = q̈
is given by

u =

[
ul

ur

]

=

[
pMl (ϕ, ϕ̇, pMd ,ν2)
pMr (ϕ, ϕ̇, pMd ,ν2)

]

. (16)

The first subsystem of the outer control loop to be stabilised
results from the definition of the tracking error e1 = ϕd − ϕ .
The time derivative becomes

ė1 = ϕ̇d − ϕ̇ . (17)

Here the virtual control input is given by α1 ≈ ϕ̇ . As before,
a quadratic Lyapunov function V1(e1) = 1/2 · e2

1 is used to
stabilise the error dynamics. The virtual control input can be
obtained by making the time derivative of V1(e1) negative
definite

V̇1(e1) = e1 · ė1 = e1 · (ϕ̇d −α1)
︸ ︷︷ ︸

!
=−c1·e1−c2·e

3
1

, (18)

with the parameters c1 > 0 and c2 > 0. In this way α1 becomes

α1 = ϕ̇d + c1 · e1 + c2 · e
3
1 . (19)

For the next design step, the error variable e2 is introduced

e2 = α1(ϕ̇d ,e1)− ϕ̇ = c1 · e1 + c2 · e
3
1 + ϕ̇d − ϕ̇

︸ ︷︷ ︸

=ė1

. (20)

The corresponding error dynamics is given by

ė2 = c1 · ė1 +3 · c2 · e
2
1 · ė1 + ϕ̈d − ϕ̈ , (21)

with the virtual input α2 = ϕ̈ . Again a Lyapunov function

V2(e1,e2) = V1(e1)+
1

2
· e2

2 (22)

is used for stabilisation. The time derivative has to be made
negative definite

V̇2(e1,e2) =e1 · ė1 + e2 · ė2

=− c1 · e
2
1 − c2 · e

4
1 + e2 · (ϕ̈d −α2 +g1 (e1,e2))

︸ ︷︷ ︸

!
=−c3·e2−c4·e

3
2

,

(23)

with c3 > 0 and c4 > 0. By setting the bracket in (23) to −c3 ·
e2 − c4 · e3

2 and solving for the virtual input α2, the feedback
control law follows as

α2 = ϕ̈d +g2 (e1,e2) . (24)

The control input α2 = ν2 has to be inserted in the inverse
dynamics (16). Finally, the dynamics of the closed loop can be
determined by the design parameters c1, c2, c3 and c4.

3.3 Adaptive backstepping of the carriage position

To consider model uncertainties represented by the disturbance
torque τU in the control strategy, the adaptive backstepping
approach can be used (Kokotović [1992], Krstić et al. [1995]).
Therefore, the Lyapunov function (22) can be extended as
follows

V2 =
1

2
· e1 +

1

2
· e2

2 +
1

2 · γ
(τU − τ̂U )2 . (25)

Here, the estimated disturbance torque τ̂U and the parameter
γ > 0 are introduced. The equation of motion (1) yields the
angular acceleration

ϕ̈ =−
1

J(ϕ)
τU +

1

J(ϕ)
(τ − k (ϕ, ϕ̇))

=−
1

J(ϕ)
τU +α2 ,

(26)

with the virtual input α2 as before. Considering (25) and (26),
the time differentiation of V2 leads to

V̇2 =− c1 · e
2
1 − c2 · e

4
1 + e2 ·

(

ϕ̈d −α2 +g1(e1,e2)+
τU

J(ϕ)

)

−
1

γ
˙̂τU (τU − τ̂U ) .

(27)

By rewriting, the right-hand side can be stated as

V̇2 =− c1 · e
2
1 − c2 · e

4
1 + e2 ·

(

ϕ̈d −α2 +g1(e1,e2)+
τ̂U

J(ϕ)

)

+

(
e2

J(ϕ)
−

˙̂τU

γ

)

︸ ︷︷ ︸

!
=0

(τU − τ̂U ) .

(28)

The time derivative V̇2 can be made negative definite by choos-
ing the expression multiplying e2 equal −c3 · e2 − c4 · e3

2,
whereas the expression multiplying τU − τ̂U should disappear.
This leads to the virtual control input and the differential equa-
tion for the disturbance torque estimation

α2 = ϕ̈ +g2(e1,e2, τ̂U ) , (29)

˙̂τU =
e2 · γ

J(ϕ)
. (30)

The parameter γ > 0 can be used to determine the dynamics of
the disturbance torque estimation.

3.4 Reduced nonlinear disturbance observer

As alternative approach to adaptive backstepping, disturbance
behaviour and tracking accuracy in view of model uncertainties
can be significantly improved by introducing a compensating
control action provided by a nonlinear reduced-order distur-
bance observer. The observer design is based on the equation
of motion. The key idea for the observer design is to extend the
state equation with an integrator as disturbance model

ẏ = f(y,τU ,u) , τ̇U = 0 , (31)

where y = [ϕ, ϕ̇ ]T denotes the measurable state vector. The
estimated disturbance torque is obtained from

τ̂U = hT ·y+ z , (32)

with the chosen observer gain vector hT = [ h1 h1 ]. The state
equation for z is given by

ż = Φ(y, τ̂U ,u) . (33)

The observer gain h and the nonlinear function Φ have to be
chosen such that the steady-state observer error e = τU − τ̂U

converges to zero. Thus, the function Φ can be determined as
follows

ė = 0 = τ̇U −hT · f(y,τU ,u)−Φ(y,τU −0,u) . (34)

In view of τ̇U = 0, equation (34) yields

Φ(y,τU −0,u) = −hT · f(y,τU ,u) . (35)
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Fig. 6. Identified valve characteristic

The linearized error dynamics ė have to be made asymptotically
stable. Accordingly all eigenvalues of the Jacobian

Je =
∂Φ(y,τU − e,u)

∂ (τU − e)
(36)

must lie in the left complex half-plane. This can be achieved
by proper choice of the observer gain h1. The stability of the
observer control system have been investigated by thorough
simulations.

3.5 Compensation of the valve characteristic

The nonlinear valve characteristic (VC) is compensated by
pre-multiplying with its inverse valve characteristic (IVC) in
each input channel. The valve characteristic shown in fig. 6
has been identified by measurements. Here, the inverse valve
characteristic depends both on the commanded mass flow and
on the measured internal pressure and yields the appropriate
input voltage uVi of the proportional valves as shown in fig. 5.

4. EXPERIMENTAL RESULTS

The described backstepping control scheme with the observer-
based disturbance compensation has been implemented at the
test rig of the the University of Rostock. It is equipped with
two pneumatic muscles DMSP-40 from FESTO AG. The in-
ternal pressures of the muscles are measured by piezo-resistive
pressure sensors, while the carriage position is determined by
a linear incremental encoder with an accuracy of 10µm. The
control algorithm has been implemented on a dSpace real time
system.
The desired trajectories for the carriage position, the internal
pressures and their corresponding time derivatives are obtained
from a trajectory planning module that provides synchronous
time optimal trajectories. Here the desired z−position varies in
an interval between −0.33 m and 0.33 m, see fig. 7. As can
be seen, the maximum velocities are about 0.7m/s. The mean
pressure of the both muscles is kept constant on 4 bar during
the whole experiment. For the compensation of the model un-
certainties two strategies have been investigated: disturbance
compensation by adaptive estimation and by disturbance obser-
vation yield similar results. The resulting tracking errors for the
carriage position and the mean pressure obtained by adaptive
backstepping control are depicted in the lower part of fig. 7.
The maximum tracking error for the carriage position during
the acceleration and deceleration intervals is approx. 1.5 mm,
the maximum steady-state error is smaller than 80 µm. The
tracking error of the mean pressure during the movements is
below 0.1 bar, whereas the maximum steady-state pressure
error is about 0.03 bar. In figure 8 the robustness of the con-
trolled system regarding a changing mass of the carriage is
demonstrated. An increase in the carriage mass mC = 18 kg
about 25 kg leads to a maximum position error of 3.5 mm, the
steady state error is still smaller than 0.2 mm. The estimated
disturbance torques from adaptive backstepping and nonlinear
reduced disturbance observer are compared in fig. 9.

5. CONCLUSION

In this paper, a nonlinear cascaded trajectory control is pre-
sented for a high-speed linear axis driven by pneumatic mus-
cles. To increase both the workspace and the maximum ve-
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locity, the muscles are linked to the carriage by a rocker in
contrast to a directly actuated solution. The modelling of this
mechatronic system leads to a system of nonlinear differential
equations of fourth order. For the nonlinear characteristics of
the pneumatic muscles polynomials serve as good approxi-
mations. As the nonlinear valve characteristic is linearised by
means of a pre-multiplication with its approximated inverse
characteristic, the mass flow represents the new control input.
For both the inner and the outer control loop, backstepping
controllers have been implemented. While the internal muscle
pressures represent the controlled variables for the inner control
loop, the rocker angle and the mean pressure are controlled
in the decoupling outer loop. In order to compensate remain-
ing uncertainties in the muscle force as well as the friction
characteristic, either an adaptive estimation of the disturbance
torque or a nonlinear disturbance observer can be employed in
the control structure. Both disturbance compensation strategies
show similar experimental results with good closed-loop per-
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formance. The maximum position errors are approx. 1.5 mm
and the maximum pressure errors remain below 0.1 bar.
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