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Abstract: The problem of orbit control for spacecraft on elliptical orbits is analysed and an
approach to the design of optimal constant gain controllers for the periodic dynamics of relative
motion is proposed. In particular, it is shown how the proposed approach can guarantee closed
loop stability and optimal performance both in the case of circular and elliptical orbits.
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1. INTRODUCTION

The problem of formation keeping in its simplest form,
which involves two satellites flying along the same orbit,
can be cast as a trajectory tracking one, assuming that the
position of the leader spacecraft is known with sufficient
accuracy. What the control system must achieve is then
an accurate regulation of the error between the desired
trajectory and the actual one. In the case of a circular ref-
erence orbit, the control problem can be formulated with
reference to the well known Euler-Hill linearised model
for relative motion. Since this model is time-invariant, it
leads to a conventional problem formulation. When dealing
with elliptical reference orbits, on the other hand, the
equations of relative motion turn out to be linear time-
periodic (LTP, see e.g., Inalhan et al. [2002]), because
of the periodic variation of orbital velocity as a function
of spacecraft anomaly. A number of approaches to this
problem have been proposed in the literature, ranging
from predictive control (see for example Rossi and Lovera
[2001]) to non linear dynamic inversion (see, e.g., Marcos
et al. [2007]) and optimal periodic control theory (as in
Schubert [2001], Theron et al. [2007]). While resorting
to optimal periodic control appears to be a very natural
approach to the problem, there is a significant drawback
to it: the obtained controller will be itself time-varying,
which leads to a number of critical issues from the im-
plementation point of view. Alternatively, considering the
anomaly as a scheduling parameter, the equations of rel-
ative motion can be viewed as a linear parametrically-
varying (LPV) system. Not surprisingly, therefore, among
the numerous approaches which have been proposed in the
literature to this control problem, LTP and LPV control
appear to be the most promising ones. LPV control is

1 The research has been supported by the ESA contract
20172/06/NL/JD.

very attractive, because of the wide body of theoretical
results and numerical tools now available, but it might
prove to be a conservative approach, as it is based on the
embedding of the actual periodic dynamics of the system
in a much more general parameter-dependent framework.
The above mentioned difficulties with LTP control, on
the other hand, have been partially solved in previous
work (see, e.g., Vigano’ and Lovera [2007], Vigano’ et al.
[2007]) by applying novel design tools for the design of
constant-gain optimal controllers for periodic systems to
the in-plane and out-of-plane dynamics of relative orbital
motion. Therefore, the aim of this paper is to propose a
novel approach to controller design for this problem, with
specific emphasis on practical aspects associated with their
on-board implementation. In particular, the proposed ap-
proach is the result of a combination of LPV and LTP
techniques: the explicit parameter dependence is exploited
in order to simplify the formulation of the actual opti-
mal periodic control problem. Simulation results will be
presented to demonstrate the feasibility of the proposed
approach on the candidate reference orbit for the Proba-3
ESA mission.

2. SPACECRAFT ORBIT DYNAMICS

The dynamics of the relative motion of a satellite with re-
spect to a reference point on a circular orbit (for instance, a
leader spacecraft) can be expressed by means of the well-
known Euler-Hill equations,which can be generalised to
the case of elliptical orbits, as proposed in Inalhan et al.
[2002]. In the following the considered dynamical models
for relative orbital motion with respect to elliptical orbits
will be described.

2.1 Coordinate frames

For the orbit control system of an Earth orbiting spacecraft
the following reference systems are adopted:
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• Earth Centered Inertial (ECI) reference frame. The
origin of these axes is in the Earth’s centre. The X-
axis is parallel to the line of nodes, and is positive
in the Vernal equinox direction (Aries point). The
Z-axis is defined as being parallel to the Earth’s
geographic north-south axis and pointing north. The
Y-axis completes the right-handed orthogonal triad.

• Orbital Axes (X0, Y0, Z0). The origin of these axes
is in the satellite centre of mass. The X-axis is the
unit vector of the radius r (i.e. the position vector
of the spacecraft in the ECI coordinate system). The
Z-axis is the unit vector of the momentum h (where
h = r×v, with v the velocity vector of the satellite).
The Y-axis completes the right-handed orthogonal
triad.

2.2 Orbit mechanics: elliptical orbits

For elliptical orbits, the relative motion of the follower
spacecraft with respect to the leader can be given the
following form (see Inalhan et al. [2002])

x′
in(θ) = Ain(θ)xin(θ) + Bin(θ)uin(θ)

yin(θ) = Cin(θ)xin(θ)
(1)

x′
out(θ) = Aout(θ)xout(θ) + Bout(θ)uout(θ)

yout(θ) = Cout(θ)xout(θ)
(2)

where the state vectors xin and xout are, respectively,
[x′, x, y′, y] and [z′, z] and

Ain(θ) =
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Aout(θ) =
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1 + e cos θ
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Bout(θ) =

(

1 − e2
)3

(1 + e cos θ)
4
n2

[

1/m
0

]

(6)

where θ represents the true anomaly, n is the natural
frequency of the reference orbit, e is the eccentricity,
(x, y, z) denote the tracking errors in orbital axes and
the operator (.)′ represents derivation with respect to θ.
The mass of the spacecraft is indicated with m, while
uin ∈ R2 and uout ∈ R represent the control forces acting
on the center of mass of the satellite. The decoupling of the
out-of-plane dynamics from the in-plane dynamics clearly
simplifies the control design problem. In addition, observe
that the equations are LTP (with period T = 2π) with
respect to the true anomaly θ. For elliptical orbits, the
time rate of change of the true anomaly θ̇ can be written
as (Inalhan et al. [2002])

θ̇ =
n(1 + e cos(θ))2

(1 − e2)3/2
. (7)

Remark 1. Systems (1)-(2) are expressed in the θ domain,
but they can be given an equivalent form by using time
as the independent variable, instead of the true anomaly,
by simply exploiting the fact that derivation over time

(represented by ˙(·)) and derivation over θ (represented by
(·)′) are related as follows

˙(·) = (·)′θ̇ (̈·) = (·)′′θ̇2 + θ̇θ̇′(·)′. (8)

2.3 Open loop analysis

Defining the quantities

α(θ) = 1 + e cos(θ), β(θ) = 2e sin(θ), (9)

it is easy to see that matrices (3)-(6) can be written in the
form

Ain(θ) =
1

α(θ)







β(θ) 2 + α(θ) 2α(θ) −β(θ)
α(θ) 0 0 0

−2α(θ) β(θ) β(θ) α(θ) − 1
0 0 α(θ) 0






(10)

Bin(θ) =

(

1 − e2
)3

α4(θ)n2







1/m 0
0 0
0 1/m
0 0






(11)

Aout(θ) =
1

α(θ)

[

β(θ) −1
α(θ) 0

]

(12)

Bout(θ) =

(

1 − e2
)3

α4(θ)n2

[

1/m
0

]

, (13)

which, as will be demonstrated in the following, is specially
useful in the formulation of the control design problem. In
this Section, on the other hand, the focus will be on the
analysis of the open-loop properties of the dynamics of
relative motion, with the following objectives: to investi-
gate the role of periodicity in the dynamics and how orbit
eccentricity affects periodicity.

Analysis of the A matrix The first issue to be dealt
with is whether it is truly necessary to keep periodicity
into account in the formulation of the control problem.
To this purpose, averaged LTI approximations of the in-
plane dynamics (3) have been computed, for increasing
values of the eccentricity, and their eigenvalues have been
analysed. The results are summarised in Figure 1, from
which it is apparent that the averaged model exhibits a
real, positive eigenvalue for e > 0, a fact that is in marked
contrast with the well known fact that the characteristic
multipliers of (3) are equal to 1 for all e (see Inalhan et al.
[2002]). Therefore, the averaged LTI model is not even
able to capture the open loop stability characteristics of
the actual LTP system.

Analysis of the B matrix The effect of a non zero
eccentricity shows up even more dramatically when one
turns to the analysis of the Bin(θ) and Bout(θ) matrices.
In particular, it is easy to see that with respect to the e = 0
case, the non zero eccentricity introduces a time-periodic
scaling factor γ(θ) given by

γ(θ) =
(1 − e2)3

α4(θ)
. (14)

A plot of γ(θ) for increasing values of e is shown in the
upper portion of Figure 3. As can be seen, increasing eccen-
tricity implies that the control effectiveness is significantly
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Fig. 1. Eigenvalues of the averaged Ain(θ) matrix (arrows
indicate increasing eccentricity, from 0 to 0.9).
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Fig. 2. Effect of increasing e on the elements of the periodic
Ain(θ) matrix.

reduced near perigee (θ = 0o) and significantly increased
near apogee (θ = 180o). The importance of this effect can
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Fig. 3. Effect of increasing e on γ(θ) (top) and on the con-
trol effectiveness (bottom) - arrows indicate increasing
eccentricity, from 0 to 0.9.

be fully appreciated by looking at the effect of increasing
e on the overall control effectiveness, i.e., the quantity

γ(θ)/(n2m), depicted in the lower portion of Figure 3 (for
n = 7.3 × 10−5 rad/s and m = 150 kg).

3. DESIGN APPROACH

A number of approaches have been proposed in the lit-
erature in order to design suitable control laws for the
dynamics of relative motion. In most of the existing lit-
erature the dynamics of relative motion is dealt with as
it is, without making any attempt at compensating the
variability of the gain or at decoupling the in-plane axes. In
Marcos et al. [2007], on the other hand, a direct dynamic
inversion approach is adopted, i.e., the entire dynamics
is compensated and replaced with a desired acceleration
vector computed from a suitable reference model. In this
paper, a somewhat intermediate approach is proposed, in
the sense that the availability of an accurate knowledge
of the dynamics of relative motion is exploited in order
to reduce the strong variability of the Bin(θ) and Bout(θ)
matrices, and to transform the open-loop system into a set
of three second order subsystems, associated with relative
motion on each axis. Two different approaches are then
proposed for the control of the decoupled axes, namely
an eigenvalue assignment one (leading to the design of a
periodic gain controller) and an optimal periodic control
one (leading to the design of a constant gain controller)
based on the method presented in Vigano’ et al. [2007]. In
particular, specific attention is dedicated to the problem
of translating time-domain specifications on the desired
closed-loop dynamics into suitable θ-domain specifica-
tions. The following Sections will discuss the main steps in
the proposed design approach, namely gain compensation,
decoupling and control of the decoupled x, y and z axes.

4. GAIN COMPENSATION AND DECOUPLING

Consider first the in-plane dynamics (1) and let

uin =
α3(θ)n2m

(1 − e2)3
(K1xin + vin), (15)

where vin is an auxiliary control variable, so that (1) can
be written as

x′
in(θ) = Ac1(θ)xin(θ) + Bc1(θ)vin(θ) (16)

where

Ac1(θ) = Ain(θ) +
1

α(θ)







1 0
0 0
0 1
0 0






K1, Bc1(θ) =

1

α(θ)







1 0
0 0
0 1
0 0






.

(17)

It is now easy to see, by inspection of Ain(θ), that choosing

K1(θ) =

[

0 0 −2α(θ) β(θ)
2α(θ) −β(θ) 0 0

]

(18)

the Ac1(θ) matrix reduces to

Ac1(θ) =
1

α(θ)







β(θ) 2 + α(θ) 0 0
α(θ) 0 0 0

0 0 β(θ) α(θ) − 1
0 0 α(θ) 0






, (19)

so that the components of relative motion along the x
and y axes have been effectively decoupled. The control
problem therefore reduces to the one of stabilising the
three, decoupled, second-order LTP systems associated
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to the x, y and z axes. In the following, two different
approaches to the problem will be presented. The first one
is based on simple eigenvalue assignment ideas and leads
to the design of a (closed-form) time-periodic gain; the
second one, on the other hand, relies on the LQ approach
for LTP systems presented in Vigano’ et al. [2007] and
leads to the design of a constant gain.

5. SINGLE AXIS PERIODIC GAIN CONTROL

With respect to (19), consider the subsystem associated
with the x axis, i.e., the matrices

Ax
c1(θ) =

1

α(θ)

[

β(θ) 2 + α(θ)
α(θ) 0

]

, Bx
c1(θ) =

1

α(θ)

[

1
0

]

,

(20)

then the control problem at hand can be formulated as the
one of determining a periodic control gain Kx

2 (θ) such that
the closed-loop dynamics Ax

c2 = Ax
c1(θ) + Bx

c1(θ)K
x
2 (θ) is

given by

Ax
c2 =

[

−ax
1 −ax

0

1 0

]

, (21)

where ax
1 , ax

0 are the coefficients of the desired closed-loop
characteristic polynomial px(λ) = λ2 + ax

1λ + ax
0 . Clearly,

the solution is given by

Kx
2 (θ) = [−ax

1α(θ) − β(θ) −ax
0α(θ) − 2 − α(θ)] , (22)

and similarly, for the y and z axes, by

Ky
2 (θ) =

[

−ay
1α(θ) − β(θ) −ay

0α(θ) + 1 − α(θ)
]

(23)

Kz
2 (θ) = [−az

1α(θ) − β(θ) −az
0α(θ) + 1] . (24)

Care must be taken, however, in the choice of the de-
sired characteristic polynomials px(λ), py(λ) and pz(λ),
which reflect the specifications for the desired closed-loop
behaviour of the relative motion along the three axes.
Indeed, one must keep in mind that the design model given
by (1)-(2) is expressed with respect to θ as independent
variable, while the control specifications for each axis are
likely to be formulated in the time domain. Therefore, the
remarks of Section 2 on the relationship between t and θ
must be taken into account in the design of the desired
characteristic polynomials.

Assume that for a generic axis the desired closed-loop
dynamics in the time domain is given by the time-invariant
second order system

ż = At
dz =

[

−a1 −a0

1 0

]

. (25)

Then, according to Section 2 the corresponding represen-
tation of (25) in the θ domain is given by

z′ = Aθ
dz, (26)

with

Aθ
d(θ) =

[

(−a1θ̇ − θ̈)/θ̇ −a0/θ̇2

1 0

]

≃

[

−a1/θ̇ −a0/θ̇2

1 0

]

,

(27)
which is now an LTP system. The time variability of the
right-hand side of (25) makes the problem of defining a
direct correspondence between the time behaviour of the
system and the coefficients of matrix Aθ

d a rather critical
one. Furthermore, as can be seen from Figure 4, in the
case of high eccentricity orbits the variability of θ̇ with
respect to its mean value is such that replacing (26) with

the corresponding averaged LTI system (see Khalil [1992])
is likely to lead to very crude approximations of the actual
transients of the system. A different approach consists
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Fig. 4. Plot of θ̇ as a function of true anomaly for the
nominal Proba-3 orbit (e = 0.829).

in using a local LTI approximation for the LTP system
(26), valid for values of the anomaly corresponding to the
portion of the orbit where the formation keeping controller
will have to operate. For the case of apogee control (see,

again, the Proba-3 mission), one can replace θ̇ in (26) with
the value it takes for θ = 180o, i.e., in correspondence with
its minimum over one period. Therefore, the design of the
desired characteristic polynomial can be carried out on the
basis of the LTI approximation

z′ =

[

−a1/θ̇min −a0/θ̇2
min

1 0

]

z, (28)

where θ̇min is given by

θ̇min = n
(1 − e)2

(1 − e2)3/2
(29)

and is plotted in Figure 5 as a function of eccentricity. As
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Fig. 5. θ̇av (top) and θ̇min (bottom) as functions of
eccentricity.

an example, Figure 6 shows the time response of systems
(26) and (28) for the case of e = 0.829 and

At
d =

[

−2(2π/2000)0.7 −(2π/2000)2

1 0

]

, (30)

with initial state z(0) = [0 10]
T

and initial anomaly
θ(0) = 170o. As can be seen from the Figure, the LTI
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system (28) provides a fairly reliable approximation of the
actual LTP one.
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Fig. 6. Time response of systems (26) and (28) for the case
of e = 0.829 and θ(0) = 170o.

6. SINGLE AXIS CONSTANT GAIN CONTROL

An alternative approach to the control of the decoupled
x, y and z axis corresponds to the application of tools for
LQ-optimal constant gain design for continuous-time LTP
systems, first presented in Vigano’ et al. [2007]. In this
Section, a short overview of the above mentioned results
will be provided, and their application to the problem at
hand will be subsequently discussed.

Consider the LTP system

ẋ(t) = A(t)x(t) + B(t)u(t)

y(t) = C(t)x(t)
(31)

where A(t) ∈ Rn×n, B(t) ∈ Rn×m, C(t) ∈ Rp×n are T -
periodic matrices, and the quadratic performance index

J = E

{
∫ ∞

t0

[

xT (t)Q(t)x(t) + uT (t)R(t)u(t)
]

dt

}

(32)

with Q(t) = QT (t) ≥ 0, R(t) = RT (t) > 0 T -periodic
matrices and where the expectation is taken over the initial
condition x0, modelled as a random variable with zero
mean and known covariance X0 =

{

x0x
T
0

}

. The optimal
output feedback control problem can be formulated as
follows: find the constant feedback matrix F of optimal
control action

u∗(t) = Fy(t) (33)

which minimizes the performance index J of (32). Holding
(33), the closed loop dynamics can be written as

ẋ = [A(t) + B(t)FC(t)] x = Ā(t)x (34)

where Ā(t) = A(t) + B(t)FC(t) represents the closed
loop dynamic matrix, which is obviously periodic. There-
fore matrix Ā(t) is associated with the transition matrix
ΦĀ(t, t0) satisfying

Φ̇Ā(t, t0) = Ā(t)ΦĀ(t, t0), ΦĀ(t0, t0) = I. (35)

The minimization of the performance index given by (32)
can be carried out using either gradient-free or gradient-
based methods, provided that an analytical expression for
the gradient of the performance index with respect to the
F matrix is available. In both cases, an initial stabilizing
matrix F0 must be employed. In the following Proposition
(see Vigano’ et al. [2007] for details), necessary conditions

for optimality (and therefore the required gradient expres-
sion) will be presented.

Proposition 1. Let F be a constant stabilizing output
feedback gain and assume that the matrices Ā(t), Q̄(t) and
X(t) are given respectively by Ā = A + BFC, Q̄ = Q +
CT FT RFC and X(t) = ΦĀ(t, t0)X0Φ

T
Ā
(t, t0); hence, the

expressions for the performance index (32) and its gradient
are given by

J(F, X0) = tr (P0X0)

∇F J(F, X0) = 2

∫ t0+T

t0

[

BT (t)P (t)+

+R(t)FC(t)] ΦĀ(t, t0)V ΦT
Ā(t, t0)C

T (t)dt

where the symmetric periodic matrices P (t) and V satisfy,
respectively, the periodic Lyapunov differential equation
(PLDE)

−Ṗ (t) = ĀT (t)P (t) + P (t)Ā(t) + Q̄(t)

and the discrete Lyapunov equation (DLE)

V = ΨV ΨT + X0.

The optimization of (32) requires, as already said, that
the LTP system (31) is output stabilizable and, at each
iteration i, the matrix Fi belongs to the set SF ⊂ Rm×p

of the stabilizing feedback gain matrices. Formally, the
optimization problem can be stated as

min
F∈SF

J(F, X0). (36)

The stopping criterion, indicating convergence to a global
or, at least, a local solution of (36) will be simply ‖∇F J‖ <
tol.

Remark 2. The problem of output feedback control for
LTP systems has been recently treated in Farges et al.
[2006], in the discrete-time case. In particular, a char-
acterization of these controllers is provided, which relies
on the solution of bilinear matrix inequalities (BMIs).
The designed ellipsoids offer the interesting property of
being resilient, which means that the resulting closed-loop
system is robustly stable with respect to uncertainty of the
control law parameters. While this approach lends itself to
the formulation of very general control problems, it suffers
from a significant drawback, i.e., it is currently limited
to relatively small scale problems (both in terms of order
and period) when compared to techniques relying on the
solution of periodic Lyapunov and Riccati equations.

The application of the above described approach for the
design of constant gain controllers for LTP systems to the
stabilisation of the decoupled single axes of the relative
motion dynamics does not pose any specific difficulty, but
deserves a few comments. As discussed with reference to
the eigenvalue assignment approach, it is worth noting that
care must be taken if one aims at achieving a prescribed
level of time-domain performance while carrying out the
design in the θ domain. As an example, assume that the
designer aims at minimising the time-domain quadratic
performance index

Jt = E

{
∫ ∞

t0

[

xT (t)Q(t)x(t) + uT (t)R(t)u(t)
]

dt

}

(37)

for one the three axes (i.e., x = [ż z]
T
), with Q(t) =

QT (t) ≥ 0, R(t) = RT (t) > 0 given T -periodic matrices.
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Typically the weighting matrices would be chosen constant
as in the LTI case; in particular, we will make the simplify-
ing, though not overly restrictive, assumption that Q has
the block diagonal structure

Q =

[

Qż 0
0 Qz

]

. (38)

The problem is then to choose the θ-domain 2π-periodic
matrix weights Qθ(θ) = QT

θ (θ) ≥ 0, Rθ(θ) = RT
θ (θ) > 0

such that the cost function

Jθ = E

{
∫ ∞

θ0

[

xT (θ)Qθ(θ)x(θ) + uT (θ)Rθ(θ)u(θ)
]

dθ

}

(39)
is equivalent to Jt. The problem is easily solved by recalling
that according to (8) we have dt = θ̇−1dθ, so that in order
to get Jθ = Jt, Qθ(θ) and Rθ(θ) should be chosen as

Qθ(θ) =

[

Qθ
z′(θ) 0
0 Qθ

z(θ)

]

, (40)

Qθ
z′(θ) = Qż θ̇, Qθ

z(θ) = Qz θ̇
−1, (41)

and
Rθ(θ) = Rθ̇−1. (42)

The desired time-domain specification can therefore be
achieved from the θ-domain formulation of the problem
by making use of suitable time-periodic weights in the LQ
problem.

Finally, as is apparent from equation (39), the obtained
control gain will also be a function of the chosen initial
anomaly θ0, which therefore should be chosen in accor-
dance with the expected operating conditions of the con-
troller (e.g., apogee formation keeping).

7. SIMULATION RESULTS

The highly eccentric orbit which is currently being used
as a reference for Proba-3 studies has a period of 24h, a
corresponding orbital frequency of n = 2π/24h = 7.2910−5

rad/s and an eccentricity e = 0.829; a satellite mass
m = 200 Kg has been assumed. The initial state vector
given by x0

in = [0, 100, 0, 100] and x0
out = [0, 10] has

been chosen. This initial condition is representative of the
variation in relative position which the Proba-3 spacecraft
should achieve while moving from one FF configuration
to another, according to the preliminary study in Facility
[2005]. The controller has been tuned using both the
proposed approaches. More precisely, in the case of the
eigenvalue assignment approach presented in Section 5 the
desired closed-loop time domain dynamics for each axis
has been chosen as in equation (30), while for the LQR
approach presented in Section 6 the weighting matrices
have been selected in order to obtain a similar closed-loop
time response. Only the results for the x axis are presented,
both for the sake of brevity and because the performance
obtained along the y and z axes is essentially identical. As
can be seen from Figure 7, the proposed control design
methods lead to very similar closed-loop performance,
which is very close to the one specified via the reference
model (30) in the eigenvalue assignment approach. Current
work is aiming at providing a more detailed assessment of
the achievable performance in a more realistic simulation
environment, taking also into account model uncertainty
and measurement errors.
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Fig. 7. Position error along x axis - comparison between
eigenvalue assignment and periodic LRQ approaches.

8. CONCLUDING REMARKS

The problem of orbit control for a spacecraft in elliptical
orbit has been considered and an approach based on
decoupling and subsequent single axis control has been
proposed. In particular, constant gain and periodic gain
design methods have been developed. Simulation results
demonstrate that excellent performance can be obtained.
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