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Abstract: In this paper, we present a weighted method based upon the node betweenness,
and discover that synchronizability of the complex networks can be enhanced by the weighted
method. And we demonstrate the validity of this method by applying this weighted method
to two classes of networks with high homogeneous and heterogeneous degree distribution. The
optimal synchronable condition corresponds to (Motter et al., 2005a) and can also be obtained by
a tunable parameter α. We hope the research can be useful for comprehensively understanding
the synchronization behavior of networks and design more effective networks.

1. INTRODUCTION

Over the past few years, the analysis of complex systems
from the viewpoint of networks has become an important
interdisciplinary issue (Albert et al., 2002). Complex net-
works have been intensively studied in many fields, such as
social, biological, mathematical, and engineering sciences.
Generally, a complex network is made up of interconnected
nodes in which a node is a basic unit with detailed con-
tents. These interactions between nodes determine many
basic properties of a network. To well understand the
complex dynamical behaviors of many natural systems, we
need to study the topological structures of the underlying
networks. In fact, the properties of a complex network
are mainly determined by its topological structures, i.e.
the connections between nodes. At one extreme are the
regular networks, such as chains, lattices, grids, and fully
connected graphs, while at the other extreme are the ran-
dom networks where the nodes are connected randomly.
Small-world networks are objects in between regular and
random networks characterized by a small average distance
between any two nodes, while keeping a relatively highly
clustered structure (Watts et al, 1998). Scale-free networks
are characterized by highly heterogeneous distribution of
degrees (number of links per node) and display a power-
law distribution p(k) ∼ k−γ in the node connectivity k
(degree) (Barabási et al., 1999).

Synchronization is a basic phenomenon in a wide range
of real systems, such as neural networks, physiological
process, biology, and so on (Lu et al., 2004). It has been
demonstrated that many real-world complex networks dis-
play various synchronization phenomena. Network syn-
chronization is strongly influenced by the structure of
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the underlying network. Previous work on synchronization
has focused mainly on the influence of the topology of
connections by assuming that the coupling strength is
uniform. However, synchronization is influenced not only
by the topology, but also by the strength of the con-
nections (Motter et al., 2005a). Most complex networks
where synchronization is relevant are indeed weighted.
Examples include brain networks (Scannell et al., 1999),
networks of coupled populations in the synchronization
of epidemic outbreaks (Grenfell et al., 2001), and tech-
nological networks whose functioning relies on the syn-
chronization of interacting units (Korniss et al., 2003).
The distribution of connection weights in real networks
is often highly heterogeneous (Barrat, 2004). The study of
synchronization in weighted networks is thus of substantial
interest. A basic assumption of previous work is that the
oscillators are coupled symmetrically and with the same
coupling strength. But to get a better synchronizability the
couplings are not necessarily symmetrical. Moreover, many
realistic networks are actually directed and weighted. Since
the networks considered in the original study (Nishikawa
et al., 2003) are unweighted and undirected, recent efforts
have been focused on searching for network configurations
incorporating weights and directionality, to achieve more
efficient synchronization in scale-free networks (Motter et
al., 2005a 2005b; Hwang et al., 2005; Nishikawa & Motter,
2006). A first attempt at assessing enhancement of syn-
chronization due to weighted connections was proposed in
Ref. (Motter et al., 2005a), where the coupling strength
was taken to be σ

k
β

i

Lij (Lij being the Laplacian matrix).

This asymmetric wiring provides a spectrum of real eigen-
values, and an optimal condition β = 1 for synchronization
was found (Motter et al., 2005a). Chavez et al (2005) show
enhancement in synchronization is achieved by scaling
the coupling strength to the load of each link that the
information contained in the overall topology. Wang et al.
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(2007) have proposed a coupling scheme that enhancing
synchronization based on complex gradient networks.

In this paper, we propose a scheme to address the syn-
chronizability of asymmetrical and weighted complex net-
works. By exploiting the global structure of shortest paths
among nodes, the weight of a link will be related to its node
betweenness (The definition will be introduce in section 3).
We show that a weighted method based upon the between-
ness of node enhance the synchronizability of complex
networks. And, we apply this weighted method to both
high homogeneous and heterogeneous degree distribution,
which demonstrate that this weighted method significantly
improves the synchronization of these complex networks.

The organization of the paper is as follows. In Section
2, Some approaches to generate complex networks are
reviewed and the issue of synchronization in a network
is discussed. In Section 3, we gives a weighted method to
enhance the synchronizability based on the nodes between-
ness and demonstrate the validity of this method by apply-
ing this weighted method to two classes of networks with
high homogeneous and heterogeneous degree distribution.
We end this paper with some conclusions, in section 5.

2. PRELIMINARIES: COMPLEX DYNAMICAL
NETWORKS

2.1 Some approaches to generate a complex topology

A brief summary of the most popular ways to generate a
complex network is presented in this section. The descrip-
tions only try to give a flavor of the type of techniques one
can use to stochastically generate a complex network.

1) E-R Random Network Model

Not limited to small graphs with a high degree of regularity
as did in the classical graph theory, Erdös and Rényi
cast more complexity in network topology with statistical
algorithms. The basic E-R random network model is
defined as a random graph of N labeled nodes connected
by n edges, which are chosen randomly from all the N(N−
1)/2 possible edges. The network evolution is uniform:
Start with N nodes, and every pair of nodes are connected
with the same probability p

The main goal of the random graph theory is to determine
in what connection probability p a particular property
of a graph will likely arise. For a large N , the E-R
model generates a homogenous random network, whose
connectivity approximately follows a Poisson distribution

P (k) ≈ e−<k> < k >k

k!
where < k >, the so-called average degree of the network,
is the average of ki over all nodes i in the network.
With this connectivity distribution, nodes in the network
are quite uniformly spread out, which is known as a
homogenous feature of the distribution.

2) Small-World Modes

Watts and Strogatz (1998) introduced a single parameter
small-world network model that bridges the gap between
a regular network and a random graph. The original WS
model is described as follows.

(1) Start with order : Start with a nearest neighbor coupled
ring lattice with N nodes, in which each node is connected
to its k neighboring nodes i± 1, i± 2, i±K/2, where k is
an even integer.

(2) Randomize: Randomly rewire each link of the network
with probability p such that self-connections and dupli-
cated links are excluded. Rewiring in this sense means
transferring one end of the connection to a randomly
chosen node. This process introduces pNK/2 long-range
links, which connect some nodes that otherwise would not
have direct connections. One can thus closely monitor the
transition between order (p = 0) and (p = 1) randomness
by adjusting p.

Fig. 1. Formation of a small-world network

Figure 1 shows that a small-world network lies along a
continuum of network models between the two extreme
networks: regular and random ones. Note, however, that
there is a possibility for the SW model to be broken into
unconnected clusters. This problem can be circumvented
by a slight modification of the SW model, suggested by
Newman & Watts (1999), which is referred to as the NW
model hereafter. In the NW model, we do not break any
connection between any two nearest neighbors. We add
with probability p a connection between each other pair of
nodes. Likewise, we do not allow a node to be coupled to
another node with itself. The degree distribution of NW
model is also homogenous. For p = 0, it reduces to the
originally nearest-neighbor coupled system; for p = 1, it
becomes a globally coupled system.

3) BA Scale-Free Network Model

The algorithm of the BA scale-free model is generated as
follows.

(1) Growth: Starting with a small number (m0) of nodes,
at every time step, add a new node with m(m ≤ m0)
edges that link the new node to m different nodes already
presented in the network.

(2) Preferential attachment : When choosing the nodes to
which the new node connects, assume that the probability
Π(ki) that a new node will be connected to node i depends
on the degree ki of node i, in such way that

Π(ki) =
ki∑
j kj

.

After t time steps, we get a network having N = t + m0

nodes and mt edges. This network evolves into a scale-
invariant state with the probability that a node has edges
following a power-law distribution P (k) ∼ 2m2k−γBA with
an exponent γBA = 3, where the scaling exponent is
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independent of m, i.e., γBA is scale-invariant, and in this
sense the network is said to be scale-free. However, the
degree distribution of BA model is heterogeneous.

It has been suggested that the BA scale-free network model
has captured the basic mechanisms, growth, and preferen-
tial attachment, responsible for the scale-free feature and
“rich gets richer” phenomenon in many real-life complex
networks.

2.2 Network synchronization

Consider a dynamical network of N linearly coupled identi-
cal oscillators, with each oscillator being an n-dimensional
dynamical system. Let each oscillator of the network be
assigned a dynamical variable xi (i = 1, 2, · · · , N). The
evolution of the dynamical variables is written in the form
(Motter et al., 2005b)

ẋi = f(xi) + σ
n∑

j=1

Gijh(xj) (1)

where f describes the dynamics of each individual oscil-
lator, h is the inner coupling function, σ is the coupling
strength, and G = (Gij)N×N is the coupling matrix.

Suppose that all eigenvalues of the matrix G satisfy

0 = λ1 > λ2 ≥ · · · ≥ λN (2)

The variational equation governing the linear stability of
the synchronous state {ẋi(t) = s(t),∀i} of the network can
be diagonalized into blocks of the form

η̇ = [Df(s) + αDh(s)]η (3)

where α = σλi , and λi are the eigenvalues of the coupling
matrix G. The largest Lyapunov exponent Λ(α) linked to
α = σλi, the so-called master stability function (MSF),
which determines the linear stability of the synchronized
state (Pecora, et al., 1998). The synchronized state is
stable if Λ(σλi) < 0 for i = 2, · · ·N . For many widely
studied oscillatory systems (Barahona et al., 2002; Fink
et al., 2000; Pecora et al., 1998), the master stability
function Λ(α) is negative in a finite interval (α1, α2).
Therefore, the network is synchronizable for some σ when
the eigenratio R = λN/λ2 satisfies R < α2/α1. The ratio
α2/α1 depends only on the dynamics (f , h, and s), while
the eigenratio R depends only on the coupling matrix
G. The problem of synchronization is the reduced to the
analysis of eigenvalues of the coupling matrix (Barahona
et al., 2002). The synchronizability of the network can be
characterized by the eigenratio R of the coupling matrix.
Smaller R lead to better synchronizability.

3. ENHANCING SYNCHRONIZATION BY
WEIGHTED METHOD

The first attempt at assessing enhancement of synchro-
nization by weighted connections in Ref. (Motter et al.,
2005a) only retains information on the local features of the
network. We show that enhancement in synchronization
can be achieved by exploiting the information contained
in the overall topology. We propose to scale the cou-
pling strength by the betweenness of nodes. The node
betweenness Bn is the number of shortest paths between
two (other) nodes that pass through node n, therefore it

reflects the global information. Precisely, the betweenness
of node n is defined to be

Bn =
∑

(i,j)

ginj (4)

where ginj is the number of shortest paths between i
and j passing through node n. The summation is to be
performed over all pairs of nodes (i, j), i 6= j.

We consider

Gij = lij
Bα

i∑
j∈Ki

Bα
j

(5)

where Bi is the betweenness of node i; α is a real tunable
parameter, and Ki is the set of neighbors to the ith node.
The underlying network associated with the coupling ma-
trix L (The diagonal entries are lii = −ki. The off-diagonal
entries are lij = 1, if nodes i and j are connected, and 0
otherwise.) is undirected and unweighted, but with the
introduction of the weights in equation (5), the network
of couplings becomes not only weighted but also directed
because the resulting matrix G is in general asymmetric.

In matrix notation, equation (5) can be written as

G = DL (6)

where D = diag{d1, d2, · · · , dN} , di =
Bα

i∑
j∈Ki

Bα
j

. From

the identity

det(G − λI) = det(DL − λI)

= det(D
1

2 LD
1

2 − λI)
(7)

valid for any λ, we have that the spectrum of eigenvalues of
matrix G is equal to the spectrum of a symmetric matrix
denoted as

H = D
1

2 LD
1

2 (8)

As a result, all the eigenvalues of matrix G are real,
because H is a real symmetric matrix. Moreover, because
H is negative semidefinite, all the eigenvalues are negative
or zero and, because the rows of G have zero sum, the
largest eigenvalue λ1 is always zero, as assumed above. If
the network is connected, then λi < 0 (i = 2, 3, · · · , N)
for any finite α. Another important point to be stressed
concerns the various limits the coupling term can assume
when changing α. The limit α = 0 corresponds to the best
synchronizability condition of (Motter et al., 2005a).

By varying α in the Eq. (5), and by monitoring the
ratio R = λN/λ2 of the coupling matrix G, we can now
study the propensity for synchronization of the complex
networks with different degree distributions. For the scale
free networks, the degree distribution is heterogeneous,
for example the BA model. The used scale-free networks
is a generalization of the preferential attachment growing
procedure introduced in (Barabási et al., 1999). Namely,
starting from m + 1 to all connected nodes, at each time
step a new node is added with m links. These m links point
to old nodes with probability ki∑

j
kj

, where ki is the degree

of the node i. Figure 2 shows the logarithm of R = λN/λ2

as a function of α for BA scale-free networks of different
value m. Synchronizability (characterized by the eigenratio
R) of weighted scale-free networks is denoted by solid line
and unweighted case is denoted by dashed. We can see
from Figure 2, the eigenratio R of the coupling matrix is
diminished, when round −1 < α < 1, in comparison with
the unweighted case. This indicate that synchronizability
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is enhanced by introduce the weighed in coupling matrix,
when round −1 < α < 1. It is notice that the curve of
R = λN/λ2 has a pronounced minimum at α = 0 for
all values of m. Because here α = 0, we can get the∑

j∈Ki
Bα

j = ki. Then the condition di = 1/ki recovers the
optimal condition when the information on node degrees
is used (the condition β = 1 in (Motter et al., 2005a)),
this indicates that our weighting procedure based on the
nodes betweenness greatly enhances the scale free network
propensity for synchronization. In all our results, each
curve is the result of an average of 20 realizations for
N = 300. And N has been varied form 300 to 1000 without
significant qualitative differences.
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Fig. 2. Eigenratio R as a function of α, the BA scale-free network:
m = 2(∗) m = 3(+) m = 5(△) for nodes N = 300. unweighting
(dashed); weighting (solid line). Each curve is the result of an
average 20 realizations.

For comparison, we apply our coupling scheme to the
other class of networks with high homogeneous degree
distribution. The WS small-world model, obtained as in
(Watts et al., 1998) is one of complex networks with
homogeneous degree distribution. Roughly speaking, start
with a nearest-neighbor coupled ring lattice with N nodes,
in which each node is connected to its K neighboring
nodes i± 1, i± 2, · · · i±Ki/2, where K is an even integer.
Randomly rewire each link of the network with probability
p such that self-connections and duplicated links are ex-
cluded. The synchronizability of random networks (the WS
small-world model, when p = 1) is illustrated by the lg(R)
in Figure 3. And the figure indicates that here our weighted
procedure based on node betweenness also enhances the
synchronizability of random network, when round −1 <
α < 1. And the minimum of the curve is always posi-
tioned at α = 0. Namely the best synchronizability also is
obtained, when α = 0. The reason is similar to the case
of heterogeneous degree distribution. There is a possibility
for the WS model to be broken into unconnected clusters.
This problem can be circumvented by a slight modifica-
tion of the WS model, suggested by Newman and Watts
(1999), which is referred to as the NW model hereafter. In
the NW model, any connection between any two nearest
neighbors not be broken. The NW network model also
is another complex networks with homogeneous degree
distribution. We also apply our coupling scheme to NW
small-world networks model. Figure 4 shows lg(λN

λ2

) vs α
of the NW small-world network model for different the
parameter p, and indicates that our weighting procedure
also enhanced the network synchronizability, when round

−1 < α < 1. And the minimum of the curve is also
positioned at α = 0. The reason is the condition α = 0
recover the optimal condition when the information on
node degrees is used (the condition β = 1 in (Motter et
al., 2005a)). Observably, the weighted scheme can greatly
enhance the synchronizability of complex networks, for
both homogeneous and heterogeneous networks. And, the
optimal condition of synchronizability can be obtained by
the global information Bi. So, we can design more efficient
networks for synchrony by this weighted method.
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Fig. 3. Eigenratio R as a function of α, random network for nodes
N = 300. unweighting (dashed); weighting (solid line). Each
curve is the result of an average 20 realizations.
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Fig. 4. Eigenratio R as a function of α, the NW small-world network:
nodes N=300 p = 0.3(∗) p = 0.5(△) for k = 20. unweighting
(dashed); weighting (solid line). Each curve is the result of an
average 20 realizations.

4. CONCLUSION

We have shown that a weighted method based upon the
betweenness of node enhances the synchronizability of
complex networks. Within this method, we have shown
that suitably weighted networks display significantly im-
prove synchronizability for both homogeneous and het-
erogeneous networks. And the optimal condition α = 0
for synchronization was found. Moreover, the condition
corresponds to (Motter et al., 2005a) (β = 1). The re-
search may be useful for comprehensively understanding
the synchronization behavior of networks and design more
effective networks for synchrony. However, there is a long
way to fully uncovering the truth of synchronization in
complex networks.
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