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Abstract: In this communication, some results on the analysis of the reachability and observability
of linear discrete-time fractional order systems are given. Mathematical conditions for checking the
controllability and the observability of such systems are developed. Furthermore, the concepts of the
controllability realization index, the observability realization index and the structure realization index
are introduced.

1. INTRODUCTION

The concept of non-integer derivative and integral is increas-
ingly used to model the behavior of real systems in various
£elds of science and engineering (Debnath [2003]), (Magin
[2006]). These systems exhibit hereditary properties and long
memory transients, which can be represented more accurately
by fractional-order models. Some fundamental developments of
the fractional calculus theory are given in (Oldham and Spanier
[1974]), (Samko et al [1993]), (Oustaloup [1995]), (Kilbas et al
[2006]).
In the particular domain of control theory, several authors have
been interested by this aspect since the sixties. The £rst contri-
butions, (Manabe [1961]), (Oustaloup [1983]), (Axtell and Bise
[1990]), gave the generalization of classical analysis methods
for fractional-order systems (transfer function de£nition, fre-
quency response, pole and zero analysis,...).
The state-space representation of fractional-order systems has
been introduced in (Matignon [1994]), (Hotzel [1998]), (Ray-
naud and A. Zergainoh [2000]), (Hotzel [1998]), (Dorc̃ak
[2000]), (Sabatier et al [2002]), (Vinagre et al [2002]). The
state-space representation has been exploited in the analysis
of system performances. In fact, the solution of the state-space
equation has been derived by using the Mittag-Le¤ler function
(Mittag-Lef¤er [1904]). The stability of the fractional-order
system has been investigated (Matignon [1996a]). A condition
based on the argument principle has been established to guar-
antee the asymptotic stability of the fractional-order system.
Further, the controllability and the observability properties have
been de£ned and some algebraic criteria of these two properties
have been derived (Matignon and d’Andréa-Novel [1996b]),
(Bettayeb and Djennoune [2006]).
Linear discrete-time fractional-order systems modeled by a
state space representation have been introduced in (Dzieliński
and Sierociuk [2006a]), (Dzieliński and Sierociuk [2006b]),

(Sierociuk and Dzielinski [2006]), (Dzieliński and Sierociuk
[2005]). These contributions are devoted respectively to a sta-
bility condition, to the design of an observer, Kalman £lter
design and £nally to an adaptive feedback control for discrete
fractional-order systems. In (Guermah et al [2008]), some new
results concerning the controllability and observability proper-
ties of linear discrete-time fractional-order systems have been
derived. The objective of this work is to give some extensions
of our previous results (Guermah et al [2008]) on the analysis
of structural properties of the linear discrete time fractional
order systems. The concept of Controllability Realization In-
dex (CRI) already introduced for linear discrete-time systems
with time-delay in state (Pen et al [2003]) is extended here to
fractional order systems. Furthermore, the dual concept of Ob-
servability Realization Index (ORI) and Structural Realization
Index (SRI) are proposed here. These concepts are useful in the
understanding of the fractional order systems.
The rest of this paper is organized as follows: In Section 2, we
recall some fundamental de£nitions on fractional derivatives
and fractional-order systems, modeled by continuous models.
Then we expose the discrete-time model derived, as de£ned
in (Dzieliński and Sierociuk [2005]) and we introduce extra
notations that reveal a new form, making it possible to take
into account the past behavior of the system and to analyze
the structural properties. Section 3 addresses the controllability
and observability properties. The previous results developed
in (Guermah et al [2008]) are recalled here. In Section 4, the
concept of the Controllability Realization Index introduced for
discrete-time system with time delay in state is extended to
the discrete-time fractional order systems. The same concept
concerning the observability is proposed. In Section 5, we
present some numerical results corresponding to different cases
of checking the controllability and the observability conditions
for such systems.
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2. LINEAR DISCRETE-TIME FRACTIONAL-ORDER
SYSTEMS

There are different de£nitions of the fractional derivative, (Old-
ham and Spanier [1974]), (Samko et al [1993]), (Kilbas et al
[2006]). The Grünwald-Letnikov de£nition which is the dis-
crete approximation of the fractional order derivative is used
here. The Grünwald-Letnikov fractional order derivative of a
given function f(t) is given by:

G
aD

α
t f(t) = lim

h→0

a∆
α
hf(t)

hα
(1)

where the real number α denotes the order of the derivative,
a is the initial time and h is a sampling time. The difference
operator ∆ is given by:

a∆
α
hf(t) =

[ t−a

h
]

∑

j=0

(−1)j
(

α

j

)

f(t− jh) (2)

The binomial term can be obtained by the relation:
(

α

j

)

=







1 for j = 0
α(α− 1)...(α− j + 1)

j!
for j > 0

(3)

and [ ] takes the integer part.
Now, let us consider the traditional discrete-time state-space
model of integer order, i. e. when α is equal to unity:

x(k + 1) = Ax(k) +Bu(k);x(0) = x0 (4a)

y(k) = Cx(k) +Du(k) (4b)

Where u(k) ∈ R
p and y(k) ∈ R

q are respectively the input and
the output vectors, x(k) = [x1(k) x2(k) . . . xn(k)] ∈
R
n is the state vector. Its initial value is denoted x0 = x(0) and

can be set equal to zero without loss of generality. (A,B,C,D)
are the conventional state space matrices with appropriate di-
mensions.
The £rst-order difference for x(k + 1) can be de£ned as:

∆1x(k + 1) = x(k + 1)− x(k)

Therefore, using Equation (4a) we deduce that:

∆1x(k + 1) = Ax(k) +Bu(k)− x(k)

= Adx(k) +Bu(k)

whereAd = A−In and In is the n-dimensional identity matrix.
The generalization of this integer-order difference to a non
integer-order (or fractional-order) difference has been ad-
dressed in (Dzieliński and Sierociuk [2005]) where the discrete
fractional-order difference operator with the initial time taken
equal to zero is de£ned as follows:

∆αx(k) =
1

hα

k
∑

j=0

(−1)j
(

α

j

)

x(k − j) (5)

In the sequel, the sampling time h is taken equal to 1. These re-
sults conducted to conceive the linear discrete-time fractional-
order state-space model, using the equations:

∆αx(k + 1) = Adx(k) +Bu(k);x(0) = x0 (6)

In this model, the differentiation order α is taken the same for
all the state variables xi(k), i = 1, . . . , n. This is referred to as
commensurate order. Besides, from Equations (5) and (6) we
have:

x(k+1) = Adx(k)−

k+1
∑

j=1

(−1)j
(

α

j

)

x(k−j+1)+Bu(k) (7)

The discrete-time fractional order system is represented by the
following state space model:

x(k + 1) =
k
∑

j=0

Ajx(k − j) +Bu(k);x(0) = x0 (8a)

y(k) = Cx(k) +Du(k) (8b)

where A0 = Ad − c1In and Aj = −cj+1In for j ≥ 2
with cj = (−1)j

(

α
j

)

, j = 1, 2, 3, ... This description can be
extended to the case of non-commensurate fractional-order sys-
tems modeled in (Dzieliński and Sierociuk [2005]), (Dzieliński
and Sierociuk [2006a]) by introducing the following vector
difference operator:

∆Υx(k + 1) = Adx(k) +Bu(k)

x(k + 1) = ∆Υx(k + 1) +

k+1
∑

j=1

Ajx(k − j + 1)

where:

∆Υx(k + 1) =







∆α1x1(k + 1)
...

∆αnxn(k + 1)







Then, in the case of non commensurate-order, the system is
described by Equations (8a) and (8b) where the matrices Aj ,
j = 0, 1, 2, ... take the following expressions:

A0 = Ad − diag{−

(

αi

1

)

, i = 1, . . . , n}

and

Aj = diag{−(−1)j+1
(

αi

j + 1

)

, i = 1, . . . , n}

for j = 1, 2, 3, . . .
The model described by (8) can be classi£ed as a discrete-time
system with time delay in state. Whereas, the models addressed
in (Debeljkovic et al. [2002]), (Pen et al [2003]), consider
a £nite constant number of steps of time-delays, System (8)
has a varying number of steps of time-delays, equal to k, i.e.,
increasing along with time. Let us de£ne matrices Gk such that:

Gk =











In for k = 0;
k−1
∑

j=0

AjGk−1−j for k ≥ 1
(9)

Theorem 1. (Guermah et al [2008]) The solution of Equation
(8a) is given by:

x(k) = Gkx0 +
k−1
∑

j=0

Gk−1−jBu(j) (10)

We deduce that the corresponding transition matrix can be
de£ned as:

Φ(k, j) = Gk−j , Φ(0, 0) = G0 = In

Obviously, this transition matrix does not enjoy the semi group
property as for the integer order case. In fact:

Φ(k2, k0) 6= Φ(k2, k1)Φ(k1, k0);∀ k2 > k1 > k0 ≥ 0

3. REACHABILITY AND OBSERVABILITY

In (Guermah et al [2008]), fundamental results concerning
the reachability and observability of fractional-order systems
modeled by Equations (8a) and (8b) are derived. In this section,
we recall some of them. We begin by the reachability property.
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De£nition 1. The linear discrete-time fractional-order system
modeled by Equations (8a) and (8b) is reachable if it is possible
to £nd a control sequence such that an arbitrary state can be
reached from the origin in £nite time.

For the linear discrete-time fractional-order system modeled by
Equations (8a) and (8b) we de£ne:

(1) The controllability matrix:
Ck =

[

G0B G1B G2B · · · Gk−1B
]

(11)

(2) The reachability Gramian:

Wr(0, k) =
k−1
∑

j=0

GjBB
TGT

j (12)

It is easy to show that Wr(0, k) = CkC
T
k .

Theorem 2. (Guermah et al [2008]) The linear discrete-time
fractional-order system modeled by Equation (9) is reachable if
and only if there exists a £nite timeK such that: rank(CK) = n
or, equivalently, rank(Wr(0,K)) = n. Furthermore, an input
sequence UK = [uT (K − 1), uT (K − 2) . . . , uT (0)]T that
transfers x0 = 0 at k = 0 to xf at k = K is given by:

UK = CTKW−1
r (0,K)xf (13)

The same analysis is extented to the observability property.
De£nition 2. The linear discrete-time fractional-order system
modeled by Equations (8a) and (8b) is observable at time k = 0
if and only if there exists some K > 0 such that the state x0 at
time k = 0 can be uniquely determined from the knowledge of
uk, yk, k ∈ [0,K].

For the linear discrete-time fractional-order system modeled by
Equations (8a) and (8b) we de£ne:

(1) The observability matrix:

Ok =













CG0
CG1
CG2

...
CGk−1













(14)

(2) The observability Gramian:

Wo(0, k) =

k−1
∑

j=0

GT
j C

TCGj (15)

It is easy to show that Wo(0, k) = O
T
kOk.

Theorem 3. (Guermah et al [2008]) The linear discrete-time
fractional-order system modeled by Equations (8a) and (8b)
is observable if and only if there exists a £nite time K such
that: rank(OK) = n or, equivalently, rank(Wo(0,K)) = n.
Furthermore, the initial state x0 at k = 0 is given by:

x0 = W−1
o (0,K)OTK

[

YK −MK ŨK
]

(16)

with
ŨK = [uT (0), uT (1), . . . , uT (K − 1)]T

YK = [yT (0), yT (1), . . . , yT (K − 1)]T

and

MK =

















0 0 . . . 0 0
CG0B 0 . . . 0 0
CG1B 0 . . . 0 0
CG2B CG0B . . . 0 0

... . . .
...

...
CGk−2B CGk−4B . . . CG0B 0

















(17)

Remark 1. In the case of an integer order, it is well known
that the rank of the controllability matrix Ck and the rank of
the observability matrix Ok cannot increase for k ≥ n. This
in virtue of the Cayley-Hamilton theorem. In contrast, in the
case of the linear discrete-time non-commensurate fractional-
order system (8), the rank of Ck andOk can increase for values
of k ≥ n. In other words, a £nal state xf which can not be
reached in n steps can be reached in a number of steps greater
than n. Furthermore, n samples of input/output data may be non
suf£cient to detect an initial state x0. This initial state may be
observable from a number of input/output samples greater than
n. This is due to the nature of the elements Gk which build
the controllability matrix Ck and the observability matrix Ok
and which exhibit the particularity of being time-varying, in
the sense that they are composed of a number of terms Aj that
grows with k.
Remark 2. In the particular case of commensurate fractional-
order systems, the matrices Gk de£ned by Equation (9) are
polynomials in A0, that is:

Gk = Ak0 + β1k
Ak−10 + β2k

Ak−20 + . . .+ βkk
In

where the real coef£cients βjk are calculated from the coef£-
cients cj . In particular, we have:

Gn = An0 + β1n
An−10 + β2n

An−20 + . . .+ βnn
In

From the Cayley-Hamilton theorem, An0 is a linear combination
of An−10 , An−20 , . . ., In. We deduce that Gk+n, for all k ≥ 0 are
linearly dependent on Gn−1, Gn−2, . . ., In. This implies the
linear discrete-time fractional-order system modeled by Equa-
tions (8a) and (8b) in the commensurate case is reachable if
and only if rank(Cn) = n and is observable if and only if
rank(On) = n. The controllability and the observability crite-
ria of commensurate fractional-order systems are then similar
to those of the integer-order case.

4. REACHABILITY AND OBSERVABILITY
REALIZATION INDICES

In (Pen et al [2003]), the concept of controllability (or reacha-
bility) index is introduced. This concept is used for determining
the controllability of discrete-time linear systems with time-
delay in state. We extend these concepts to fractional order
systems.
De£nition 3. (Reachability Realization Index, RRI) For System
(8), if there exists a positive integer Kr such that for any
initial state x(0) = x0, and any £nal state xf , there exists
input sequence [u(Kr − 1), u(Kr − 2), . . . , u(0)] such that
x(Kr) = xf , then we call Kr the Reachability Realization
Index (RRI) for System (8).

If System (8) is reachable,Kr is not unique since if rank(CKr
) =

n then rank(Ck) = n for all k ≥ Kr. The smallest Kr is called
the Minimal Reachability Realization Index and is denoted by
MinRRI. We extend these de£nitions to the observability.
De£nition 4. (Observability Realization Index, ORI) For Sys-
tem (8), if there exists a positive integer Ko such that for
any initial state x(0) = x0, the knowledge of the input and
output sequences [u(Ko−1), u(Ko−2), . . . , u(0)] and [y(Ko−
1), y(Ko − 2), . . . , y(0)] is suf£cient to determine the initial
state x0, then we call Ko the Observability Realization Index
(ORI) for System (8).

If System (8) is observable, Ko is not unique since if
rank(OKo

) = n then rank(Ok) = n for all k ≥ Ko. The
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smallest Ko is called the Minimal Observability Realization
Index and is denoted by MinORI.
De£nition 5. (Structure Realization Index, SRI)
The Structure Realization Index (SRI) is the integer r de-
£ned as r = max(Kr,Ko). The Minimal Structure Realiza-
tion Index (MinSRI) is the integer rmin de£ned as rmin =
max(MinRRI ,MinORI ).

In the case of integer order systems with p inputs and q outputs
described by its transfer function matrix H(z) ∈ C

q×p, the n-
dimensional realization (A,B,C,D) where A ∈ R

n×n, B ∈
R
n×p, C ∈ R

q×n and D ∈ R
q×p is minimal if it is controllable

and observable. Let the expansion ofH(z) in Laurent series be

H(z) = Ho +H1z
−1 +H2z

−2 + . . .

where the terms Hi, i = 0, 1, 2, . . . are the Markov parameters
determined by the formulas:

H0 = lim
z→∞

H(z)

H1 = lim
z→∞

z(H(z)−H0)

H2 = lim
z→∞

z2(H(z)−H0 −H1z
−1)

and so forth.
It is well known (Antsaklis and Michel [1997]) that (A,B,C,D)
is a realization ofH(z) if and only if

H0 = D

Hi = CAi−1B; i ≥ 1

This realization of dimension n is minimal if the rank of the
Hankel matrix

MH(n, n) =



















H1 H2 . . . Hn

H2 H3 . . . Hn+1

H3 H4 . . . Hn+2

...
... . . .

...
...

... . . .
...

Hn Hn+1 . . . H2n−1



















is equal to n. Let us return now to the case of the fractional-
order system (8) which exhibits an in£nite structure since the
state space representation is composed by in£nite number of
state matrices namely Aj , j ≥ 0 re¤ecting the long memory
characteristic. The corresponding transfer function matrixH(z)
is called in£nite dimensional transfer function matrix. It is easy
to show that the pulse response matrix of (8) due to a pulse
input applied at time j = 0 is given by

H(0) = D (18a)

and
H(k) = CGk−1B; k ≥ 1 (18b)

Then the transfer function matrix H(z) of (8) possesses the
following expansion:

H(z) = H0 +H1z
−1 + . . .+Hkz

−k + . . . (19)

with
H0 = D (20a)

Hk = CGk−1B; k ≥ 1 (20b)

We shall call a £nite dimensional structure state space rep-
resentation if the number of the state matrices is £nite. This
representation is given by

x(k + 1) =

k
∑

j=0

Ajx(k − j) +Bu(k); k ≤ N (21a)

x(k + 1) =

N
∑

j=0

Ajx(k − j) +Bu(k); k > N (21b)

y(k) = Cx(k) +Du(k) (21c)

N represents the structure dimension. This representation con-
siders only a £nite (short) memory.
De£nition 6. A state space representation with £nite dimen-
sional structure (A0, A1, A2, . . . , AN , B,C,D) where Aj ∈
R
n×n, j = 0, 1, 2, . . . , N , B ∈ R

n×p, C ∈ R
q×n and D ∈

R
q×p is a £nite dimensional structure realization of a given

in£nite dimensional transfer function matrix H(z) ∈ C
q×p if

the terms of the Laurent series of H(z) satis£es the following
relations

H0 = D

Hk = CGk−1B; k = 1, 2, . . . , N

and if for any given output vector with desired £xed value
yf , there exists an initial condition x0 of x(k) and an input
sequence [u(N − 1), u(N − 2), . . . , u(0)] which produce this
output in a £nite time interval [0 N ]. This £nite dimensional
structure realization is minimal if it is reachable and observable.

From the above, we can state the following result.
Theorem 4. Consider the fractional system (8) with the in£nite
dimensional structure [(Aj ; j ≥ 0), B,C,D]. Assume that (8)
is both reachable and observable and let rmin be its Minimal
Structure Realization Index, then the £nite dimensional state
space representation [(A0, A1, . . . , AN ), B,C,D] given by
Equations (21a), (21b) and (21c) where N = rmin − 2 is a
£nite dimensional minimal structure realization of (8).

5. NUMERICAL EXAMPLE

Let us consider the following discrete-time non-commensurate
fractional-order of dimension n = 4, with:
α1 = 0.2 ; α2 = 0.3 α3 = 0.6 α4 = 0.7 and

Ad =







−0.2 0 0 0
0 −0.3 0 0
0 0 −0.6 0
0 0 0 −0.7






;B = [ 1 1 1 1 ]

C = [ 1 1 1 1 ] ;D = 0

For the controllability analysis, we have achieved the determi-
nation of rank(Ck) over a set of N = 20 samples. We have
found that rank(Ck) = 4 at K = 5. We chose the £nal state
equal to:

xf = [ 1 − 0.5 3 0.3 ]

The input sequence that permitted to transfer the state from the
origin x0 = [ 0 0 0 0 ] to xf according to Equation (13)
is :

Uk = [ 1 − 0.5 3 0.3 ]

The objective has been reached with a sequence of input data
greater than the system order, which comes up to be a par-
ticularity of discrete non-commensurate fractional-order sys-
tems. This is not veri£ed in the case of discrete commensurate
fractional-order systems for which the full rank, n, if it can be
reached, cannot be reached beyond a number of steps K = n.
For the observability analysis, we have achieved the determi-
nation of rank(Ok) over a set of N = 20 samples. We have
found that rank(Ok) = 4 at K = 5. We chose the following
input and output sequences over 5 steps:

ŨK = [ 1 − 0.5 3 0.3 ]

YK = [ 1 − 0.5 3 0.3 ] ;
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According to Equation (16), the initial state x0 is detected :
x0 = [ 1 − 0.5 3 0.3 ]

From the above, it follows that the reachability realization
index and the observability index are RRI = K = 5 and
ORI = K = 5, respectively. Hence, the minimal structure
realization index is rmin = K = 5. Then the £nite dimen-
sional structure representation (A0, A1, A2, A3, B,C,D) is a
minimal structure realization of the fractional order system. In
fact, we can reach any £nal state position from the origin and
we can detect any initial state from a given output/input data
by considering only this minimal structure realization instead
of the in£nite dimensional structure (Aj ; j ≥ 0, B,C,D).

6. CONCLUSION

In this paper some new results concerning the analysis of reach-
ability and observability of discrete-time fractional order sys-
tem are given. The concepts of reachability, observability and
structure realization indices are introduced. The preliminary
results developed here can be useful for further investigation
concerning control and £ltering of fractional order discrete-
time systems.
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