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Abstract: This paper studies a design methodology of a distributed cooperative controller
for target-enclosing operations by multiple dynamic agents. To this end, we first present an
on-line path generator design method based on a cyclic pursuit scheme. Then, we provide
the stability condition which the developed path generator should satisfy. This condition
is derived based on a simple stability analysis method for large-scale linear systems with
generalized frequency variable. The formation control scheme combined with a cyclic pursuit
based distributed on-line path generator satisfying the derived stability condition guarantees
the required global convergence property with theoretical rigor. Simulation examples illustrate
its distinctive features and the achievement of a desired pursuit pattern.

1. INTRODUCTION

Formation control which coordinates the motion of rel-
atively simple and inexpensive multiple agents is one of
the essential technologies that enable agents to cover a
larger operational area and achieve complex tasks [Mar-
shall et al., 2004, Olfati-Saber et al., 2007]. Recently, Kim
and Sugie [2007] proposed a distributed on-line path plan-
ning scheme based on a modified cyclic pursuit strategy for
target-enclosing operations by multi-agent systems. De-
spite its simple but particularly effective nature for target
enclosing tasks, it could be a considerable drawback in real
implementations that each agent is assumed to be a point
mass with full actuation. That is, since agent’s dynamics is
not explicitly considered in path planning, their approach
may suffer from the potential problem that each agent
cannot track its designed trajectory precisely. In this case,
the global convergence of multiple agents to the designated
formation may not be achieved. It is therefore required for
the improvement of its real implementability to develop
a simple distributed on-line path planning strategy for
multiple agents which generates the feasible trajectories
under the explicit consideration of agent’s dynamics and
guarantees the global convergence property.

Regarding formation control with dynamic agents, Hara
et al. [2007a] proposed a novel technique to analyze the
characteristics of large-scale linear systems. To this end,
they first introduced the notion of a linear system with
a generalized frequency variable; this system denoted as
G(s) is developed by just replacing transfer function’s
‘s’ variable in the original system L(s) with a rational

function ‘φ(s)’, i.e., G(s) := L(φ(s)). One of the examples
of the systems which may retain generalized frequency
variables is a class of formation control for multi-agent
systems. Then, they developed a simple unified framework
to analyze controllability, observability and stability of the
hierarchical system G(s). Specifically, they presented the
stability condition of G(s) in relation to the pole locations
of L(s) in the complex plane and the regions which
φ(s) maps the right-half complex plane to. These results
probably make a big contribution to the development of
a cyclic pursuit based distributed on-line path planning
scheme which guarantees the global convergence property
with theoretical rigor.

This paper proposes a distributed cooperative control
based on a cyclic pursuit strategy for target-enclosing
operations by multiple agents. Here, it is assumed that n
agents, which have common system dynamics and identical
local controllers, are randomly dispersed in 3D space.
The system of each agent combined with a controller is
denoted by H(s). In this paper, we first present an on-line
path generator design method based on a cyclic pursuit
scheme, which was proposed by Kim and Sugie [2007].
Then, based on the results of Hara et al. [2007a], we derive
a stability condition which the above cyclic pursuit based
on-line path generator should satisfy to guarantee the
formation stability. This is described in relation to the pole
locations of the developed path generator in the complex
plane and the region which φ(s) (:= s/H(s)) maps the
right-half complex plane to. Further, in order to show
clearly the distinctiveness and effectiveness of the proposed
technique, we derive an explicit stability condition for a
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cyclic pursuit based path generator combined with a class
of multi-agent systems; each agent is modeled as a second-
order system and is locally stabilized by the proportional-
integral-derivative (PID) controller. Also, optimization
based approach for the design of an on-line path generator,
which satisfies theoretically the derived stability condition,
is presented.

2. SYSTEM DESCRIPTION AND CONTROL AIM

Consider a group of n agents dispersed in 3D space as
shown in Fig. 1. All agents are ordered from 1 to n;
i.e., P1, P2, · · · , Pn. We define Pi+1 as prey agent of
Pi. Denote the position vectors of the target object and
the agent Pi (i = 1, 2, · · · , n) in the inertial frame by
po(t) ∈ R

3 and pi(t) ∈ R
3, respectively. It is assumed

that an agent Pi can measure the following vectors:

di (:= pi − po), ai (:= pi − pi+1). (1)

Define the target-fixed frame {Γobj} where the origin is
at the center of target object, and Xobj-, Yobj- and Zobj-
axes are parallel to x-, y- and z-axes of the inertial frame,
respectively. Let bi denote the projected vector of di onto
the Xobj-Yobj plane in the target-fixed frame, and define
the following scalars:

θi = ∠(ex,bi), αi = ∠(bi,di), di := |di|, (2)

where ex denotes the unit vector in the Xobj-direction of
{Γobj}, and ∠(x,y) denotes the counter-clockwise angle
from the vector x to the vector y. Then, di can be rep-
resented as di = [di cos θi cos αi, di sin θi cos αi, di sinαi]

T .
Note that since di+1 = di − ai, θi+1 and δθi(:= θi+1 − θi)
can be calculated in a similar way based on (1). Let D
denote the required distance between the target object and
the agents.

Suppose that all agents Pi (i = 1, 2, · · · , n) have common
system dynamics described by a MIMO plant as follows:

yi(s) := [θi(s), di(s), αi(s)]
T

= G(s)ui(s) (3)

where yi(s) is the system output, ui(s) is the control input,
and G(s) := diag(Gθ(s), Gd(s), Gα(s)). Also, assume that
all agents are locally stabilized by an identical diagonal
feedback controller K(s) := diag(Kθ(s),Kd(s), Kα(s)) as
illustrated in Fig. 1. Thus, θ-directional closed-loop trans-
fer functions of all agents are identical and are described
as H(s) = Gθ(s)Kθ(s)/(1 + Gθ(s)Kθ(s)). Note that, for
the sake of page limitation, we mainly consider the θ-
directional control scheme in this paper. For d- and α-
directional control methods, refer to Hara et al. [2007b].

Now, we consider how to form a geometric pattern for
the target-enclosing operation by n agents. The detailed
control objectives are stated as follows:

(A1) n agents enclose the target object at uniformly spaced
angle and maintain this angle,
(A2) Each agent approaches to the target object and
finally keeps the distance D,
(A3) The angle αi which corresponds to the altitude of
each agent converges to the desired one Φ,

where D and Φ are given by the designer.

In the next section, the formation control scheme which
achieves the objectives (A1)-(A3) is developed.

3. FORMATION CONTROL BASED ON A CYCLIC
PURSUIT SCHEME

It is important from the practical viewpoint to achieve
the desired global behavior through a relatively simple
control law using only local information. As one of the
feasible methods, we present a distributed cooperative
control scheme motivated by a cyclic pursuit strategy for
target-enclosing task [Kim and Sugie, 2007], which realizes
the required geometric formation mentioned in Section 2.

3.1 Design of a distributed on-line path generator

It is assumed that n agents are randomly dispersed in 3D
space at the initial time instant as depicted in Fig. 1, where
0 < |δθi| < 2π for i = 1, 2, · · · , n, and

∑n
i=1

δθi = 2π.
Then, the distributed on-line path planning scheme for
the ith agent Pi is described as (see Fig. 1)

θ̇i(t) = k1δθi(t), (4)

ḋi(t) = k2(D − di(t)), (5)

α̇i(t) = k3(Φ − αi(t)), (6)

where k1, k2, and k3 (> 0) are design parameters,
{

δθi(t) := θi+1(t) − θi(t), i = 1, 2, · · · , n − 1

δθn(t) := θ1(t) − θn(t) + 2π, i = n.

It is important to note that the gains k1, k2, and k3 should
satisfy some conditions to guarantee the achievement of
the desired global formation (A1)-(A3), which will be
explained later in detail. Then, the reference position
ri(t) = [r1

i (t), r2
i (t), r3

i (t)]T := [θi(t), di(t), αi(t)]
T for the

ith agent shown in Fig. 1 is designed by (4), (5) and (6).
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Fig. 2. Plot showing the divergence of the relative angles
δθi(rad) (i = 1, 2, · · · , 9)

Note that, in the proposed path planning method, each
agent individually decides its reference position based on
the local information on only one other agent and the
target object, which is probably minimum. Further, it
has additional distinctive features as follows: each agent
individually obtains the required information using the
sensor systems implemented on its body, which means that
no centralized communication mechanism between agents
is introduced. Also, it is a memoryless controller in the
sense that each agent determines the next behavior based
only on the current position of its prey, independently
of the past behavior of its prey. Thus, it is an easily
implementable method from the engineering viewpoint.

Now, the control objectives (A1)-(A3) in Section 2 can be
formulated algebraically as follows:

(A1′) δθi(t) → 2π/n(rad) as t → ∞,

(A2′) di(t) → D as t → ∞,

(A3′) αi(t) → Φ(rad) as t → ∞,

for i = 1, 2, · · · , n. It has been proved in Kim and Sugie
[2007] that path planning schemes (4)-(6) can achieve the
above control objectives (A1′)-(A3′) under the assump-
tion that each agent in the group is supposed to be a
point mass. However, when agent’s dynamics is considered
explicitly, the achievement of the stable global formation
(A1′)-(A3′) may not be guaranteed only by the condition
that k1, k2 and k3 in (4)-(6) are positive real numbers. The
following example illustrates this fact clearly.

Example 1. We here only investigate the θ-directional
behaviors of n = 9 agents for the sake of clarity. The
initial values of θi(t)(rad) are set as θ1 = 0.198, θ2 =
1.269, θ3 = 0.050, θ4 = 1.491, θ5 = 1.175, θ6 =
0.189, θ7 = 2.045, θ8 = 0.793, θ9 = 1.712. Assume
that the common θ-directional agent dynamics is given by
Gθ(s) = 1/s(s− 1) which is stabilized by a PID controller
Kθ(s) = 12+5/s+3s. The reference position r1

i (t) (= θi(t))
for agent i is designed based on (4) with k1 = 0.85. The
simulation is performed for t = 5[sec]. The time responses
of δθi(t) (i = 1, 2, · · · , 9) are illustrated in Fig. 2, which
clearly shows that any δθi does not converge to 2π/9(rad).
It demonstrates the formation instability.

One can see from the above observation that three gains
k1, k2 and k3 should be set carefully, in order to achieve
the global formation (A1′)-(A3′). Hence, in the following
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Fig. 3. Block diagram of the θ-directional formation con-
trolled system

subsection, we will provide a simple and unified theoretical
framework showing how to determine k1, k2 and k3 in
relation to agent’s dynamics H(s).

3.2 Formation stability analysis

In order to analyze the formation stability of multi-agent
systems considered in Section 3.1, we rewrite (4) in the
following vector form:

θ̇(t) = Aθθ(t) + Bθ,
Aθ := circ(−k1, k1, 0, 0, · · · , 0) ∈ R

n×n,
Bθ := [0, 0, · · · , 0, 2k1π]T ∈ R

n,
(7)

where θ := [θ1, θ2, · · · , θn]T ∈ R
n and ‘circ’ denotes the

circulant matrix. Thus, the overall θ-directional control
scheme can be depicted as in Fig. 3, where Ĥ(s) :=
(1/s)H(s) and r1 := [r1

1, r
1
2, · · · , r1

n]T ∈ R
n. Here, it is

assumed that Ĥ(s) is strictly proper. In the same manner,
(5) and (6) can be rewritten, respectively, as

ḋ(t) = Add(t) + Bd, (8)

α̇(t) = Aαα(t) + Bα, (9)

with d := [d1, d2, · · · , dn]T ∈ R
n, α := [α1, α2, · · · , αn]T

∈ R
n, Ad := −diag(k2, k2, · · · , k2) ∈ R

n×n, Bd :=
(k2D)1n ∈ R

n, Aα := −diag(k3, k3, · · · , k3) ∈ R
n×n,

Bα := (k3Φ)1n ∈ R
n where 1n := [1, 1, · · · , 1]T ∈ R

n.
The block diagrams of the d- and α-directional formation
controlled systems have the same form with that in Fig. 3.
Thus, for the sake of page limitation, we mainly consider
the θ-directional control strategy.

In Fig. 3, the transfer function Gθ(s) from c to θ is obtained
as

Gθ(s) =

(

1

Ĥ(s)
In −Aθ

)

−1

Bθ = Fu

([

Aθ Bθ

In 0

]

, Ĥ(s)In

)

(10)
where Fu denotes the upper linear fractional transforma-
tion (LFT). By considering the transfer function

Lθ(s) = (sIn − Aθ)
−1Bθ (11)

which is also written as Lθ(s) ∼ (Aθ, Bθ, In, 0), it follows
from (10) that

Gθ(s) = Lθ(φ(s)), φ(s) := 1/Ĥ(s). (12)

Note that the variable ‘s’ in (11) characterizes the fre-
quency properties of the transfer function Lθ(s) and that
Gθ(s) is generated by just replacing ‘s’ by ‘φ(s)’ in Lθ(s).
Hence, we say that the transformed transfer function
Gθ(s) = Lθ(φ(s)) of Lθ(s) has a generalized frequency
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variable φ(s) (see Hara et al. [2007a] for details). The
transfer functions Gd(s), Ld(s), Gα(s) and Lα(s) can be
derived in a similar manner.

Next, in order to derive a stability condition for the system
Gθ(s) in (10), we first describe a key result on stability
analysis of Gθ(s) developed by Hara et al. [2007a]. In their
paper, instead of Nyquist’s graphical stability test given
in Fax and Murray [2004], the domain in terms of the
poles of the path generator’s dynamics Lθ(s) such that
Gθ(s) = Lθ(φ(s)) is stable is derived. Before we proceed,
the notations are introduced: the domains Ω+ and Ωc

+ in
the complex plane are defined as

Ω+ := φ(C+), Ωc
+ := C\Ω+. (13)

Since Ω+ = {λ ∈ C : ∃s ∈ C+ such that φ(s) = λ}, it
follows that Ωc

+ can be alternatively expressed as Ωc
+ =

{λ ∈ C : ∀s ∈ C+, φ(s) 6= λ}. Then, the following lemma
describes a sufficient condition for the existence of Aθ (Ad,
Aα) so that the hierarchical system Gθ(s) (Gd(s), Gα(s)) is

stable for a given Ĥ(s).

Lemma 2. Suppose that Ĥ(s) is stable or that Ĥ(s) does
not possess non-minimum phase zeros. Then, there exists
Aθ (Ad, Aα) such that Gθ(s) = Lθ(φ(s)) (Gd(s) =
Ld(φ(s)), Gα(s) = Lα(φ(s))) is stable.

Then, the key fact which describes the conditions for
controllability, observability and stability of Gθ(s), Gd(s)
and Gα(s) are provided as follows:

Proposition 3. Consider the linear systems Gθ(s) in (10)
and Lθ(s) in (11), and the generalized frequency variable

φ(s) in (12). Assume that Ĥ(s) is strictly proper. Then,
Gθ(s) (Gd(s), Gα(s)) is controllable and observable if and

only if Lθ(s) (Ld(s), Lα(s)) and Ĥ(s) are both controllable
and observable. Further, Gθ(s) = Lθ(φ(s)) (Gd(s) =
Ld(φ(s)), Gα(s) = Lα(φ(s))) is stable if and only if all
the poles of Lθ(s) (Ld, Lα) belong to Ωc

+ in (13).

The proof can be found in Hara et al. [2007a]. The
above proposition means that the stability of Gθ(s) can
be judged by just looking at the locations of eigenvalues
of Aθ in relation to a domain Ωc

+ which is determined

by using Ĥ(s). It is important to note from Lemma 2

and Proposition 3 that for the case where Ĥ(s) does not
possess non-minimum phase zeros, there exists a domain
Ωc

+ containing the origin, and the eigenvalues of Aθ (Ad

and Aα) can be placed in this domain.

Finally, we present the following theorem which says that
the global formation stability (i.e., (A1′), (A2′) and (A3′))
is guaranteed as long as nonzero n − 1 poles of Lθ(s) and
all the poles of Ld(s) and Lα(s) belong to a domain Ωc

+.

Theorem 4. Consider the system of n agents. It is assumed
that all agents are randomly dispersed in 3D space at the
initial time instant as shown in Fig. 1, where 0 < |δθi| < 2π
for i = 1, 2, · · · , n, and

∑n
i=1

δθi = 2π. Also, suppose that
(i) n−1 poles of Lθ(s) (except for one zero pole) belong to
Ωc

+, (ii) all the poles of Ld(s) and Lα(s) belong to Ωc
+; i.e.,

Gθ(s), Gd(s) and Gα(s) are stable. Then, the path planning
schemes (4)-(6) achieve (A1′)-(A3′) simultaneously.

This fact can be easily proved based on the result of
Kim and Sugie [2007]. The above theorem implies how

-3 -2 -1 0

Im

Re

-1

1

C    = -2.9235

φ(jω)

: Eigenvalues of Aθ

1
Re

Ω+
c

Fig. 4. The domain Ωc
+ and the eigenvalues of Aθ

to determine k1, k2 and k3 of (4)-(6) in order to guarantee
that all agents assemble into the desired formation around
the target object in 3D space. For example, consider the
multi-agent dynamical system given in Example 1, where
k1 was set as k1 = 0.85. In that case, the pole locations
of Lθ(s) and the domain Ωc

+ are as illustrated in Fig.
4. It verifies that two poles of Lθ(s) do not belong to
Ωc

+. Consequently, one reaches the conclusion that (A1′)
cannot be achieved, which is evident from Fig. 2.

4. TARGET-ENCLOSING FORMATION CONTROL
FOR A CLASS OF MULTI-AGENT SYSTEMS

In this section, we provide a constructive methodology
that describes the domain Ωc

+ in the complex plane when

the transfer function Ĥ(s) is specified. Further, we present
how to design k1, k2 and k3 in (4)-(6) guaranteeing that
all nonzero poles of Lθ(s) and all the poles of Ld(s) and
Lα(s) belong to Ωc

+.

4.1 Multi-agent systems stabilized by PID controllers

We take a particular rational function for Ĥ(s) to illustrate
the procedure to construct Ωc

+ in the complex plane.
Suppose that the generalized frequency variable φ(s) is
defined as

φ(s) =
1

Ĥ(s)
=

1

ζkpt2
i

s4

(

td

ti
+ ξ

ζkpti

)

s3 + s2 + s

td

ti
s2 + s + 1

=:
bs4 + (a + c)s3 + s2 + s

as2 + s + 1
,

(14)

which corresponds to the case when the θ-directional agent
dynamics Gθ(s) = ζ/(s(s + ξ)), ζ > 0, and the PID
controller Kθ(s) = kp(1 + 1/tis + tds) where kp, ti and td
(> 0) are proportional gain, integral and derivative times,
respectively (see Hara et al. [2007b] for details). Suppose

that H(s)(= sĤ(s)) is stable so that a + c > b. It is easily

verified from (14) that Ĥ(s) has no non-minimum phase
zeros.

Then, we characterize the domains Ω+ and Ωc
+ in the

complex plane. These regions are partitioned by the image
of φ(jω) in (14) where ω ∈ R. In order to illustrate Ωc

+

clearly, we first define the real and imaginary parts of
φ(jω) in (14), f(ω) := Re[φ(jω)] and g(ω) := Im[φ(jω)],
as follows:

f(ω) =
ω4(−abω2 + b − c)

(1 − aω2)2 + ω2
, (15)

g(ω) =
(a2 + ac − b)ω5 + (1 − 2a − c)ω3 + ω

(1 − aω2)2 + ω2
. (16)
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The intersecting points of φ(jω) and the imaginary axis
can be easily obtained by finding ωI which satisfies
f(ωI) = 0 and then calculating g(ωI). Similarly, the inter-
secting points of φ(jω) and the real axis can be determined
from f(ωR) where ωR satisfies g(ωR) = 0. In this case, the
image of φ(jω) yields six types of diagrams as illustrated
in Fig. 5, where R+ denotes the positive real number.
If b > c which is equivalent to ξ < (1/ti), the image of
φ(jω) corresponds to Case A-1, A-2 or A-3; otherwise, it
corresponds to Case B-1, B-2 or B-3. In this figure, C1

Im

and C2
Im are determined as C1,2

Im
= g(ω1,2

I ), where

ω1,2
I = ± [(b − c)/ab]

1/2
∈ R.

On the other hand, C1
Re and C2

Re are determined as C1,2
Re

=

f(ω1,2
R ), where

(ω1,2
R )2 =

(2a + c − 1) ± [c2 − 2(2a − 2b + c) + 1]1/2

2(a2 + ac − b)
∈ R.

Refer to Hara et al. [2007b] for the case of PD controller
K(s) = kp(1 + tds).

In the following subsection, we present one of the methods
to determine k1, k2 and k3 in (4)-(6) which guarantees that
all nonzero poles of Lθ(s) and all the poles of Ld(s) and
Lα(s) belong to Ωc

+ in Fig. 5.

4.2 Determination of k1, k2 and k3

First, it is important to note that the eigenavlues of Aθ

can be written in the following complex form, since it is a
circulant matrix (see Kim and Sugie [2007]):

λi = k1

[

cos

(

2π(i − 1)

n

)

−1

]

+ jk1 sin

(

2π(i − 1)

n

)

.

Since k1 > 0, Aθ has exactly one zero eigenvalue, λ1,
while the remaining n − 1 eigenvalues λi, i = 2, 3, · · · , n,
lie strictly in the left-half complex plane; i.e., these are
located on the circumference of radius k1 whose center is
at (−k1, 0) as illustrated in Fig. 6.

Im

Re

φ(jω)

Ω+
c

f (ω)

g(ω)

circle: Ck1

k1

: Eigenvalues of Aθ

Fig. 6. The eigenvalues λi (i = 1, 2, · · · , n) of Aθ and the
domain Ωc

+

Therefore, all nonzero eigenvalues λi (i = 1, 2, · · · , n) of Aθ

are placed in the domain Ωc
+, if the design parameter k1

satisfies the condition (f(ω)+k1)
2+g2(ω) ≥ k2

1 for ∀ω ∈ R.
In other words, the maximum of k1, which guarantees that
a circle Ck1

in Fig. 6 exists inside of Ωc
+, can be found by

solving the optimization problem:

[Constrained optimization problem]

For f(ω) in (15) and g(ω) in (16), solve

k1,max := arg max
k1,ω

k1 (17)

subject to k1 > 0 and

(f(ω) + k1)
2 + g2(ω) ≥ k2

1, (18)

where the range of ω ∈ R is set as follows: (i) ω > 0 for
Case A-1, (ii) 0 < ω ≤ ω1

R (ω1
R > 0) for Cases A-2 and A-

3, (iii) ω ≥ ω1
I for Case B-1, (iv) ω1

I ≤ ω ≤ ω1
R (ω1

R > 0)
for Cases B-2 and B-3.

Hence, if k1 in (4) is set as 0 < k1 < k1,max, then all
nonzero poles of Lθ(s) belong to Ωc

+ illustrated in Fig. 5.

Finally, we consider the conditions for k2 and k3 in (5)-
(6). Noting that the eigenvalues of Ad and Aα in (8)-(9)
are, respectively, −k2(< 0) and −k3(< 0), the following
conditions are easily derived from Fig. 5:
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Fig. 7. Simulation results of the proposed distributed formation control scheme

(1) Cases A-1 & B-1: k2 and k3 can take any positive real
number, since φ(jω) does not intersect with the real
axis except at the origin.

(2) Cases A-2 & B-2:

{

CRe < −k2 < 0,

CRe < −k3 < 0.

(3) Cases A-3 & B-3:

{

Cmax
Re < −k2 < 0 or − k2 < Cmin

Re ,

Cmax
Re < −k3 < 0 or − k3 < Cmin

Re .

4.3 Illustrative example

To illustrate the dynamic performance of the proposed
distributed cooperative control scheme, a simulation is
performed. Here, n = 9 agents are randomly dispersed
in 3D space at first and finally should achieve the required
formation stated in Section 2. Specifically, the desired
formation is chosen to be given by δθi = 2π/9(rad)
(i = 1, 2, · · · , 9), D = 5 and Φ = 0(rad). The initial
values of αi(t)(rad) and di(t) are α1 = α5 = 1.484, α2 =
α6 = 1.222, α3 = 0.596, α4 = 1.047, α7 = 0.698, α8 =
1.396, α9 = 0.960, d1 = d6 = 30, d2 = d7 = 25, d3 =
13, d4 = d8 = 20, d5 = d9 = 15. The initial values of
θi(t) are identical to those of Example 1. Letting G(s) =
1/s(s − 1) and K(s) = 12 + 5/s + 3s, the image of φ(jω)
corresponds to Case B-2 in Fig. 5. Consequently, we set
0 < k1 = 0.5 < k1,max = 0.7856, 0 < k2 = 0.3 <
k2,max = 2.9235 and 0 < k3 = 0.3 < k3,max = 2.9235.
Here, k1,max is obtained through the constrained particle
swarm optimization method proposed by Maruta et al.
[2008]. Nine eigenvalues of Aθ belong to the domain Ωc

+,
which is confirmed in Fig. 7(a). The simulation results are
shown in Figs. 7(b)-7(d). First, Fig. 7(b) illustrates the
resulting position trajectories of a group of nine agents
during the simulation: the agents assemble into the desired
configuration. Fig. 7(c) depicts the trajectories of all
agents projected onto x-y plane. They show that all agents
converge to a circular formation around the target object
and maintain the form of an equilateral and equiangular
polygon. The time responses of δθi are plotted in Fig.
7(d), where δθi finally converges to 2π/9(rad). It clearly
demonstrates that the control goals (A1′)-(A3′) mentioned
in Section 3 are achieved.

5. CONCLUSION

In this paper, we proposed a design methodology of a
distributed cooperative controller for target-enclosing op-
erations by multiple dynamic agents. To this end, we first

presented an on-line path generator design method based
on a cyclic pursuit scheme. Then, we provided the stability
condition which the developed path generator should sat-
isfy. This condition was derived based on a considerably
simple unified stability analysis method for hierarchical
large-scale linear systems with a generalized frequency
variable. The formation control scheme combined with
a cyclic pursuit based distributed on-line path generator
satisfying the derived stability condition guarantees the
required global formation stability with theoretical rigor.
Further, in order to show clearly its distinctive features, we
addressed how to develop a cyclic pursuit based formation
control strategy for a class of multi-agent systems where
each agent is modeled as a second-order system and is
locally stabilized by a PID controller. Its effectiveness was
verified through a simulation example.
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