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Abstract: This paper presents novel results related to the identifiability of EIV dynamic
systems based on exploiting properties of non-stationary data. We analyze single-input single-
output systems using second order properties. Our results show that, it is possible to establish
identifiability of EIV systems under mild conditions when the data is non-stationary.

1. INTRODUCTION

Error in variables (EIV) systems or measurement error
models are systems where the input and output measure-
ments are contaminated with noise [Cheng and Van Ness,
1999, Fuller, 1987]. A recent survey of this area is given
in Söderström [2007]. The two main streams of research in
this area are:

Identifiability: In many cases the system (or the param-
eters that define it) cannot be determined uniquely even
when the probability density function for the signals is
exactly known. In this case we say that the system is not
identifiable. In the System Identification literature there
exist many results which establish conditions for identifia-
bility. For example, it is well known that systems operating
under feedback can be made identifiable by using switching
controllers (see e.g. Ljung et al. [1974], Söderström et al.
[1976], Sin and Goodwin [1980]). In the case of EIV sys-
tems, it is possible to establish identifiability results from
high order moments (see Reiersøl [1950], Anderson and
Deistler [1984], Deistler [1986]). Recent research in this
area has focused on the problem of retrieving dynamic
system models from given second order properties of the
input and output signals [Maravall, 1979, Söderström,
1980, Solo, 1986, Anderson et al., 1987, Nowak, 1992,
Agüero and Goodwin, 2008].

Estimation algorithms: Once identifiability is estab-
lished for a particular EIV application, estimation algo-
rithms can be developed. Research in this area has fo-
cused on bias compensation, Frisch schemes and related
algorithms [Beghelli et al., 1990, Zheng, 2002, Söderström
et al., 2002, Ekman et al., 2006, Mahata, 2007]. Recently,
Maximum Likelihood approaches have also been devel-
oped in both time and frequency domains [Pintelon and
Schoukens, 2007, Diversi and Soverini, 2007]. One of the
main difficulties in this area is that it is difficult to find the
system structure and consequently it is usually assumed to
be known.

It is interesting to note that, in general, identifiability
is established by developing a construction procedure to
retrieve the system from signal spectra. In this case, it
is also possible to develop estimation algorithms by using
spectra estimates obtained from the data instead of the
true signal spectra.

In this paper we analyze the Identifiability of EIV dynamic
systems when the data is non-stationary. The use of non-
stationary data to develop an estimation algorithm for EIV
systems has a long history going back to the work of Wald
[1940] for the static case. Recently an estimation algorithm
has been developed in [Markovsky et al., 2006] for a
particular class of dynamic EIV systems. In [Markovsky
et al., 2006] it is assumed that i) the input and output
noise are white, and ii) that the noise free input, uo(t),
exhibits two different types of behavior. This topic is also
briefly discussed in [Söderström, 2007].

In the current paper, we will analyze the identifiability of
a general class of EIV dynamic systems when the data
is non-stationary. In particular, we assume that the non-
stationary signals are due to changes in the system struc-
ture. This paper has been motivated by an application to
Transient Electromagnetic Mineral Exploration explained
in detail in a companion paper [Lau et al., 2008].

The layout of the remainder of the paper is as follows: In
Section 2 we describe the system of interest. In Section 3
we list assumptions. In Section 4 Identifiability in the case
of stationary data is reviewed. Identifiability in the case
of non-stationary data is presented in Section 5. Finally
some comments and conclusions are presented in Section
6.

2. SYSTEM DESCRIPTION

2.1 Errors in variables

The type of system considered is shown in Figure 1, and
is of the form

u(t) = u0(t) + η1(t), y(t) = y0(t) + η2(t)
where Go(z) is a linear dynamic system, u(t) and y(t)
are the measured input and output respectively, η1(t) and
η2(t) are the input and output noise.

2.2 Input-Output spectra

We will utilize the joint input-output spectrum:

Φ(ejω) =
[

Φy(ejω) Φyu(ejω)
Φyu(e−jω) Φu(ejω)

]
(1)
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Fig. 1. Errors in variables system.

where
Φy(ejω) =Go(ejω)Φ0(ejω)Go(e−jω) + Φ2(ejω) (2)
Φyu(ejω) = Go(ejω)Φ0(ejω) (3)
Φu(ejω) = Φ0(ejω) + Φ1(ejω) (4)

and Φ0(ejω), Φ1(ejω), and Φ2(ejω) are the spectrum of
u0(t), η1(t), and η2(t) respectively.

We can then state the identifiability problem from second
order properties as being equivalent to retrieving the
unknown system, Go(ejω) from the input-output signal
spectrum, Φ(ejω). The latter quantity is assumed to be
available, and it is sometimes called the standard data
[Anderson, 1985].

Note that a rational spectrum Φ(ejω) is usually written
as a function of a complex variable z, i.e. Φ(ejω) =
Φ(z)|z=ejω . In addition, using the theorem of analytic
continuation (see e.g. [Churchill and Brown, 1990, page
323]) we have that equations (2) to (4) hold for z = ejω,
if and only if, they hold for any z in the complex plane 1 .
Thus, in the sequel we indistinguishable use equations (2)
to (4) written in terms of ejω, or in terms of the complex
variable 2 z.

2.3 Non-stationary data

Most of the results in System Identification have been
developed under the assumption that the data is station-
ary. However, this assumption is always considered as an
approximation [Priestley, 1981]. Indeed, there has been
substantial interest in non-stationary systems in the last
twenty years (see e.g. Maddala and Kim [1998]).

Non-stationary behavior can be due to an unstable system
generating the data or to changes in the model struc-
ture. Recent research on the latter case has focused on
Markov Switching Models where the structure changes in
an abrupt manner. The main difficulty here is that in
some applications the system structure usually changes
gradually (see e.g. Giordani et al. [2007] and the references
therein).

In a recent paper regarding EIV dynamic systems,
Markovsky et al. [2006] have assumed that the system
input, u0(t), is non-stationary in the sense that it changes
its behavior. An algorithm to cluster the data is used, and
1 Note that the spectrum is analytic in a region excluding the poles.
2 When we write |L(z)|2 we mean |L(z)|2 = L(z)L(z−1) 6=
L(z)L(z∗) (where ∗ denotes complex-conjugate). However, when
|z| = 1 both expressions are the same.

then an estimation algorithm is proposed. In Söderström
[2007] it was pointed out that when it is possible to cluster
the data from these two different behavior, the problem
can be understood as data coming from two different
experiments.

Here, we assume that the different signals in the EIV
system are generated as follows:

y0(t) = Go(z)u0(t), u0(t) = L0(z)ū0(t)
η1(t) = L1(z)η̄1(t), η2(t) = L2(z)η̄2(t)

Here, the complex variable z should be understood as
the forward shift operator. Go(z), L0(z), L1(z), L2(z) are
linear transfer functions.

We analyze an EIV dynamic system where the data shows
two different behaviors. These two different behaviors
originate from changes in (one or more of) the transfer
functions which generate data. We call these behaviors
scenario {i}, i = 1, 2 and write:

y{i}(t) = Go{i}uo{i}(t) + η2{i}(t)
u{i}(t) = uo{i}(t) + η1{i}(t) (5)

where the index {i} represents the corresponding scenario
with a different system structure generating the data.

We also assume that the data can be clustered to separate
the data coming from these two scenarios.

In order to simplify the notation, in the sequel we omit
the variable t in the equations.

In [Priestley, 1981, chapter 11] it was pointed out that
whenever it is possible to cluster the data (to know
when the system commutes from one model to the other)
the signals can be considered as stationary with two
different covariance functions. In the current paper we
follow this approach. Indeed, in Section 5 we analyze the
identifiability of EIV dynamic system with non-stationary
data by using a similar approach to the one developed in
[Agüero and Goodwin, 2008] for the stationary case.

Cases of interest: It can be seen that there are dif-
ferent possibilities for the change in the system structure.
In fact here are 4 variables that can change: Go, Φ0, Φ1,
Φ2. Thus, the non-stationary behavior can be explained by
24 cases. Each case imposes additional constraints, which
might lead to identifiability of the process.

3. ASSUMPTIONS

It is well known that EIV dynamic systems are identifiable
from second order properties when a-priori knowledge is
used (see e.g [Agüero and Goodwin, 2008]). This a-priori
knowledge is usually stated as extra assumptions.

We next introduce the following mild assumptions (These
assumptions were also used in the analysis in Agüero and
Goodwin [2008]).
Assumption 1. Go(z), L0(z), L1(z) and L2(z) are rational
of finite order.
Assumption 2. Go(z) contains no pole that is also a pole
of Go(z−1).
Assumption 3. Go(z) contains no zero that is also a zero
of Go(z−1).
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Assumption 4. There is no zero of Go(z) outside the unit
circle that is also a pole of L0(z−1). There is no pole of
Go(z) inside the unit circle that is a zero of L0(z).
Remark 5. Note that assumptions 2, 3 and 4 rule out
various singular cases. Notice also that assumption 2 is
satisfied when the process is either strictly causal or
strictly anti-causal. OOO

We then, define the following class of systems
S̄ = {G(z) ∈ G : G(z) satisfies assumptions 1 to 3} (6)

where G is the set of linear systems defined as:

G = {L(z) : L(z) =
1 + b1z

−1 + · · ·+ bnz−n

1 + a1z−1 + · · ·+ amz−m
, z ∈ A ⊂ C}

(7)
where {ai} ∈ R , {bi} ∈ R , and A includes the unit
circle so that the spectra are well defined. We define these
transfer functions using the two-sided z-transform in order
to deal with anti-causal systems Go(z) [Oppenheim and
Schafer, 1989]. Specifically poles outside the unit circle are
associated with anti-causal responses.

We say that a transfer function G(z) ∈ G does not have
“symmetric” poles or zeros if G(z) ∈ S̄.

We next list assumptions which will be used in the analysis
of identifiability of EIV systems in Section 5.
Assumption 6. The system belongs to S̄ for i = 1, 2.
Assumption 7. The process is the same for both scenarios:
Go{1} = Go{2} = Go.
Assumption 8. The input noise spectrum is the same for
both scenarios: Φ1{1} = Φ1{2} = Φ1.
Assumption 9. The output noise spectrum is the same for
both scenarios: Φ2{1} = Φ2{2} = Φ2.
Assumption 10. The input ūo has the same second order
properties for every experiment: Φ0{1} = Φ0{2} = Φ0.

The assumptions listed above impose constraints on the
problem in order to make the EIV system identifiable.

Notice that, in our analysis, we do not use all the assump-
tions at the same time.

4. IDENTIFIABILITY IN THE STATIONARY CASE

To set the scene for the non-stationary case, we first review
identifiability of EIV system in the stationary case.

Identifiability of stationary EIV dynamic systems has been
studied in [Anderson and Deistler, 1984, Anderson, 1985,
Deistler, 1986] under very general conditions called the
standing assumptions (i.e. signals with bounded spectra,
stable and causal transfer functions, and independence of
the input, and noise signals). Related results also appear
in [Agüero and Goodwin, 2008].

The results for Identifiability from second order properties
for EIV dynamic system can be summarized as follows

4.1 Bounds for Go

In [Anderson and Deistler, 1984, Anderson, 1985, Deistler,
1986] it was found that for a given spectra ( the standard
data) Go(ejω) lies between the following bounds:

|Gyu(ejω)| ≤ |Go(ejω)| ≤ |Guy(ejω)| (8)

where

Gyu(ejω) =
Φyu(ejω)
Φu(ejω)

, Guy(ejω) =
Φy(ejω)
Φuy(ejω)

(9)

If an estimate Ĝ(ejω), of Go(ejω) satisfies (8), then
there exist corresponding values of Φ0(ejω), Φ1(ejω), and
Φ2(ejω) such that equations (2)-(4) also hold.

The phase of Go(ejω) can be obtained from (3) since
Φo(ejω) is a real function of ω. It is also assumed that
Φo(ejω) = 0 only on a set of measure zero, and the phase
of Go(ejω) can thus be obtained as a limit in this case.
Assuming that the system is causal, it is possible to obtain
the number of non-minimum phase zeros by using the
principle of the argument (see e.g. Greenleaf [1972]).

Clearly, the bounds for Go given in (8) also define bounds
for Φ0, Φ1 and Φ2. These bounds are given by:

|Φyu(ejω)|2

Φy(ejω)
≤ Φ0(ejω) ≤ Φu(ejω) (10)

0 ≤ Φ1(ejω) ≤ Φu −
|Φyu|2

Φy(ejω)
(11)

0 ≤ Φ2(ejω) ≤ Φy −
|Φyu|2

Φu(ejω)
(12)

4.2 Identifiability up to a frequency independent parameter

In [Anderson and Deistler, 1984, Anderson, 1985, Deistler,
1986] it was established that: If the system is causal
and minimum phase, then the magnitude of Go(ejω) can
be retrieved from its phase up to a scalar frequency
independent gain.

Recently, in [Agüero and Goodwin, 2008] the following
related result was presented:
Theorem 11. Subject to assumptions 1 to 4, the equiva-
lence class of compatible models is given by

P =
{

Ĝ(z) : Ĝ(z) =
Φyu(z)

σ̂2
0 |L0(z)|2

}
(13)

where σ̂2
0 is any positive real number satisfying

λmin ≤ σ̂2
0 ≤ λmax (14)

where

λmin = max
w

|Φyu(ejω)|2

Φy(ejω)|L0(ejω)|2
, λmax = min

w

Φu(ejω)
|L0(ejω)|2

and where L0(z) is uniquely determined by taking those
poles and zeros from Φyu(z) which are symmetrically
placed with respect to the unit circle, i.e. were (z − c)
and (1− zc) are factors.

From this result we obtain tighter bounds (Gmin and
Gmax) for Go than the ones obtained earlier (see Figure
2).

4.3 Complete identifiability

From the result presented in Theorem 11, it is clear
that the only impediment to complete identifiability 3 is
3 Here and in the sequel, we use the term “complete identifiability”
to the case when the system is identifiable, i.e. when it is possible
to retrieve the phase and gain of Go from second order properties of
the input and output signals.
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Fig. 2. Bounds for |Go(ejω)|.

the knowledge of the gain of Go. If extra information is
available, then it may be possible to obtain σ2

0 . These
results have been summarized in [Agüero and Goodwin,
2008], where extra knowledge regarding polynomial order,
and existence of different poles in some of the transfer
functions was used. These results have also been extended
for a class of multivariable systems. We refer to [Agüero
and Goodwin, 2008] for details.

In Section 5 we will see that the above results above also
aid the understanding of identifiability results for EIV
systems in the case of non-stationary data.

5. IDENTIFIABILITY FOR NON-STATIONARY
PROCESSES

With two scenarios, equations (2) to (4) give a total of 6
equations coming from the standard data (input, output,
and cross spectrum for both scenarios) and 8 unknowns
(Go, Φ0, Φ1, Φ2 for both scenarios). By assuming that
some of the transfer functions are the same in both
scenarios we add constraints which allow identifiability in
some cases as shown below.

5.1 Bounds for Go

Theorem 12. Under the standing assumptions we have
that

(i) If assumption 7 holds (Go{1} = Go{2}), then Go is
bounded as follows:

max
i=1,2

{|Gyu{i}} ≤ |Go| ≤ min
i=1,2

{|Guy{i}|}

where Gyu and Guy are defined in (9).
(ii) If assumption 8 holds (Φ1{1} = Φ1{2}) then,

Φyu{i}
Φmax

0

≤ Go{i} ≤
Φyu{i}
Φmin

0

(15)

where Φmin
0 and Φmax

0 are defined as:
Φmax

0 {i} = Φu{i}

Φmin
0 {i} = Φu{i} − min

i=1,2
{Φu{i} −

|Φyu{i}|2

Φy{i}
}

(iii) If assumption 9 holds (Φ2{1} = Φ2{2}) then, Go is
bounded as in (15) where

Φmax
0 {i} =

|Φyu{i}|2

Φy{i} −mini=1,2{Φy{i} − |Φyu{i}|2
Φu{i} }

Φmin
0 {i} =

|Φyu{i}|2

Φu{i}
(iv) If assumption 10 holds (Φ0{1} = Φ0{2}) then, Go is

bounded as in (15) where
Φmax

0 = min
i=1,2

{Φu{i}}

Φmin
0 = max

i=1,2
{ |Φyu{i}|2

Φy{i}
}

Proof. Immediate from the inequalities in equations (8),
(10), (11), and (12) 2.

We next analyze the case when we add two additional
constraints and obtain complete identifiability.

5.2 Complete identifiability

The following Theorem establishes complete identifiability
under different conditions.
Theorem 13. The EIV system described in (5) is identifi-
able if any of the following situations holds:

(i) Assumptions 7 and 8 hold, and Φ0{1} 6= Φ0{2} (a.e.),
(ii) Assumptions 7 and 9 hold, and Φ0{1} 6= Φ0{2} (a.e.),
(iii) Assumptions 9 and 10 hold, and Go{1} 6= Go{2}

(a.e.),
(iv) Assumptions 8, 9 hold, and Φ̃uΦ̃y < 0, ∀ω, where

Φ̃u = Φu{1} − Φu{2} and Φ̃y = Φy{1} − Φy{2}.
In addition we have that

(v) if assumptions 8, 9 hold and Φ̃uΦ̃y < 0, ∀ω ∈ Ω ⊂
(−π, π] then there is no a unique model. However,
using the bounds in Theorem 12 it is possible to
isolate a unique system.

Proof.

Our strategy will be to retrieve Go{i} from the standard
data from both scenarios. Once Go{i} has been obtained
Φ0{i}, Φ1{i}, Φ2{i}, i = 1, 2 can be retrieved as follows:

Φ̂0{i} =
Φyu{i}
Go{1}

, Φ̂1{i} = Φu{i} − Φ̂0{i},

Φ̂2{i} = Φy{i} − |Ĝo{i}|2Φ̂0{i}

(i) In this case we have that Go and Φ1 are the same for
both scenarios. Then the input-output and input spectrum
for the two scenarios are given by:

Φyu{i} = GoΦ0{i}, Φu{i} = Φ0{i}+ Φ1

Thus, we have that Go can be retrieved as follows

Ĝo =
Φyu{1} − Φyu{2}
Φu{1} − Φu{2}

(16)

Notice that we need Φu{1} 6= Φu{2} (or equivalently
Φ0{1} 6= Φ0{2}) almost everywhere (a.e.).

(ii) In this case we have that Go and Φ2 are the same for
both scenarios. Then the cross (input, output) and output
spectrum for the two scenarios are given by:
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Fig. 3. Plots of F1 and F2.

Φy{i} = |Go|2Φ0{i}+ Φ2, Φyu{i} = GoΦ0{i}
Thus, Go can be retrieved as follows:

Go =
Φy{1} − Φy{2}

Φyu{1}∗ − Φyu{2}∗
(17)

Notice that we need Φyu{1} 6= Φyu{2} (or equivalently
Φ0{1} 6= Φ0{2}) a.e.

(iii) In this case we have that Φ2 and Φ0 are the same for
both scenarios. Thus, we have that the spectra are given
by:

Φyu{1} = Go{1}Φ0, Φyu{2} = Go{2}Φ0

Φ̃y = Φy{1} − Φy{2} = |Go{1}|2Φ0 − |Go{2}|2Φ0

We have

Go{1} = ρGo{2}, ρ =
Φyu{1}
Φyu{2}

Φ̃y

Φyu{1}
=
|Go{1}|2 − |Go{2}|2

Go{1}
= Go{2}∗

|ρ|2 − 1
ρ

Thus, we have that Go{1} and Go{2} can be obtained via:

Go{2} =
Φ̃y

Φyu{1}∗
ρ∗

|ρ|2 − 1
Go{1} = ρGo{2}

In this case we need that |ρ| 6= 1 almost everywhere, which
is satisfied whenever |Go{1}| 6= |Go{2}|.
(iv) In this case we have that Φ1 and Φ2 are the same
for both scenarios. To treat this case we will use a slightly
different argument.

Φ̃u = Φ0{1} − Φ0{2}, Φ̃y =
|Φyu{1}|2

Φ0{1}
− |Φyu{2}|2

Φ0{2}
We have that Φ0{1} and Φ0{2} are in the following graphs:

F1 : Φ0{1} = Φ0{2}+ δ (18)

F2 : Φ0{1} =
αΦ0{2}

γΦ0{2}+ β
(19)

Combining the above equations we obtain the following
second order equation for Φ0{1}:

γΦ0{1}2 + ((β − α)− δγ)Φ0{1}+ δα = 0 (20)

where
α = |Φyu{1}|2, β = |Φyu{2}|2, γ = Φ̃y, δ = Φ̃u

Notice that α, β, γ, δ can be calculated with the available
data.

We then have that there exist a solution 4 iff
∆ ≥ 0 ⇔ [(β − α)− δγ]2 ≥ 4αγδ (21)

Now by assumption Φ̃uΦ̃y = γδ < 0. We see that this
condition is sufficient to obtain only one solution (see
Figure 3).

We finally analyze a case which presents some potential
ambiguity.

(v) Here, we have the same conditions as in (iv) save
that Φ̃uΦ̃y = γδ ≥ 0. Here, the quadratic equation has
potentially two solutions. We can obtain further insight as
follows:

(1) We observe that the second derivative of the curve F2

is given by:
∂2Φ0{1}
∂Φ0{2}2

= − 2αβγ

(γΦ0{2}+ β)3
= −βγΦ0{1}3

α2Φ0{2}3
(22)

Thus ,if γ > 0 then the function is concave since Φ0{i} > 0.
If γ < 0 then function is convex since Φ0{i} > 0.

(2) Next, we examine the first derivative of the curve F2

at the origin, namely:
∂Φ0{1}
∂Φ0{2}

∣∣∣∣
Φ0{2}=0

=
α

β
(23)

We see that the first derivative is greater than one when
γ > 0 and δ > 0, and less than one for γ < 0 and δ < 0.
We can see in Figure 3 that there exist two solutions for
this case. Thus, there is a potential ambiguity. However,
4 We assume that this holds since, by assumption, the true system
satisfies the model.
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using the bounds found in Theorem 12 it is possible to
isolate a unique system. Notice that it is possible to check
this condition with the available data. 2

Remark 14. Using assumption 6 and an extra assumption
such as Φ̃u 6= 0, or Φ̃y 6= 0, it is possible to establish
identifiability using a similar procedure to the one in the
proof of Theorem 14 in [Agüero and Goodwin, 2008]. OOO

6. COMMENTS AND CONCLUSIONS

In this paper we have analyzed the identifiability of EIV
dynamic systems when the data is non-stationary. The
non-stationarity feature is described via structural change
in one or more of the transfer functions. We have analyzed
the problem by considering that the data is collected from
two different scenarios. We have found bounds for the
system when only one of the transfer functions is the same
in both scenarios. We have also given conditions under
which the system is identifiable.
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