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Abstract: A considerable amount of optimization problems arising in the control and systems
theory field can be seen as special instances of robust optimization. Much of the modeling
effort in these cases is spent on converting an uncertain problem to a robust counterpart
without uncertainty. Since many of these conversions follow standard procedures, it is amenable
to software support. This paper presents the robust optimization framework in the modeling
language YALMIP, which carries out the uncertainty elimination automatically, and allows the
user to concentrate on the high-level model instead.
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1. INTRODUCTION

The basic problem addressed in this paper is uncertain
optimization problems.

min
x

max
w

f(x,w)

s.t g(x,w) � 0 ∀w ∈ W
To keep notation at a minimum, we write g(x, w) � 0
here, but keep in mind that these constraints may include
elementwise inequalities, equality, integrality, second-order
and semidefinite cone constraints.

In short, there are two ways to address this class of
problems. Historically, probabilistic approaches where con-
straints are added by sampling from the uncertainty have
been common. The disadvantage with this approach is of
course that it only gives an (optimistic) approximation,
and thus no guaranteed solutions. It is however possible
to obtain statistical confidence results, in particular in the
convex case Calafiore and Campi (2005).

Recently, a more strict approach has become popular. The
paradigm here is to convert the problem to a certain prob-
lem, by in some way removing the uncertainty, using meth-
ods such as explicit maximization, duality properties, or
conservative relaxation methods. These approaches have
to a large extent gained popularity due to developments
in the convex and conic optimization field Ben-Tal and
Nemirovski (1998); Ben-Tal and Nemerovskii (2002). This
paradigm, commonly referred to as a worst-case approach,
is what we concentrate on in this paper.

Many robust optimization problems falls into standard
cases, which can be converted to certain counterparts
by standard but error-prone and cumbersome reformula-
tions. Our goal is to supply an extension to the modeling
language YALMIP Löfberg (2004) for modeling robust
optimization problems in an intuitive format, and let the
software package take care of the reformulations. In other
words, it is the robust optimization correspondence of
the convex programming reformulations in the ”nonlinear

operator”-framework in YALMIP and the similar ”disci-
plined convex programming” framework in CVX Grant
et al. (2007). The outcome of the feature presented in
this paper is a new optimization problem which solves the
worst-case scenario.

min
x,y

f̃(x, y)

s.t g̃(x, y) ≤ 0
Typically, the problem is changed considerably from the
original problem, indicated by the new objective, con-
straints and additional variables, introduced in order to
eliminate the uncertainty. While the original uncertain
problem, for instance, is a linear program, the robust
counterpart can become a semidefinite program. Even
worse, the robust counterpart may not even be a tractable
problem. In the following sections, we will outline the basic
ideas in the proposed robust optimization extension, and
introduce the uncertainty scenarios that are supported.

2. NOTATION

Matrices will generically be denoted using capital let-
ters while vectors are in small letters. Inner product
trace(AT B) will be written as A • B. Cone constraints
are indicated using the � operator. The cone can be
either the positive orthant cone, second order cone, or
the cone of semidefinite matrices. To simplify notation,
conic constraints in dual form C −

∑m
i Aiwi � 0 will be

written in the operator form C −AT (w) � 0. The primal
form conic constraints, Ai • X = bi, i = 1 . . .m, will be
written compactly as A(X) = b. The cones might be direct
products of several cones, possibly of different type, and
the data is partitioned accordingly. For simplicity though,
one may think of all cone constraints as having only one
element.

3. GENERAL FRAMEWORK

The first and most important idea in the robust opti-
mization framework in YALMIP is that uncertain mod-
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els should be modeled using exactly the same syntax as
certain models. Hence, the only addition to the modeling
language is a new command uncertain, which declares a
set of variables as uncertain.

When YALMIP encounters a model with uncertain vari-
ables, three main steps occur. To begin with, the vari-
ables explicitly declared as uncertain are detected, and
constraints involving only these variables are separated
from the model. These constraints constitute (the initial)
uncertainty description.

YALMIP then applies an expansion of the remaining
model, to model all advanced nonlinear operators, such as
absolute values and norms, typically using graph represen-
tations. Note that the expansion of expressions that only
involve uncertain variables might generate new variables
and constraints, which have to be added to the list of
uncertain variables, and to the uncertainty description.
As an example, if the uncertainty description is defined in
the modeling language as |w|∞ ≤ 1, the set of uncertain
variables and associated uncertainty set after the expan-
sion is performed will be {(w, t) : −t ≤ w ≤ t, t ≤ 1}.
The introduction of the auxiliary, and strictly speaking
redundant, variable t is a consequence of the way YALMIP
models nonlinear operators, such as norms.

A complication in terms of implementation is that the
modeling language has to treat the uncertainty as a
constant during the convexity propagation and expansion.
For instance, the constraint |xw| ≤ 1 is not convex, and
could thus lead to problems when convexity analysis is
performed by YALMIP to decide on how to model the
absolute value operators. However, the standard graph
model −1 ≤ xw ≤ 1 will be derived, since the modeling
language temporarily treats w as a constant and thus sees
an affine term inside the absolute value operator. After
this expansion has been made, the model is conceptually
in YALMIP standard form (no high-level operators such
as norms, absolute values, etc.), albeit parameterized in
the w variables.

At this point, the robustification should take place. De-
pending on the class of uncertain constraints, and the
uncertainty model, different approaches are used. The
process of removing the uncertainty and deriving a ro-
bust counterpart is called the filtering step, and there are
currently five filters implemented, as outlined in the next
section.

Once the filter has been applied, a standard YALMIP
model with no uncertainty has been generated, and can be
solved using any installed solver suitable for the problem
or manipulated further by the user.

Important to understand is that the uncertainty modeling
and the derivation of robust counterparts is a feature that
is (essentially) completely integrated in the infrastructure
of YALMIP. Hence, nothing prevents a user to, e.g., de-
fine uncertain sum-of-squares problems with combinatorial
constraints. The modeling languages performs the sum-of-
squares compilation, uncertainty removal, and addition of
combinatorial constraints separately in a modular fashion.

4. THE FILTERS

The mechanism of converting a problem with uncertainty,
to the corresponding certain counterpart, is called the
filtering step in the robust optimization framework in
YALMIP.

At the moment, five different filters are implemented. The
goal is to extend this list in future versions, but the current
set of scenarios are considered the most important in
practice.

4.1 Duality filter

The duality filter is applicable to elementwise constraints
with coefficients linearly parameterized in the uncertain
variable, and the uncertainty constrained to an intersec-
tion of linear, second order and semidefinite cones. Con-
sider a single elementwise constraint

(Aw + b)T x + (cT w + d) ≤ 0 ∀w : E −FT (w) � 0

By writing the left-hand term as (AT x+c)T w+(bT x+d),
it follows from duality theory of conic optimization that
the maximum of this function, over w, is less than or equal
to 0 if and only if 1 there exist a Z such that the following
condition holds Ben-Tal and Nemerovskii (2002)

E • Z + bT x + d ≤ 0,F(Z) = AT x + c, Z � 0

This is a very general and useful result. A major drawback
is however that the filter can lead to a substantial increase
of problem size, since a new variable Z, and the associated
constraints, have to be introduced for every uncertain
constraint. Hence, when possible, more specialized filters
should be used.

Note that the strong duality arguments are employed in
the w-space. Hence, additional complicating constraints on
x, such as integral variables or other convex or nonconvex
constraints, does not influence the correctness of the
method. Of course, this holds also for the remaining four
filters.

4.2 Enumeration filter

A classical uncertainty case is constraints where the pa-
rameterization is linear in the uncertainty, and the un-
certainty is constrained to a polytopic set. To simplify
notation, let Aw(x) denote the parameterized operator∑

Ai(w)xi where each matrix Ai is linearly parameterized
in w. Consider the following uncertain conic constraint

(CT (w) + D) + (BT (x) +AT
w(x)) � 0 ∀w : Ew ≤ f

This is the case that arise, e.g., in stability analysis of
polytopic systems Boyd et al. (1994), where w corresponds
to parameters in an uncertain system and x corresponds
to the variables parameterizing a Lyapunov matrix.

From convexity, it follows that it is sufficient to study the
vertices of the polytope Ew ≤ f . Hence, if we let {wi} de-
note the vertex enumeration of the uncertainty polytope,
1 Assuming strict complementarity, which in our case means that
the uncertainty set has a strict interior.
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the robustified constraint is given by the intersection of
the conic constraint evaluated at the vertices {wi}.

(CT (wi) + D) + (BT (x) +AT
wi

(x)) � 0
The problem with this approach is obvious; simple poly-
topes can generate intractably many vertices. As a trivial
example, the unit-cube in Rn has 2n vertices.

4.3 Explicit maximization

Specializing the problem structure further, we arrive at
a case where we actually can perform the maximization
over the uncertainty analytically. Consider an elementwise
constraint linearly parameterized in an uncertainty which
is constrained to a norm-ball.

(cT w + d) + (Aw + b)T x ≤ 0 ∀w : |w|p ≤ 1
The maximum over w can be derived by using the fact that
max|w|p≤1q

T w is |q|p∗ where | · |p∗ denotes the dual norm
Boyd and Vandenberghe (2004). Hence, the robustified
constraint is

(bT x + d) + |c + AT x|p∗ ≤ 0
The current implementation only exploits this result for
the (possibly scaled and translated) ∞-norm case, where
the dual norm is the 1-norm. Other standard conic-
representable cases (1-norm and 2-norm) are dealt with
using enumeration and duality filters. More general cases
are however expected to be supported in the explicit filter
in a future release.

4.4 Pólya filter

The filters above are all exact, in the sense that the
robustified constraints are both sufficient and necessary
for the original constraints to be robustly satisfied. Un-
fortunately, there are not many more cases where simple
sufficient and necessary counterparts are available Ben-
Tal and Nemirovski (1998). Instead, one has to rely on
conservative approximations. One common case where a
simple conservative result is available is polynomially pa-
rameterized elementwise or semidefinite constraints, with
the uncertainty constrained to a simplex.

p(x, w) � 0 ∀w :
m∑

i=1

wi = 1, w ≥ 0

Since w is constrained to a simplex, the constraint is
trivially equivalent to p(x,w) (

∑m
i=1 wi)

N � 0 for arbitrary
N . If we assume that p(x,w) is homogeneous 2 in w,
the polynomial p(x,w) (

∑m
i=1 wi)

N � 0, when seen as
a polynomial in w with coefficients parameterized in x,
is non-positive if all coefficients are non-positive. This
follows trivially since w is non-negative. Hence, a sufficient
condition is

coefficientsw{p(x, w)(
m∑

i=1

wi)N} � 0

2 This is not a restriction, since any polynomial can be rendered
homogeneous on a simplex by multiplying monomial terms with
suitable powers of

∑m

i=1
wi.

Note that this trivially also holds for the symmetric matrix
polynomial case, i.e., when p(x,w) is a matrix polynomial,
with matrix coefficients functions of x.

The reason we denote the filter Pólya, is due to a result
of Pólya, stating that for a finite sufficiently large N , the
condition is necessary 3 Hardy et al. (1952). However, a
bound on this sufficiently large N is typically unreasonably
large, and depends on the parameterized coefficients, so
the necessity result is of no direct use to us. Instead, the
user has to specify N and hope that the relaxation is
sufficiently tight. Necessity in the matrix case has recently
been shown in Scherer (2005).

An important feature of this approach, compared to more
advanced schemes using recent developments in convex
optimization based relaxations of polynomial problems,
such as sum-of-squares and moment relaxations, is that
an elementwise constraint leads to elementwise constraints
in the robust counterpart. In other words, the problem
class does not change. Nevertheless, since YALMIP has
support for sum-of-squares reformulations and moment
relaxations, future versions may have support for stronger
relaxations, at the cost of problem complexity.

4.5 Elimination filter

If everything else fails, our last resort is to constrain the
decision variables such that the uncertainties disappear
from the constraint. Consider a polynomially parameter-
ized constraint, with arbitrary uncertainty description.

p(x, w) � 0 ∀w ∈ W

If we see this as a polynomial in w with coefficients
parameterized in x, a trivial sufficient condition is obtained
by constraining the coefficients to be zero.

p(x, w) � 0, coefficientsw{p(x,w)} = 0

Although this condition is trivial, it is actually rather use-
ful in some situations, as mentioned in one of the examples
in the next section. Additionally, the elimination filter
is the only option when an equality constraint involves
uncertain variables.

4.6 Comparison of filter complexity

As a simple illustration of the three first approaches
to derive a robust counterpart, consider a robust linear
programming problem with the constraint (A ∈ Rm×n)

A(x + w) ≤ b ∀ − 1 ≤ w ≤ 1

This set of uncertain constraints can be robustified us-
ing the duality approach, the enumeration approach, and
the explicit maximization. The explicit maximization ap-
proach will lead to the robustified constraint Ax+|A|1 ≤ b,
where 1 denotes a vector of ones and |A| is elementwise
absolute value. In other words, the size of the problem
remains the same. The enumeration approach would lead
3 To be precise, the theorem concerns a strict inequality of a
homogeneous polynomial, and the restriction on the simplex can be
relaxed to any set in the positive orthant not including the origin.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

1339



to the constraints A(x + vi) ≤ b, where vi denotes the 2n

vertices of the unit cube. Hence, the original set of con-
straints are replicated 2n times, thus leading to a quickly
growing problem size.

Finally, the duality based approach leads to a model with
2nm+n variables, nm equality constraints, and m+2nm
inequality constraints 4

From this simple comparison, it should be clear that the
choice of filter can make a huge impact on the resulting
problem. The current implementation always tries to apply
the explicit maximization scheme first. If this filter not is
applicable, it resorts to the enumeration scheme if possible.
The duality based scheme is only used if necessary, or if
an explicit choice is made via an option structure that is
available for the user to guide the conversion.

5. EXAMPLES

To illustrate the use of the software package, we will solve
a couple of uncertain optimization problems, arising in
control theory and robust optimization in general.

5.1 Robust linear programming

As a first example, we simply implement the robust linear
programming problem from Section 4.6, minimize cT x
subject to A(x + w) ≤ b where |w| ≤ 1.

x = sdpvar(n,1);
w = sdpvar(n,1);

C = [A*(x+w) <= b,
abs(w) <= 1,
uncertain(w)]

O = c’*x

solvesdp(C,O);

For a user familiar with YALMIP, the only new model-
ing construct is the command uncertain which declares
a variable uncertain. The actual uncertainty set will be
extracted automatically from the model. After extract-
ing the uncertainty model and analyzing the uncertain
constraints, a suitable filter will be applied to derive the
robust counterpart, which will be solved with a suitable
solver, in this case any installed linear programming solver.
In this case, the explicit maximization filter will be ap-
plied. Note that according to the discussion in Section
3, the uncertainty model will be expanded to the model
{(w, t) : −t ≤ w ≤ t, t ≤ 1}. This uncertainty set only im-
plicitly defines a simple box-bounded set. However, since
this case is so common, and the use of the absolute value
operator is common among users, YALMIP implements
some specialized code to analyze the uncertainty set to
detect the redundant variables t and project the problem
to the standard box-bounded case.

4 For every row ai, we have to maximize aT
i w subject to−1 ≤ w ≤ 1.

Since the dimension of w is n, there are 2n inequalities in the
uncertainty constraint set. There will thus be 2n dual variables
for each row. The dual variables are constrained by n equality
constraints and 2n inequality constraints. Summing up and adding
the original constraints and variables leads to the result.

5.2 LPV Stabilization

Our task is to compute a state-feedback u = Kx for
the parameter-varying system ẋ = A(ρ)x + Bu, where
A is linearly parameterized in the variable ρ, which is
constrained to a simplex. Without going into details, a
controller that minimizes an upper bound on

∫
xT Qx +

uT Ru can be found by solving the following uncertain
semidefinite program in the variable L and the inverse
Lyapunov matrix Y Boyd et al. (1994).

max trace(Y )−(AY + BL)− (AY + BL)T Y LT

Y Q−1 0
L 0 R−1

� 0

The feedback matrix can be recovered as K = LY −1. This
problem can be solved easily using our framework, since
it fits into the enumeration scenario. However, to make
matters more challenging, we complicate the problem
slightly. To decrease conservativity, we use a parameterized
inverse Lyapunov function Y =

∑
αiYi. The problem with

this parameterization is that the product A(ρ)Y (ρ) yields
bilinear terms. Hence, the enumeration scheme cannot
be used. However, if the matrix A(ρ) has a particular
structure, some terms in Y can still be parameterized,
without giving rise to any bilinear terms. This is where
the elimination filter comes into play. By simply using
a full parameterization, and letting YALMIP derive the
robust counterpart, YALMIP will automatically constrain
the structure of Y so that no bilinear terms are generated.
After this elimination is done, the remaining uncertainty is
dealt with using enumeration. A slightly less conservative
approach can be obtained by using the Pólya filter instead.
This approach will allow nonlinear terms, and will use the
conservative relaxation outlined in the previous section.
The following code illustrates how we would solve a
problem in the case when ρ is two-dimensional, for a
system with n states and m inputs, using a Polya filter
with N = 1. 5 .

rho = sdpvar(2,1)
A = A1*rho(1) + A2*rho(2);

Y0 = sdpvar(n,n);
Y1 = sdpvar(n,n);
Y2 = sdpvar(n,n);
Y = Y0 + rho(1)*Y1 + rho(2)*Y2
L = sdpvar(n,m);

S = -A*Y-B*L;
C = [[S+S’ Y L’;

Y inv(Q) zeros(n,m);
L zeros(m,n) inv(R)] > 0]

C = [C, 0 <= rho, sum(rho) == 1]
C = [C, uncertain(rho)]
O = -trace(Y);
options = sdpsettings(’robust.polya’,1);
solvesdp(C,O,options)

5 A complete implementation can be found in the YALMIP wiki
control.ee.ethz.ch/ joloef/wiki/pmwiki.php?n=Examples.LPV
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5.3 Uncertain sum-of-squares

As a final example, we solve a problem where we show-
case the integration of different modules in YALMIP. Here,
illustrated by combining the robust optimization module
with the sum-of-squares capabilities of YALMIP, described
in detail in Löfberg (2008).

A nonlinear system is described by the following differen-
tial equation.

ẋ1 =−3
2
x3

1 −
1
2
x2

1 − x2

ẋ2 = 6x1 − wx2

The model is not known exactly, due to the uncertain
parameter w ∈ W = {w : 3 ≤ w ≤ 5}. Our goal is to show
that the nonlinear system is stable for any w ∈ W, and our
approach to do this is to construct a polynomial Lyapunov
function, and prove robust (asymptotic) stability using
sum-of-squares techniques.

The uncertain variable w does not pose a problem for
standard sum-of-squares techniques. Including informa-
tion about uncertainty in the differential equation can be
done relatively easily in a sum-of-squares framework by,
e.g., suitable application of the positivstellensatz, Parrilo
(2003). However, we will apply a robust optimization ap-
proach instead.

To prove stability, we introduce a polynomial Lyapunov
function V (x) = cT v(x). For stability, we require

V (x) > 0 ∀x 6= 0

V̇ (x) < 0 ∀x 6= 0, w ∈ W

A sum-of-squares approach tries to find symmetric ma-
trices Q1 and Q2 such that V (x) = h(x)T Q1h(x) and
V̇ (x) = −h(x)T Q2h(x), given a polynomial basis h(x). By
writing the sum-of-squares problem in image form Parrilo
(2003), the semidefinite problem that arise will include two
constraints, Q1(c) � 0 and Q2(c, w) � 0∀w ∈ W.

We begin by defining the variables and basic expressions
involved in the problem. Without any deeper thought,
we use a fourth order polynomial, and bound the Lya-
punov function and its negative derivative from below
by a quadratic function to ensure that the functions are
positive definite (instead of using positive definite ma-
trix constraints, which strictly speaking is impossible in
practice, and can be a conservative way to impose strict
definiteness of the polynomials 6 )

sdpvar x1 x2 w
f = [-1.5*x1^2-0.5*x1^3-x2;

6*x1-w*x2];
x = [x1;x2];
[V,c] = polynomial(x,4);
dVdt = jacobian(V,x)*f;
r = x’*x;

The sum-of-squares constraints and the uncertainty model
are defined and the problem is solved. If feasible, robust
asymptotic stability is proven.
6 Methods to impose strict inequalities in a sum-of-squares setting
is a delicate issue beyond the scope of this discussion.

C = [uncertain(w),3<=w<=5];
C = [C,sos(V-r),sos(-dVdt-r)];
solvesdp(C,[],[],c);

Behind the scenes, YALMIP will derive the matrices
Q1(c) and Q2(c, w). Since Q2(c, w) is linear in w and
w is described by a polytope, the enumeration filter is
applicable and is used to eliminate the uncertainty.

6. CONCLUSION

A software framework for robust optimization has been
presented. The modeling language in YALMIP allows users
to concentrate on the application model, while YALMIP
takes care of reformulations required to remove uncer-
tainty in the problem and compute robust solutions.

The implementation is currently limited to a small number
of standard uncertainty cases, albeit they have to be
considered the most common cases found in practice.
Additional scenarios will be available in future versions.

In addition to more uncertainty scenarios, the framework
will hopefully be extended to support a broader class of
optimization problems, such as general convex problems,
and uncertain geometric programs. The current version is
primarily meant for problems with (mixed-integer) conic
representable constraints.
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