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Abstract: This paper presents a new methodology for estimating wheel-ground contact normal
forces, commonly known as vertical forces. The proposed method uses measurements from
currently available standard sensors (accelerometers and relative suspension sensors). The aim
of this study is to improve vehicle safety, especially to prevent rollover problems. One particular
feature of the method is the separation of the estimation process into three blocks. The first block
serves to identify the vehicle’s weight, the second block contains a linear observer whose main
role is to estimate the one-side lateral transfer load, while the third block calculates the four
wheel vertical forces using a nonlinear observer. The different observers are based on the Kalman
filter. The estimation process is applied and compared to real experimental data obtained in
real conditions. Experimental results validate and prove the feasibility of this approach.

NOTATIONS

ax, ay longitudinal and lateral acceleration occurs at
the cog in the inertiel coordinate system m/s2

aym measured lateral acceleration m/s2

ef , er front and rear vehicle’s track respectively m
Fzl vertical load on the left tires N
Fzr vertical load on the right tires N
FzF vertical load on the front tires N
FzR vertical load on the rear tires N
Fzij vertical load on each wheel N
kf , kr front and rear roll stiffness respectively

N.m/rad
ks, kt spring and tire stiffness respectively N/m
g gravitational constant 9.81 m/s2

h height of the center of gravity m
hf , hr height of the front and rear roll respectively m
i front(f) or rear(r)
j Left(l) or right(r)
lf , lr distance from the cog to the front and rear

axles respectively m
mij quarter mass of the vehicle on each

corner of the vehicle kg
meij quarter mass of the empty vehicle on each

corner of the vehicle kg
mv total mass of the vehicle kg
ms sprung mass kg
∆Fzl lateral transfer load applied to the left part

of the vehicule N
∆Fzr lateral transfer load applied to the right part

of the vehicule N
∆msij variation of the sprung mass on each corner of

the vehicle m

θ roll angle rad
δij suspension deflection on each vehicle’s corner
X X = [x1 x2 ... xn] is the state space vector
Z Z = [z1 z2 ... zm] is the observation vector

1. INTRODUCTION

The automotive industry has made significant technolog-
ical progress over the last decade in the development of
on-board control systems, in order to improve security
and help to prevent dangerous situations. Among these
controllers, we find systems such as Anti-lock Braking
Systems (ABS) and Electronic Stability Programs (ESP).
Improving control decisions is possible when certain ve-
hicle parameters, such as velocity, roll angle, yaw rate,
sideslip angle, vehicle’s weight, and wheel ground forces are
known. Due to technical, physical and economic reasons,
some of these parameters are not measurable in a stan-
dard vehicule. For example, measuring vertical tire forces
requires wheel transducers that cost 100.000 e. The knowl-
edge of wheel-ground contact normal forces is essential for
improving transportation security. Indeed, vertical load on
the tire has a primary influence on vehicle stability and
cornering stiffness, which in turn determines the lateral
force. Moreover, on-line measurement of vehicle tire forces,
in a moving vehicle, allows a better calculation of the
road damage or Lateral Transfer Ratio (LTR) parameter.
LTR is an indicator used to prevent or forecast rollover
situations. The LTR coefficient is defined as the ratio of
the difference between the sum of the left wheel loads and
the right wheel loads, to the sum of all the wheel loads.
LTR is estimated in this article.
The estimation of the vertical tire load is considered a diffi-
cult task. The variation of the vehicles mass, the position
of the center of gravity (cog), the road grade, the road
irregularities and the load transfer increase the problem’s
complexity.
In the literature, many studies deal with the calculation
of the wheel-ground contact normal forces. In Lechner
(2002), the author presented a model for vertical force
calculation. Lechner’s model respects the superposition
principle, assuming independent longitudinal and lateral
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acceleration contributions. In Shim et al. (2007), a study of
a 14 DOF (Degree Of Freedom) vehicle model is proposed
where the dynamics of the roll center are used to calculate
vertical tire forces. In the work of Nielson et al. (2000),
the tire forces are modeled by coupling longitudinal and
lateral acceleration. Wenzel et al. (2006) investigated the
application of the DEKF (Dual Extended Kalman Filter)
for estimating vertical forces. They concluded that the
obtained result differs from the reference data, the dis-
crepancy being attributable to the problem of the vehicle’s
mass.
In this paper, our main objective is to develop a real-time
method for estimation of the wheel-ground contact vertical
forces, regardless of tire model, while taking into account
the constraints of the industrial applicability. To simplify
the model, pitch angle, road angle and road irregularities
are not considered in our study. All notations presented in
the following sections are included in the notations part.
The rest of the paper is organized as follows. The second
section describes our algorithm. In the third, fourth and
fifth sections, we describe each block of the estimation
process. The sixth section presents an observability anal-
ysis. The seventh section presents experimental results of
the evaluation of the observers with respect to real data.
Finally, some concluding remarks are given in section 8.

2. DESCRIPTION OF THE ALGORITHM

The estimation process is modeled in three blocks as shown
in Fig.1. The first block identifies the vehicle’s mass at rest
and calculates the static load applied to the vehicle. The
identified mass will be used as a known vehicle parameter
in the other blocks. The aim of the second block is to
calculate the one-side lateral transfer load by using roll
dynamics. The estimated value will be considered as an
essential measure for the third block; it guarantees its
observability. The third block estimates the four vertical
tire forces, and serves to calculate the LTR coefficient.
Each block will be described in detail in the following
sections. The strategy of using cascaded observers allows
us to avoid the observability problems entailed by an
inappropriate use of the complete modeling equations,
thus enabling then the estimation process to be carried
out in a simple and practical way.

Identification of the vehicle’s mass

using a relative position sensors

Block1: 

Block2:

Estimation of the one-side lateral

transfer load using a linear 

Kalman filter

Block3:

Estimation of vertical tires forces

 using an extended Kalman filter

Fig. 1. Description of the three-block estimation process.

3. BLOCK 1: IDENTIFICATION OF THE VEHICLE’S
MASS

Vehicle mass is a problem seldom discussed in the liter-
ature. For example, in Vahidi et al. (2005), a recursive
least-squares method is developed for online estimation
of vehicle mass. This method cannot be effective in our

application because it takes a considerable time to con-
verge to the real mass value. The objective of this section
is to identify the vehicle’s mass, at rest, by considering
a quater-car model (Fig.2) and applying relative posi-
tion sensors. Nowadays, many controlled suspensions are
equipped with relative position sensors, which measure
suspension deflections δij (relative positions of the wheels
with respect to the body) at each corner. The quarter mass

suspension 

damper

sprung mass 

(body)

suspension 

spring

unsprung mass 

(wheel, axle)tire stiffness

ks cs

msij

mu

z1

z2

kt

t

t

Fig. 2. A quarter car-model with linear suspension.

meij (sum of the sprung and unsprung masses) at each
corner of the empty vehicle, is an information provided
by the manufacturer. At a conventional suspension with-
out level regulation and with linear spring characteristics,
and by neglecting the wheel deflection, a load variation
in the sprung mass ∆msij changes the spring deflection
δij → δij + ∆ij where

∆msij =
ks∆ij

g
, (1)

∆ij is the spring deflection variation. Then, the total
quarter mass and the total mass of the vehicle is calculated
as follows:







mij = meij + ∆msij

mv =
∑

i,j

mij (2)

By using this identification method, the calculated mass
converges to within ±1% error of the real mass value. As
a consequence, when the vehicle is at rest, the static load
applied at each wheel is equal to mijg.

4. BLOCK 2: OBSERVER FOR LATERAL
TRANSFER LOAD

This section describes the first observer of our cascaded
structure. It is based on the vehicle’s roll dynamics. The
roll angle of the vehicle is the amount of rotation of the
vehicle’s sprung mass about its roll axis, as shown in
Fig.3 (see Anderson (2006)). During cornering, roll angle
depends on the roll stiffness of the axle and on the position
of the roll center. The roll axis is the line which passes
through the roll center at the front and rear axel. Roll
center can be constructed from the lateral motion of the
wheel contact points (Milliken et al. (1995)).
In reality the roll center of the vehicle does not remain

constant, but in this study a stationary roll center is
assumed in order to simplify the model. The simplified
equation for the lateral transfer load applied to the left
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ms ay

ms g h

hf

roll angleθ

Fig. 3. Roll dynamic model (front view).

part of the vehicle can be formulated as the following
dynamic relationship (Milliken et al. (1995)):

∆Fzl = (Fzfl + Fzrl − Fzfr − Fzrr)

= (mfl + mrl − mfr − mrr)g − 2(
kf

ef

+
kr

er

)θ

−2
msay

l
(
lrhf

ef

+
lfhr

er

)

(3)

The lateral acceleration used in equation (3) is generated
at the cog. The accelerometer, however, is unable to
distinguish the acceleration caused by the vehicle’s motion
from the gravitional acceleration. In fact, the measured
quantity is a combination of the gravitational force and the
acceleration of the vehicle as represented in the following
equation(case of small roll angle):

aym = ay + gθ (4)

In order to measure the roll angle, additional sensors are
required and it is hard or very expensive to measure it. In
this study, we consider that the roll angle can be calculated
through relative suspension sensors (Brown et al. (2004);
Rao (2005)). During cornering on a smooth road, the
suspension is compressed on the outside and extended
on the inside of the vehicle. By neglecting pitch dynamic
effects on roll motion, the roll angle can be calculated by
applying the following equation based on the geometry of
the roll motion:

θ =
(δfl − δfr + δrl − δrr)

(2ef )
−

mvaymh

kt

(5)

4.1 The lateral transfer load estimation

By combining the relations (3), (4) and (5), a linear
observer is developed to estimate the one-side lateral load
transfer. The linear model with unknown inputs is:

{

Ẋ(t) = AX(t) + α(t)
Z(t) = CX(t) + β(t)

(6)

• X =
[

∆Fzl ∆Fzr ay ȧy θ θ̇
]

is the state vector; the

initial state vector is
X0 = (mfl + mrl − mfr − mrr)g − (mfl + mrl −

mfr − mrr)g 0 0 0 0].

• Z =
[

aym (∆Fzl + ∆Fzr) θ θ̇ ∆Fzl

]

is the observa-

tion vector where:

· aym: lateral acceleration measured from the ac-
celoremeter;

· ∆Fzl +∆Fzr: sum of right and left transfer load
is supposed to be null at each instant;

· θ: roll angle calculated by using equation (5);

· θ̇: roll rate measured directly from gyrometer;
· ∆Fzl: left transfer load calculated from equation

(3).
• α(t) and β(t) are the process and measurement noise

vectors respectively, assumed to be white, zero mean
and uncorrelated.

The constant matrices A and C are given as:

A =





















0 0 0 −2
ms

l
(
lrhf

ef

+
lfhr

er

) 0 −2(
kf

ef

+
kr

er

)

0 0 0 2
ms

l
(
lrhf

ef

+
lfhr

er

) 0 2(
kf

ef

+
kr

er

)

0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0





















C =









0 0 1 0 g 0
1 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0









5. BLOCK 3: ESTIMATION OF THE WHEEL
GROUND VERTICAL CONTACT FORCES

Due to the longitudinal and lateral acceleration of the
vehicule, the load distribution can significantly vary during
a journey. The force due to the longitudinal acceleration at
the cog causes a pitch torque which increases the rear axle
load and reduces the front axle load. In addition, during
cornering the lateral acceleration causes a roll torque
which increases the load on the outside and decreases it
on the inside of the vehicle (see Nielson et al. (2000)).
The load distribution can be expressed by the vertical
forces that act on each of the four wheels (see Fig.4). These
equations are:

mv ax

ef

h

Ffl Ffr

m*=FzF/g

m*.g

m*.ay

FzF FzR

lf lr

mvg h

side view front view

Fig. 4. Load shifting (acceleration+cornering).







Fzfl,fr =
1

2
mv

(

lr

l
g −

h

l
ax

)

± mv

(

lr

l
g −

h

l
ax

)

h

ef g
ay

Fzrl,rr =
1

2
mv

(

lf

l
g +

h

l
ax

)

± mv

(

lf

l
g +

h

l
ax

)

h

erg
ay

(7)
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Having calculated these forces, we can then calculate the
LTR coefficient and alert the driver in rollover situations.
The LTR is defined in Boettiger et al. (2003) as:

LTR =
Fzl − Fzr

Fzl + Fzr

=
∆Fzl

Fzl + Fzr

. (8)

The value of LTR varies from -1 at the lift-off of the left
wheel, tends toward 0 at no load transfer, and to 1 at the
lift-off of the right wheel.

5.1 Estimation of the vertical forces at the wheel ground
interaction

Using relations (7) and the estimated results from block
1, an extended Kalman filter (EKF) is constructed to
estimate the four wheel-ground contact normal forces. The
EKF has been applied and described in many studies
especially in robotics field (see Durrant-Whyte (2001)).
The evolution model is non-linear with unknown inputs :

Ẋ(t) = f(X(t)) + α(t) (9)

Where X = [Fzfl Fzfr Fzrl Fzrr ax ȧx ay ȧy] is the
vehicle state vector and α(t) is the process noise assumed
to be white with zero mean. The particular nonlinear
functions of the state equation are then given by:











































































































































f1 =
−h

2l
mvx6 − mv

lrh

lef

x8 + mv

h2

lefg
x5x8

+mv

h2

lefg
x6x7

f2 =
−h

2l
mvx6 + mv

lrh

lef

x8 − mv

h2

lefg
x5x8

−mv

h2

lefg
x6x7

f3 =
h

2l
mvx6 − mv

lfh

ler

x8 − mv

h2

lerg
x5x8

−mv

h2

lerg
x6x7

f4 =
h

2l
mvx6 + mv

lfh

ler

x8 + mv

h2

lerg
x5x8

+mv

h2

lerg
x6x7

f5 = x6
f6 = 0
f7 = x8
f8 = 0

(10)

The observation model is linear and the output vector Z
is presented as follows:

Z(t) = H · X + β(t) (11)

where Z = [∆Fzl (Fzfl + Fzfr) ax ay

∑

Fij ] and β(t)
is the measurement error, assumed to be white with zero
mean:

• ∆Fzl is estimated from the second block;
• Fzfl + Fzfr is calculated directly from (7);
• ax is measured using an accelerometer;
• ay is provided from the second block;
•

∑

Fij is assumed to be equal to mvg at each instant.

The observation matrix H takes the form:

H =









1 −1 1 −1 0 0 0 0
1 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
1 1 1 1 0 0 0 0









The filter is initialized with the state vector:

X0 = [mflg mfrg mrlg mrrg 0 0 0 0].

6. OBSERVABILITY ANALYSIS

Observability is a measure of how well internal states of
a system can be inferred by knowledge of its external
outputs.

6.1 Linear system

The system described in section 4 is observable. Indeed,
we have verified that the observability matrix O given by:

O =
[

C CA CA2 ... CA5
]

(12)

has a full rank.

6.2 Nonlinear system

In the nonlinear case, the observability definition is local
and uses the Lie derivative method. The calculated rank of
the observability matrix O, along the path, corresponded
to the state vector dimensions, so the system described in
section 5 is observable. In practice, for nonlinear systems,
it seems reasonable to quantify the degree of observability
with the observability index, defined as:

Λ(x) =
λmin

[

OT O, x(t)
]

λmax [OT O, x(t)]
(13)

where λmax

[

OT O, x(t)
]

indicates the maximum eigen-

value of matrix OT O estimated at point x(t) (likewise
for λmin). Then, 0 ≤ Λ(x) ≤ 1, and the lower bound
is reached when the system is unobservable at point x.
(Stephant (2007); Aguirre et al. (2005)). The index defined
in (13) represents the condition number of the observabil-
ity matrix O. Fig.5 presents the inverse of the condition
number of matrix O for the maneuver computed from data
acquired while the vehicle is in motion.

0 5 10 15 20 25 30
5

5.5

6

6.5

7

7.5

8
x 10

−3

Time (s)

Inverse of condition number

Fig. 5. Inverse of condition number of observability matrix.

7. EXPERIMENTAL RESULTS

The observers described in the sections above were eval-
uated by the advanced realistic vehicle simulation system
CALLAS (see appendix A). The results of the simulation
were very promising. After this validation in a simulated
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environment, the observers were tested using experimental
data.
The experimental vehicle shown in Fig. 6 is the INRETS-
MA (Institut national de la recherche sur les transports et
leur sécurité-département mécanismes d’accidents) Labo-
ratory’s test vehicle. It is a Peugeot 307 equipped with a
number of sensors including accelerometers, gyrometers,
steering angle sensors, linear relative suspension sensors
with a precision of 0.0825mm, and wheel force transducers.
The developed observers were evaluated considering both

Wheel force 

transducers

Fig. 6. Experimental vehicle

longitudinal and lateral dynamic behaviors as shown in
Fig. 7. During the test, the vehicle first accelerated up
to 0.3g then negotiated a slalom at a constant speed of
70km/h, before it decelerated to −0.7g.

0 10 20 30
−6

−5

−4

−3

−2

−1

0

1

2

3

4

Time (s)

m
s

−
2

longitudinal acceleration

0 10 20 30
−8

−6

−4

−2

0

2

4

6

Time (s)

m
s

−
2

lateral acceleration

Fig. 7. Longitudinal and lateral acceleration.

All observers were implemented in a first-order Euler
approximation discrete form. The sampling frequency is
100Hz. For our developed Kalman filters, error measure-
ment covariance is determined by sensor variance and the
error model covariance is determined by model quality.
The performance of the developed observers was carac-
terized by the normalized mean and normalized standard
deviation (std). The normalized error is defined in
Stephant (2007) as:

ǫz = 100 ×
‖z−zmeasured‖

max(‖zmeasured‖)

In the following, we propose to compare estimation re-
sults and real data. Table 1, Fig.8, Fig.9 and Fig.10
show the effectiveness of the observers. Indeed, observers
produce satisfactory estimations close to the measured
values (normalized mean and standard deviations error
are less than 7%). Measured or reference data are shown
in red. The estimated values are shown in dashed blue.
Fig.8 represents the one-side lateral transfer load. It shows
the convergence of the estimated values to their actual
value in finite time. Fig.9 and Fig10 show the variation of
the front and rear vertical load during the journey. The

Max ‖‖ (N) Mean % Std %
∆Fzl 7309 4.42 4.6
Fzfl 6386 2.8 2.7
Fzfr 6212 2.5 2.4
Fzrl 4906 2.4 2.3
Fzrr 4862 2.3 2.4

Table 1. Maximum absolute values, normalized
mean errors, and normalized Std.

estimated normal tire forces are satisfactory. These good
results confirm that the presented algorithm is suitable.

0 5 10 15 20 25 30
−1

−0.5

0

0.5

1
x 10

4 Left transfer load Fz
l
 (N )

 

 

measured

estimated

0 5 10 15 20 25 30
−1

−0.5

0

0.5

1
x 10

4 Right transfer load Fz
r
 (N )

Time (s)

 

 

Fig. 8. Lateral transfer load.
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2000
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6000

Front left vertical tire force Fz
fl
 (N )

0 5 10 15 20 25 30
2000

3000

4000

5000

6000

7000

Time (s)

Front right vertical tire force Fz
fr

 (N )

 

 

measured

estimated

Fig. 9. Estimation of front vertical tire forces.

Fig.11 compares the LTR obtained from measured forces
(plotted in red) with the LTR obtained from estimated
forces (drawn in dashed blue). It can been seen that the
estimated LTR fits the measured LTR well. Finally, Fig.12
illustrates the estimated LTR parameter with respect to
roll angle obtained according to the measurements of the
suspension relative displacement sensors. It is clearly seen

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

7114



0 5 10 15 20 25

1500

2000

2500

3000

3500

4000

4500

Rear left vertical tire  force Fz
rl

 (N )

 

 
measured

estimated

0 5 10 15 20 25 30
1000

2000

3000

4000

5000

Time (s)

Rear right vertical tire force Fz
rr

 (N )

Fig. 10. Estimation of rear vertical tire forces.

0 5 10 15 20 25 30
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−0.6
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Time (s)

LTR
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Fig. 11. Estmation of the LTR parameter.

that the relationship between the estimated LTR and
the calculated roll angle is linear. When the suspension
operates in linear mode, this relationship is obtained by
combining equations (3) and (8).

−0.03 −0.02 −0.01 0 0.01 0.02 0.03

−0.4

−0.2

0

0.2

0.4

Roll angle (rad)

L
T

R

Fig. 12. Relation between LTR and roll angle.

8. CONCLUSIONS AND PROSPECTS

This paper has presented a new algorithm to estimate
tire vertical forces, regardless of the tire model. Roll and
combined longitudinal-lateral dynamics are elaborated to
this end. Experimental results are presented to illustrate

the ability of this approach to give estimation of vertical
tire forces.
Although the identified mass tends toward the real mass
value, the weak point of this approach is the determination
of the vehicle’s mass, which is highly dependent on the
relative suspension sensors used. Moreover, the suspension
model is linear, which does not correspond to the real case.
We think that it should be possible to develop a model
where the mass is considered as an internal state, and
to initialize this state with our identification method.
Future studies will take into account road angle and road
irregularities.
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Appendix A. CALLAS SOFTWARE

CALLAS software is a realistic simulator validated by
vehicle manufacturers including PSA, and research insti-
tutions including INRETS. The CALLAS model takes
into account vertical dynamics (tires, suspensions), tire
adhesion, kinematics, elasto-kinematics and aerodynam-
ics. This vehicle simulator was developped by SERA-CD
(www.callasprosper.com).
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