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Abstract: In this paper, a new cluster validity criterion for fuzzy c-regression models (FCRM) clustering 
algorithm with affine linear functional cluster representatives is proposed. The proposed cluster validity 
criterion calculates the overall compactness and separateness of the FCRM partition and then determines 
the appropriate number of clusters. Besides, its application to fuzzy model identification is discussed. A T-
S fuzzy model identification algorithm is proposed to extract compact number of IF-THEN rules from data. 
Two simulation examples are provided to demonstrate the potential of the proposed cluster validity 
criterion and the accuracy of the constructed T-S fuzzy model.  

 

1. INTRODUCTION 

Fuzzy clustering algorithms, which are able to find out 
clusters from mixed data, provide systematic procedures to 
partition data space and therefore extract rules. In 1993, 
Hathaway and Bezdek proposed the fuzzy c-regression 
models (FCRM) clustering algorithm (see Hathaway and 
Bezdek, 1993) to fit switching regression models for certain 
types of mixed data. Instead of assuming that a single model 
accounts for all data pairs, the FCRM assumes that the given 
data are drawn from c  different regression models or hyper-
plane-shaped clusters. The measure of goodness is based on 
the fitness of the input-output data to these regression models. 
Minimization of the objective function in the FCRM 
clustering algorithm yields simultaneous estimates for the 
parameters of regression models together with a fuzzy c-
partition of the data.  

Recently, Kim et al. successfully applied the FCRM 
clustering algorithm to extract T-S fuzzy models (e.g. Takagi 
and Sugeno, 1985) from given data (see Kim et al., 1997). 
Each regression model is essentially a prototype that describes 
a local characteristic behaviour of the unknown system and 
the number of clusters is just the number of fuzzy rules. 
However, for an unknown system, the appropriate number of 
clusters (rules) is supposed to be unknown by users (see 
Chuang et al., 2001). The number of fuzzy rules is an 
important factor that affects the performance of a fuzzy model. 
While too many redundant rules result in a complex fuzzy 
model and increase implement difficulties, too few rules 
produce a less powerful one that may be insufficient to 
achieve the objective. In Kim’s approach, the number of 
clusters (rules), c , is increased and the fine-tuning procedures 
are repeated until the model performance is checked and 
acceptable. 

A related important issue to the fuzzy clustering algorithms is 
the cluster validity criterion, which deals with the significance 
of the structure imposed by a fuzzy clustering algorithm. 

There are many cluster validity criteria available, including 
Bezdek’s partition coefficient, partition entropy (see e.g. 
Bezdek, 1974, 1981; Pal and Bezdek, 1995), and Xie-Beni 
index (Xie and Beni, 1991) etc. But all of them are not 
designed for the FCRM clustering with hyper-plane-shaped 
cluster representatives.  

In this paper we adopt the compactness-to-separation ratio 
concept in Xie-Beni index and design a new cluster validity 
criterion for the FCRM clustering algorithm with affine linear 
functional cluster representatives. The numerator of the new 
cluster validity criterion combines the average flatness index 
(Babuska, 1998) with the objective function in FCRM to 
reflect the compactness validity function of the entire partition. 
The denominator of it defines the separation validity function 
as the “shift” from origin in y-axis and the absolute value of 
standard inner-product of unit normal vectors representing 
different hyper-planes. Therefore, we can judge the difference 
between regression models or hyper-plane-shaped clusters. 

While applying the new cluster validity criterion to determine 
the appropriate number of needed clusters for FCRM, we 
improve Kim’s fuzzy modelling approach (Kim et al., 1997) 
to construct a T-S fuzzy model with compact number of rules. 

The framework of this paper is organized as follows. In 
section 2, we briefly review the FCRM clustering algorithm 
with affine linear functional cluster representatives and 
propose a new validity criterion for it. In section 3, a new T-S 
fuzzy model identification algorithm is presented. In section 4, 
a numerical example is given to illustrate the potential of the 
proposed validity criterion and another example is given to 
illustrate the accuracy and effectiveness of the proposed fuzzy 
model identification algorithm. Conclusions are stated in 
Section 5. 

2. REVIEW OF CLUSTER ANALYSIS AND DESIGN OF 
NEW CLUSTER VALIDITY CRITERION 
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2.1 Review of Cluster Analysis  

Let },,1),{()},(,),,{( 11 NhyyyS hhNN LL === xxx  be a 
set of N  input-output data to be clustered, each independent 
input vector n

n
T

nhhh xx ℜ⊂×××∈= XXXx LL 211 ],,[  has a 
corresponding dependent output ℜ⊂∈ Yhy , where 

1X , 2X ,…, nX  are the domains of the input variables and Y  
denotes the domain of the output. The FCRM clustering 
algorithm assumes that the given input-output data are drawn 
from c  different affine linear regression models: 
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where 1
021 ],,,[ +ℜ∈= nT

iiniii θθθθ Lθ , 0iθ  is a constant that 
represents the bias or offset term. The parameter vectors iθ  
are needed to be determined. Label vectors assigned to each 
data pair can be arrayed as a )( Nc×  fuzzy c-partition matrix, 

][ ihU μ= , in which ihμ  is regarded as the membership of 
each input-output data pair ),( hh yx  belonging to the ith fuzzy 
cluster. All ihμ  are constrained labels (Ruspini, 1970): 
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The distance (measure of fitness) from every sampled 
),( hh yx  to the ith affine linear regression model with 

parameter iθ  are defined as follows 

 .]1[),()( hi
T
hhih

i
iih yyfd −=−= θxθxθ  (3) 

The objective function in FCRM clustering algorithm is then 
defined as follows: 
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where ),1( ∞∈m  is the weighting exponent. Minimization of 
the objective function (4) yields a fuzzy c-partition of the data, 
together with estimates for the c parameter vectors 
simultaneously. 

The FCRM clustering algorithm is executed in the following 
steps (see Hathaway and Bezdek, 1993): 

Step 1 Assign the number of the clusters c . Set the 
weighting exponent 1>m . Pick a termination 
threshold 0>ε  and an initial partition 

][ )0()0(
ihU μ= . Set iteration index .0=r  

Step 2 At each thr  iteration, calculate c parameter 
vectors iθ  that minimize the objective function 
(4) by using the weighted least square (WLS) 

algorithm (e.g. Ljung and Soderstrom, 1983) to 
),( hh yx , Nh ,,1 L= . 

Step 3 Update )(rU  to )1( +rU  as follows: 
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where }0)(,1|{ =≤≤= iihh dciiI θ  and hn  
is the number of elements in hI . 

Step 4 Check for termination in convenient induced 
matrix norms: 
If ε≤− + )1()( rr UU ,  stop;  

otherwise, set 1+= rr  and return to Step 2. 

2.2 Design of New Cluster Validity Criterion  

For fuzzy c-means (FCM) clustering algorithm (e.g. Hoppner 
et al., 1999), one commonly used cluster validity criterion 
called the Xie-Beni index (see Xie and Beni, 1991) is 
designed on the concept of compactness-to-separation ratio. 
The numerator of Xie-Beni index is a compactness validity 
function that fits the objective function of the FCM and 
reflects the compactness of clusters. The denominator is a 
separation validity function that measures the separation 
status of clusters. The smaller the separation validity function 
value is, the more probability there will be redundant cluster 
representative in the existed representatives. We adopt the 
compactness-to-separation ratio concept and propose a new 
cluster validity criterion for FCRM with affine linear 
functional cluster representatives. 

1) The Compactness Validity Function: Define the fuzzy 
covariance matrix of the ith cluster as follows: 

 
,1,1

;)())(()(
11

Nhci

N

h

m
ih

N

h

T
ihih

m
ihi

≤≤≤≤

−−= ∑∑
==

μμ vzvzF
 (6) 

where 1
1 ],,,[],[ +ℜ∈== nT
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T
hh yxxy Lxz  is the 

observation consisting of the hth sampled input-output data. 
iv  is the centers of the ith cluster calculated by 
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Defined the flatness index as the ratio between the smallest 
and the largest eigenvalue of iF  (see Babuska and 
Verbruggen, 1995): 
 maxmin −−= iiit λλ  (8) 

where min−iλ  is the smallest eigenvalue of iF  and max−iλ  is the 
largest one, respectively. The flatness index has low values 
for clusters which are large and flat. For the entire partition, 
the average flatness index is measured by (see Babuska, 1998): 
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When data describe a functional relationship, the clusters are 
usually flat (Babuska, 1998). We thus combine the average 
flatness index (9) with the objective function in (4) to obtain 
the compactness validity function, comf : 
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which prefers a few flat clusters to a large number of small 
ones; if both settings lead to approximately the same objective 
function value.  

2) The Separation Validity Function: The affine linear 
regression model defined in (1) can be regarded as a shift of 
linear hyper-plane hninhihih xxxy θθθ +++= L2211  by scale 

0iθ  in axisy − . By removing 0iθ , we have new linear hyper-
planes hninhihih xxxy θθθ +++= L2211  all pass through the 
origin 0 . We rewrite these linear regression models as 
follows: 

 0=i
T nζ  (10) 

where [ ] 1
1 ,,, +ℜ∈= nT

hhnh yxx Lζ  is a varying vector on the 

ith linear hyper-plane and 1]1,[ +ℜ∈−= nTT
ii θn  represents 

the normal vector of it. The corresponding unit normal vector 
of each hyper-plane in (10) can then be defined as 

 iii nnu =  (11) 

where   ⋅  denotes the Euclidean norm. 

Denote the Euclidean inner product of iu  and ju  as 

>< ji uu , , then >< ji uu ,  means the projection length (see 

Friedberg et al., 1989) of iu  on ju . Since the only factor that 
influences the projection length is the angle between iu  and 

ju , we thus use >< ji uu ,  to measure the angle between 

two regression models. 0, =>< ji uu  implies their linear 

hyper-planes are orthogonal, while 1, =>< ji uu  implies the 
coincidence of them. 

The “shift term” between two affine linear regression models 
is judged by ijγ  as follows: 

 ,max00 γθθγ Δ−= jiij  for jicji ≠= ;,,1, L , (12) 

where 00
,,1
,,1max max ji
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=
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L
L

. It is noticed that ijγ  has been 

normalized, i.e., ]1,0[∈ijγ . 

Accordingly, the separation validity function for affine linear 
regression models is then designed as follows: 
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where 1k  2k  are rather small real positive constants that 
prevents the function from being divided by zero or being 
zero. Obviously, sepf  in (13) also fits the concept of 
separation measure criterion: the smaller the separation 
validity function value is, the more probability there will be a 
redundant cluster in that one cluster is quite similar to another 
one. 

3) The New Cluster Validity Criterion: The proposed new 
cluster validity criterion is defined by the compactness-to-
separation ratio as follows: 
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The optimal number c is chosen when NEWF  reaches its 
minimum. In practice, the appropriate number c is chosen at 
which the first local minimum of NEWF  has occurred; 
moreover, when the cluster validity index decreases 
monotonically, we can choose c at which a significant change 
in its curvature has occurred (see Babuska, 1998; Xie and 
Beni, 1991). 

3. THE T-S FUZZY MODEL IDENTIFICATION 
ALGORITHM 

The T-S fuzzy model discussed in this paper is of the 
following form (e.g. Takagi and Sugeno, 1985; Wang, 1997): 
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where ci ,,2,1 L= , iR  denotes the ith IF-THEN rule and c  
is the numbers of rules in the rule base. ,,,1, nqxq L= are 

individual input variables, and i
qA  are bell-typed fuzzy sets 

with mean and standard deviation, i.e., 
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ℜ∈iy  is the output of each rule. ,,,1, nkik L=θ are 

parameters of the linear function and 0iθ  denotes a scalar 

offset. Given ,],,[ 1
T

nxx L=x  if the method of singleton 
fuzzifier, product fuzzy inference, and center average 
defuzzifier (see e.g. Wang, 1997) is employed, the output of 
the T-S fuzzy model ŷ  is inferred as follows: 
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where 
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The procedure of our T-S fuzzy model identification 
algorithm is outlined in the following steps:  

T-S fuzzy model identification algorithm 

Step 1 Get experimental input-output data ( )hh y,x , 
Nh ,,1 L= , from the unknown system. Choose 

the initial number of clusters MINcc = . 
Step 2 Apply the FCRM clustering algorithm to partition 

the product space of the given input-output data 
into c linear functional clusters. 

Step 3 Set 1+= cc  and repeat Step 2 to Step 3 until 
MAXcc = , the termination number of clusters. 

Step 4 Cluster validation: Use the proposed new cluster 
validity criterion NEWF  in (14) to determine the 
appropriate number of needed clusters  

Step 5 Construct the prototypes of fuzzy rules: the 
parameter estimations of i

qα  and i
qβ  can be 

roughly obtained from the fuzzy partitions matrix 
U by the axis-orthogonal projection method (see 
e.g. Babuska, 1998): 
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The parameters T
iiniii ],,,[ 021 θθθθ L=θ can 

inherit from the affine linear functional cluster 
representatives in FCRM. 

Step 6 Fine-tuning of the parameters: define a cost 
function 2

2
1 ))(ˆ)(( kykyJ −= . By the gradient 

descent method (e.g. Wang, 1994, 1997), the 
antecedent and consequent parameters in the T-S 
fuzzy model can be finely tuned to minimize J  by 
the following equations: 
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where )(ki
qαΔ , )(ki

qβΔ , and )(ki
qθΔ  denote the 

adjustments at each learning step k  as follows (we 
drop the argument k  for brevity):  
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Where 1η , 2η , and 3η are positive real-valued 
constants denoting the step-size. 

The deduction of the above fine-tuning laws (22)-(29) are 
introduced in Wang (1994, 1997). Pick two termination 
thresholds 0>αβε  and 0>aε , we can apply the fine-tuning 
laws (22)-(23) recursively until the termination conditions, 
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4. SIMULATIONS  

4.1 Example 1: Mixed data classification 

To validate the new cluster validity criterion NEWF , we 
consider the following example and compare the result with 
Bezdek’s partition coefficient PCv : 

 Nv
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The appropriate number c is chosen when largest PCv  appears. 

Given a mix of four linear equations with exogenous white 
Gaussian random noise )4,3,2,1( =iiε  having zero mean and 
variance 0.25: 
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we randomly generate 800 training input vector x  with each 
element uniformly distributed in the range [-5,5] and then 
apply each 200 of them to the four linear equations 
correspondingly. By the FCRM algorithm, we obtain cluster 
representatives and partition matrix U  for different c . we set 

001.01 =k  and 001.02 =k  in (14) and consider the following 
two cases: 

Case 1: 2=m . The plot of cluster index vs. cluster number is 
depicted in Fig. 1. We see that both the Bezdek’s partition 
coefficient and the new cluster index indicate the correct 
answer 4=c . The affine linear regression models obtained 
by the FCRM algorithm are listed below: 
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Fig. 1. The plot of cluster index vs. cluster number in Example 
1 Case 1. 
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which are quite close to the nominal linear equations. 

Case 2: 05.1=m . The partition result is close to the hard c-
partition. (Bezdek, 1981). The plot of cluster index vs. cluster 
number is depicted in Fig. 2. We see that NEWF  can find the 
correct number of clusters, 4, but PCv  can’t recognize 4 or 7 
as the correct number of cluster. This numerical example 
illustrates that the proposed NEWF  can be applied for a wider 
range of m and is reliable to validate the FCRM partition. 

4.2 Example 2: Fuzzy modeling for nonlinear plant 

Consider a nonlinear system described by the following 
second-order difference equation (Wang and Yen, 1999; 
Setnes and Roubos, 2000): 

 )(
)2()1(1

)5.0)1()(2()1(
)())1(),(()1(

22 ku
kyky

kykyky
kukykyfky

+
−+−+

−−−−
=

+−=+
 (32) 

 
(a) 

 
(b) 

Fig. 2. The plot of cluster index vs. cluster number in Example 
1 Case 2.  

Our objective is to build a T-S fuzzy model that can serve an 
approximation of )(•f  in (32) with high accuracy and use as 
few IF-THEN rules as possible. 

Choose )(ky  and )1( −ky as the antecedent variables, then the 
fuzzy model is described as follows: 
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21
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θθθ +−+=+

−  (33) 

where i
qA  are bell-shaped fuzzy sets with mean i

qα  and 

standard deviation i
qβ  for ;2,1=q  Tiii

i ],,[ 021 θθθ=θ  are the 
consequent parameter vectors. We choose a hybrid input 
signal with partly uniformly distributed white random signal 
and partly sinusoidal one as the training input signal (see e.g. 
Wang and Yen, 1999; Setnes and Roubos, 2000), i.e., )(ku  is 
a uniformly distributed random signal in the range [ ]1,1−  for 

2001 ≤≤ k , and )25/2sin()( kku π=  for 400200 ≤≤ k . The 
number of training data 400=N . The termination threshold 
in the FCRM is chosen as 0001.0=ε , and the learning step-
size for 1η , 2η , and 3η  is set to be 0.005, 0.005, and 0.5, 
respectively. The plot of NEWF  vs. cluster number c is shown 
in Fig. 3 with 001.021 == kk . We find 3=c  provides a 
good choice for the number of clusters. The parameters of the 
antecedent and the consequent parts are listed in Table 1 and 
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Table 2, respectively. Define the mean square error as 

( ) Nkyky
N

k
∑

=

−=
1

2)(ˆ)(MSE . The comparative results in the 

literatures are listed in Table III. We see that the proposed 
identification method is capable of obtaining competent 
results using fewer rules than other approaches reported in the 
literatures. 

5. CONCLUSIONS 

In this paper, a new cluster validity criterion NEWF  designed 
for the FCRM clustering algorithm with affine linear 
functional cluster representatives is proposed. A modification 
of Kim’s fuzzy modelling approach (Kim et al., 1997) is 
proposed as well to construct a T-S fuzzy model with compact 
number of rules.A The simulation results illustrate that NEWF  
is applied for a wider range of m and the T-S fuzzy model 
obtained by the proposed fuzzy model identification algorithm 
is able to well approximate the discrete-time nonlinear plant 
with satisfactory results. 

ACKNOWLEDGMENTS 

This work was supported by the National Science Council of 
Taiwan, Republic of China, under grant 96-2221-E-036-033-
MY2. 

REFERENCES 

Babuska, R. and H. Verbruggen (1995). New approach to 
constructing fuzzy relational models from data. In: 
Proceedings of 3rd European congress on Intelligent 
Techniques and soft Computing EUFIT’95, Aachen, 
Germany, 583-587. 

Babuska, R. (1998). Fuzzy Modeling for Control. Boston: 
Kluwer Academic Publishers. 

Bezdek, J. C. (1974). Cluster validity with fuzzy set. Journal 
of  Cybernetic, 3, 58-72. 

Bezdek, J. C. (1981). Pattern Recognition with Fuzzy 
Objective Function Algorithms. New York: Plenum. 

Chuang, C. C., S. F. Su and S. S. Chen (2001). Robust TSK 
fuzzy modeling for function approximation with outliers. 
IEEE Transactions on Fuzzy Systems, 9, 810-821. 

Friedberg, S. H., A. J. Insel and L. E. Spence (1989). Linear 
Algebra. NJ: Prentice-Hall. 

Hathaway, R. J. and J. C. Bezdek (1993). Switching 
regression models and fuzzy clustering. IEEE 

Transactions on Fuzzy Systems, 1, 195-204. 
Hoppner, F., F. Klawonn, R. Kruse, and T. Runkler (1999). 

Fuzzy cluster analysis, methods for classification, data 
analysis and image recognition. John Wiley & Sons. 

Kim, E., M. Park, S. Ji, and M. Park (1997) A new approach 
to fuzzy modeling. IEEE Transactions on Fuzzy Systems, 
5, 328-337. 

Ljung, L. and T. Soderstrom (1983). Theory and practice of 
recursive identification. MIT Press. 

Pal, N.R. and J.C. Bezdek (1995). On cluster validity for the 
fuzzy c-means model. IEEE Transactions on Fuzzy 
Systems, 3, 370-379. 

Ruspini, E. (1970). Numerical method for fuzzy clustering. 
Information Science, 2, 319-350. 

Setnes, M. and H. Roubos (2000). GA-fuzzy modeling and 
classification: complexity and performance. IEEE 
Transactions on Fuzzy Systems, 8, 509-522. 

Takagi, T. and M. Sugeno (1985). Fuzzy identification of 
systems and its applications to modeling and control. 
IEEE Transactions on Systems, Man and Cybernetics, 15, 
116-132. 

Wang, L. X. (1994). Adaptive Fuzzy Systems and Control: 
Design and Stability Analysis. Prentice-Hall. 

Wang, L. X. (1997). A Course in Fuzzy Systems and Control. 
New York: Prentice-Hall. 

Wang, L. and J. Yen (1999) Extracting fuzzy rules for system 
modeling using a hybrid of genetic algorithms and 
Kalman filter. Fuzzy Sets and Systems , 101, 353-362. 

Xie, X. L. and G.A. Beni (1991). Validity measure for fuzzy 
clustering. IEEE Transactions on Pattern Analysis and 
Machine Intelligence, 3, 841-846. 

 

 

 

 

 

Fig. 3. The plot of NEWF  vs. cluster number c in Example 2. 

Table 2 List of consequent parameters in Example 2 

 i
1θ  i

2θ  i
0θ  

1=i  0.4603 0.1938 0.1926 
2=i  -0.0953 0.2673 0.0900 
3=i  -0.0087 -0.0638 -0.0082 

Table 1 List of antecedent parameters in Example 2 

 i
1α  i

1β  i
2α  i

2β  
1=i  -0.9175 0.4732 -0.8998 0.3259 
2=i  1.4970 0.7024 0.2014 0.5541 

3=i  0.3879 0.3337 0.2867 0.7132 

Table 3 Comparative results of Example 2 

Ref. No. of 
rules No. of sets Consequent MSE 

Setnes & 
Roubos 

7 
5 
4 

14 Triangular 
8 Triangular 
4 Triangular 

Singleton 
Affine Linear 
Affine Linear 

3.0e-3
7.5e-4
1.2e-3

Wang & Yen 28 40 Gauss Singleton 3.3e-4
The proposed 

method 
3 6 Gauss Affine Linear 5.2e-4
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