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Abstract: A neural network based fault tolerant control for unknown nonlinear systems is
proposed. The faultless system is controlled by a nonlinear Internal Model Controller (IMC),
where both the direct and inverse models of the plant are carried out by neural networks.
Using the residual signal generated from the fault detection path, an extra neural-network fault
compensation loop is introduced. This neural network is a two layer perceptron and the weights
and bias are updated on-line by the modified-gradient approach, which tries to minimize the
control error induced by the fault. In this context, a fault tolerant control scheme is obtained.
This scheme is tested in simulation in a pH plant with good results.

Keywords: Fault tolerant control, adaptive nerual networks, IMC Control, non-linear systems,
pH plant

1. INTRODUCTION

It is well known that every control system will inevitably
be subjected to faults which can be caused by actuators,
sensors or system faults. Therefore, how the system is
kept in a stable and acceptable control performance when
a failure occurs is an important issue in control-systems
design. This leads to the fault tolerant control (FTC)
(Blanke et al., 2003).

Currently, in most real industrial systems FTC are real-
ized by hardware redundancy. For example, the majority-
voting scheme is used with redundant sensors to cope with
sensor faults (Patton et al., 2000). However, due to two
main limitations of the hardware redundancy, high cost
and taking up more space, solutions using analytical re-
dundancy have been investigated over the last two decades.
There are generally two different approaches using analyt-
ical redundancy: (1) passive approaches, and (2) active
approaches.

Passive approaches use robust control techniques to de-
sign closed-loop systems so that there are insensitive to
certain faults (Niemann and Stoustrup, 2004). Active ap-
proaches use on-line fault detection information and re-
configurable controllers. When a fault is detected using
analytical or hardware redundancy, the controller is recon-
figured to guarantee the post-fault stability and maintain
acceptable performance. Active FTC has been investigated
using different methods including feedback linearization
(Ochi, 1993), model following control (Morse and Ossman,
1990) or state feedback using the pseudo-inverse method
(Staroswiecki, 2005). However these studies were based
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on linear models so they are not suitable for non-linear
processes.

More recently, it was reported that neural networks had
been employed to tackle FTC problems for nonlinear sys-
tems. So, Wang and Wang (1999) use a neural network in
a FTC system to form an additional feedback loop, which
was used to compensate for the degradation of system
performance caused by component faults. Polycarpou and
Helmicki (1995) use an on-line approximator (that could
be a neural network, a fuzzy system, etc.) that is adapted
when a fault occurs by a learning scheme based on the
Lyapunov theory. In the event of a failure the control
law in normal conditions is augmented with an additional
term, which takes into account the on-line approximator
and a term to assure the system’s stability. Saludes and
Fuente (1999) use a predictive controller with a non-linear
model calculated by a recurrent neural network to control
a reactor tank, after that, when a fault in a sensor is
detected, they substitute the fault measurement by the
output of the recurrent neural network. Finally, Yu et al.
(2005) use a multi-layer perceptron network as the process
model which is adapted on-line using the extended Kalman
filter to learn changes in the process dynamics. Then, the
inversion of the neural model is used as a controller to
maintain stability and control performance after a fault
occurrence.

In this paper, a new FTC approach for unknown non-
linear dynamic systems is proposed. The approach uses
a nonlinear Internal Model Controller (IMC) as faultless
controller, in which a backpropagation network is used for
the construction of the plant model, and its inverse has
been implemented by means of an Elman neural network
(Elman, 1990). Both are used directly within the IMC
control structure. Besides this, a compensation loop is
introduced when a fault is detected in the system. This
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Fig. 1. Structure of the IMC control scheme

loop is implemented by a two layer neural network, whose
weights and bias are updated on-line using a modified-
gradient algorithm in terms to reduce the control error
induced by the fault. Results for a pH plant, i.e., a non-
linear system are presented.

This paper is organized as follows. In section 2 the nonlin-
ear IMC control scheme is described. In section 3 the fault-
tolerant scheme is presented. The next section describes
the application of this methodology to the pH plant, with a
description of the plant, of the fault-tolerant control design
system, and the results when different faults have occurred
in the plant. Finally, section 5 concludes the paper.

2. THE NONLINEAR IMC

The basic idea of the linear Internal Model Control (IMC)
is illustrated in Figure 1. The key characteristic of this
control design approach is the inclusion of a plant model
within the control structure. If the model is a perfect
representation of the process, the influence of the process
output on the feedback signal vanishes. The feedback
signal then only carries the influence of disturbances.
However, in practice, a model is not a perfect description
of the plant. The feedback signal then combines the model
error with the disturbances. Based on this structure,
perfect control is obtained if the controller, C, is chosen as
the inverse of the internal model, M . IMC controllers have
been extensively studied in the case of linear modeling
of the process (Morari and Zafirou, 1989), and have
been shown to have good robustness properties against
disturbances and model mismatch.

The nonlinear version of the IMC is analogous to the linear
one. The difference is that the model of the plant, M ,
and the controller, C, are nonlinear functions, as neural
networks (Rivals and Personnaz, 2000). The system F in
Fig. 1 is a linear filter that can be designed in order to
reach some desired robustness or tracking properties in
the closed loop system.

In this paper the plant model is carried out by a back-
propagation neural network. This network is trained in the
classical way, i.e., the error signal used to adjust the net
weights is the difference between the plant output and the
network output. Thus, the net is forced towards learning
the plant dynamics. The second step is to obtain a plant
inverse model, which is calculated by training an Elman
neural net. Here, the plant model (obtained in the first
learning step) is used in the inverse learning architecture
rather than the plant itself. For inverse modeling, the
error signal used to adjust the network is defined as the

difference between a synthetic signal (the desired network
output) and the network output. This tends to force the
transfer function between the reference and the output of
the model to unity; i.e., the network being trained is forced
to represent the inverse model of the plant model.

3. FAULT TOLERANT CONTROL

A fault tolerant controller should be able to maintain the
closed-loop operation to a certain degree in presence of
faults. This can be achieved by minimizing the difference
between the reference and the output of the system when a
fault occurs. For this, when a fault is detected the control
input u1(t) calculated by the nominal controller (IMC) is
not enough to compensate the fault effect, and in this case
a new control signal uc(t) is calculated by the compensa-
tion loop introduced in this paper, for the total control
signal u(t) = u1(t) + uc(t) to be able to maintain the
control objectives. With this fault compensation loop, the
structure of the closed loop system can now be obtained
as shown in Fig. 2, where the FDI module should be some
fault detection and identification algorithm used to detect
the faults. In this form the value of the compensator, uc(t)
is zero until the FDI algorithm detects a fault.

Fig. 2. Structure of the nonlinear fault-tolerant controller

A two-layer perceptron network is used as the compen-
sator; this leads to the input and the output relationship
of the selected neural network compensator being given
by:

uc =
h+1
∑

j=1

νjϕ̃ (aj) (1)

aj =
n+1
∑

i=1

wi,j ẽi (2)

where ẽ = [e1, e2, . . . , en, 1], and ei = e(t − i + 1) the
inputs to the neural network, with e(t) = ref(t) − y(t)
the control error, i.e., the difference between the reference
and the plant output. uc(t) is the output of the neural
network compensator, and ν and w are the weights. n and
h are the number of neurons in the input and hidden layer,
respectively, and

ϕ̃(aj) = [ϕ(a1), ϕ(a2), . . . , ϕ(ah), 1] (3)

The activation function can be each nonlinear function,
but in this case it is represented in eq. (4) and its derivative
is in eq. (5):
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ϕ (x) =
2

1 + e−2x
− 1 (4)

dϕ (x)

dx
= ϕ̇(x) =

4e−2x

(1 + e−2x)
2 (5)

3.1 On-line training

The gradient-based updating rule for the parameters w
and ν can be expressed as:

wi,j(t) = wi,j(t − 1) − η
∂E(t)

∂wi,j(t)
(6)

νi(t) = νi(t − 1) − η
∂E(t)

∂νi(t)
(7)

where η is the learning rate and E(t) is a function of the
tracking error (e(t) = ref(t) − y(t)) defined as:

E(t) =
1

2

t
∑

k=1

e(k)2 (8)

The derivatives that appear in eqs. (6) and (7) can be
calculated using the chaining rule as:

∂E(t)

∂νi(t)
=

∂E(t)

∂e(t)

∂e(t)

∂y(t)

∂y(t)

∂u(t)

∂u(t)

∂uc(t)

∂uc(t)

∂νi(t)
(9)

∂E(t)

∂wij(t)
=

∂E(t)

∂e(t)

∂e(t)

∂y(t)

∂y(t)

∂u(t)

∂u(t)

∂uc(t)

∂uc(t)

∂wij(t)
(10)

It is possible to solve all the partial derivatives in eqs.

(9) and (10) easily, except for ∂y(t)
∂u(t) , the plant sensitivity,

which is unknown if a model of the process is not available.
But this equation can be substituted by its sign, which is
the sign of the process gain (Cui and Shin, 1993). These
derivatives are:

∂E(t)

∂e(t)
= e(t) (11)

∂e(t)

∂y(t)
=−1 (12)

∂y(t)

∂u(t)
= sign(K) (13)

∂u(t)

∂uc(t)
= 1 (14)

Finally, for the calculation of the other derivatives, it is
also possible to use the chaining rule:

∂uc

∂νi

=
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(15)

Fig. 3. Laboratory plant
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wi,1ẽi) ... νhe1ϕ̇(

∑

i
wi,hẽi)
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...
. . .

...
ν1enϕ̇(

∑

i
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(16)

All these equations can be calculated in real time, because
of the reduced size of the network. The most important
parameter here is the learning rate, η. With large values
of this parameter, the speed of the convergence increases,
but the system can become unstable. With low values of
η the behavior is better but the response is slower. In this
case the parameter η is variable depending on the control
error, i.e., with large errors the learning rate is faster, and
with low regulation errors the learning rate is slower.

η = γ|e(t)| (17)

with the γ parameter changing in real time, from a very
small value, 10−6 by example, at the beginning of the
learning task and it can increase slowly until it reaches
the desired behavior.

4. APPLICATION OF THE FTC SCHEME TO THE
PH PLANT

4.1 Description of the experiment setup

In this study the process is to modify the pH value
of an aqueous solution titrated with hydrochloric acid
(HCl) in a continuous stirred tank reactor (CSTR). The
experimental setup is shown in Figure 3. An overflow
system (not shown) is applied on the CSTR; therefore the
volume can be considered constant. The control variable
u is the flowrate of the titrating stream which is feed
using a peristaltic pump (ISMATEC MS-1 REGLO/6-
160). The output variable y is the hydrogen ions in the
effluent stream, measured as pH. The pH mixture is
measured using an Ag-AgCl electrode (Kent 1180/700)
and transmitted using a pH-meter (Kent EIL9143).

4.2 Plant model

The model of the plant has been obtained based on first
principles, and then validated in the real plant, by carrying
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Fig. 4. Plant and neural network outputs for the validation
data set, i.e., the direct model M .

out experiments at different working points. Assuming
that the liquid is water, the hydrochloric acid has constant
concentration, the temperature is constant (25C) and
there are perfect dissolution, mixing and no additional
buffering effects, the following model can be obtained:

dMNd

dt
= qaNa − (qa + q0)Nd

pH∗ = −log(Nd) −
dpH∗

dt
+ w

(18)

where qa is the control acid stream flowrate, q0 the inlet
water flowrate, Nd the acid concentration in the solution,
Na the acid concentration in the control acid stream, the
measured pH is pH∗, which is affected by a time constant
τ and w is the noise.

4.3 Nonlinear IMC application

The three elements that conform the IMC controller are
the internal model, M , the inverse model, C and the
robustness filter F. In this paper the nonlinear plant model
used is a multi-layer perceptron network, with five neurons
in the hidden layer and trained with the backpropagation
algorithm. The output of the network is pH(t) and the
inputs are:

EM (t) = {qa(t), ..., qa(t − 2), pH(t − 1), ..., pH(t − 3)}(19)

Figure 4 shows the validation results obtained after train-
ing. It can be seen that the model follows faithfully the
plant output.

The controller, i.e., the inverse model of the plant is
calculated with an Elman neural network, whose output is
qa(t) and the inputs are presented in eq. (20). This network
has been trained using the plant outputs as inputs in the
training set and plant inputs become the outputs in the
training set.

EC(t) = {pH(t), ..., pH(t − 7)} (20)

The results for validation data set are shown in Figure 5.
Finally the filter, F used in the IMC structure (Fig. 1), is:

F (z) =
Tz

z − (1 − T )
(21)
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Fig. 5. Acid flow and neural network output for the
validation data set, i.e., the inverse model C.
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Fig. 6. Controlled plant output in absence of faults and
perturbations

where T = 1 − α and, for ensuring stability, 0 < α < 1
must be held. The value that has been chosen is α = 0.9.

Some control experiments have been carried out in the pH
plant, to show the results of the IMC controller. Fig. 6
shows the results when the reference changes over all the
operation range of the system.

4.4 Fault-tolerant control in the pH plant

Two different fault types have been considered in this
work, first a fault in the actuator, the pump that feeds
the acid flow in the system, and second a parametric fault
is considered, when the flow of water at the input of the
plant changes considerably, this flow is not measured in
the plant, and it can be considered as an internal fault.

First, Figure 7 shows the output of the plant when a
fault in the actuator is simulated at t = 1900s and any
accommodation is carried out in the plant. As it is possible
to see, the fault causes the output of the plant to go outside
the reference, because the nominal controller is not able
to compensate the fault, and it is not able to continue
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(a) Fault in the actuator.
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(b) Fault in the inlet water flowrate.

Fig. 7. Plant output when different faults are simulated
and any accommodation is carried out.

controlling the plant adequately. Also, if the fault occurs in
the inlet water flow, the controller is not able to maintain
the output tracking the reference, as it is possible to see
in the same figure.

In this approach, when a fault is detected, the nominal
controller is modified by the adding of a compensation
signal, i.e., the new control signal is calculated as: u(k) =
u1(k) + uc(k). In order to calculate this compensation
signal, uc(t), a neural network with two layers is used, this
network has two inputs, 5 neurons with the hyperbolic
tangent as the activation function in the hidden layer and
one neuron with linear function in the output layer. This
network has been trained on-line with the algorithm shown
in section 3.1. The inputs to the network are:

ẽ(t) = {e(t), e(t − 1)} (22)

with e(t) = ref(t) − y(t), i.e., the tracking error.

Some experiments have been carried out to show the
results of the fault tolerant controller designed here. Figure
8 shows the results when a fault in the input flow of water
to the plant is simulated at t = 1900s. First the nominal
control signal u1(k) is shown, second the compensator
signal uc(k), that is zero until the fault is detected, third
the real control signal that is introduced into the plant is
shown (u(k) = u1(k)+uc(k)), and finally the output of the
system, which changes at the time that the fault occurs, i.e,
there is an overshot due to the fault, but the compensator
procedure is able to accommodate the fault rapidly and
after that the plant output follows the reference at all
instants.

Fig. 9 presents the results when a step fault in the actuator
is simulated at t = 1900s. As before, it is possible to see
that the neural network compensator is able to minimize
the tracking error in a few instants of time, and the
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(a) Nominal control signal: u1(t).
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(b) Compensation control signal: uc(t).
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(c) Control signal: u(t) = u1(t) + uc(t).
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Fig. 8. Plant output and control signals when a fault is
simulated in the inlet water flowrate and the accom-
modation is carried out.

system can accommodate the fault. The same graphic also
shows the behavior of the nominal control signal, u1(t),
the compensator signal, uc(t) and the control signal u(t).

Also, if both faults are simulated simultaneously, the first
one, i.e., the fault in the inflow of water at t = 1700s,
and the second one, the fault in the actuator at t =
3200s after a change in the reference, the FTC is able
to maintain the output of the system in the reference, as
can be seen in Figure 10, where only the final control
signal (u(t) = u1(t) + uc(t)) and the plant output are
shown. Since time t = 3200s the two faults are presented
simultaneously in the system, and the compensator loop is
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Fig. 9. Plant output and control signals when a fault is
simulated in the actuator and the accommodation is
carried out.
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Fig. 10. The plant output and the control signal u(t) when
the two faults are simulated simultaneously and the
accommodation is carried out.

able to compensate both faults and to maintain the control
objective.

5. CONCLUSIONS

This paper has dealt with fault-tolerant control in the con-
text of IMC control, but this approach can be generalized

to every possible control strategy. This paper proposes a
compensator which, when a fault is detected, generates
a new control signal that, added to the nominal control
signal, calculates the control signal to be introduced into
the plant. This compensator is implemented by a neural
network trained on-line using a modified-gradient algo-
rithm to reduce the control error in the system. This
compensator does not need any a priori knowledge of the
plant after the fault, only need the tracking error, i.e.,
the difference between the reference and the output of the
plant generated by the fault. This fault tolerant control has
been proved in a pH plant, with different types of faults,
actuator and internal faults with good results. Now, the
next step is to prove the method in the real plant.
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