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Abstract: When the number of data used for an identification experiment is small, the data
contain transient effects and these effects contribute to the accuracy of the identified model.
Consequently, when designing the optimal input signal for an identification experiment in the
case of small data set, these transient effects have to be taken into account. In this paper, we
present a methodology for optimal experiment design which, unlike other approaches such as the
asymptotic approach, takes explicitly the transient effects into account. This paper is restricted
to model structures that are linear in the parameter and to multisine input signals.

Keywords: optimal experiment design; system identification; prediction error methods; convex
optimization; sine waves

1. INTRODUCTION

This paper deals with the optimal design of the input
signal of an identification experiment when the number N
of data available for this identification is (possibly) small.

The typical approach to optimal experiment design has
been to maximize the accuracy of the identified model for
a given experiment time and under prespecified constraints
on input power (see e.g. (Goodwin and Payne, 1977;
Ljung, 1999)). In recent contributions this trade-off has
been addressed from the dual perspective; this is the
dual perspective that we will here consider. In this novel
framework, assuming that the experiment duration N is
fixed, the optimal (open-loop) identification experiment
is defined as the experiment whose input signal power
is minimized under the constraint that the accuracy of

the identified model G(z, θ̂N) remains above some pre-
specified threshold Radm (Bombois et al., 2006):

arg min
u(1)...u(N)

1

N

N∑

t=1

u2(t)

subject to P−1
θ ≥ Radm

(1)

As can be seen in (1), the accuracy of G(z, θ̂N) is here
measured (for simplicity) via the inverse of the covariance

matrix Pθ of θ̂N and Radm is therefore also a matrix.
However, more sophisticated accuracy constraints can also
be used (see e.g. (Jansson and Hjalmarsson, 2005; Bombois
et al., 2006)). Due to the fact that expressions for Pθ can
generally be determined only for the case where the num-
ber N of data tends to infinity, this problem is generally
treated under this assumption (Ljung, 1999; Jansson and
Hjalmarsson, 2005; Bombois et al., 2006). The experiment
design problem is then solved by determining the power
spectrum of the input signal using this asymptotic ex-

pression of Pθ and assuming thus that this asymptotic
expression represents a good approximation of the actual
variance obtained with a finite number of data. However,
since, in this paper, we are particularly interested in the
case where N is small, the asymptotic theory is not the
most appropriate.

Expressions for Pθ that are also valid for finite (small)
N can be determined if the model structure used for the
identification is linear in the parameter (FIR, Laguerre
model structures) (Ljung, 1999). In (Bombois and Gilson,
2006), it was shown that (1) could be made convex by
determining u(t) within the (restricted) class of PRBS
input sequences. In the present paper, our objective will
be to extend the results in (Bombois and Gilson, 2006)
by considering a more extended class of signals (Pintelon
and Schoukens, 2001) i.e. the class of multisines (sum of
sinusoids) having a fundamental period exactly equal to
the number N of data. More precisely, assuming that the
phases of the multisine are given, we compare different
(convex) methods to determine the amplitudes of the mul-
tisine solving (1). For the considered class of input signals,

the power 1
N

∑N

t=1 u2(t) can be written as a linear function
of the squared amplitudes of the multisine. Unfortunately,
P−1

θ is not affine in the squared amplitudes. Consequently,
to be able to use convex optimization to solve (1), we
cannot use the exact expression for P−1

θ , but we must
instead use an approximation of this matrix which is affine
in the squared amplitudes. This can be done by using the
asymptotic theory or by supposing that the system has
reached steady-state (see e.g. (Jansson, 2004)[Corollary
4.2]). In fact, these approximations neglect the transient
effects. Transient effects are nevertheless always present
when the system is excited for identification purpose after
having been at rest (the case considered in this paper)
and they contribute to a better identification by increasing
the amount of excitation. Consequently, the available ap-
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proximations of P−1
θ obtained by neglecting the transient

effects are therefore not the most appropriate when N is
small. We therefore introduce new approximations of P−1

θ
as affine functions of the squared amplitudes that explicitly
take these transient effects into account. Based on these
affine approximations of P−1

θ , the experiment design prob-
lem can be solved using convex optimization. However, due
to the approximation of P−1

θ , it is not guaranteed that the
constraint in (1) is effectively met with the determined
signal. Another contribution of this paper is therefore to
introduce a methodology to scale the determined input
signal in order to ensure that the constraint P−1

θ ≥ Radm

is effectively met. The input signal determined using this
convex approach in two steps is suboptimal. However, even
though it is absolutely not a necessity, the resulting mul-
tisine can thereafter be refined by using it as the starting
value for a non-linear optimization algorithm (Goodwin
and Payne, 1977) which will allow to further approach the
global optimum of (1). Note that a non-linear optimization
algorithm generally needs to start sufficiently near the
global optimum to lead to a reliable result. The multisine
obtained via our suboptimal algorithm is therefore a good
candidate for this starting value.

2. IDENTIFICATION FRAMEWORK

We consider the identification of a linear time-invariant
single input single output system:

S : y(t) = G(z, θ0)u(t) + e(t) (2)

with G(z, θ0) a transfer function with an unknown param-

eter vector θ0 ∈ Rk that we wish to identify. Here, to
simplify the notations, the additive noise e(t) is assumed
to be the realization of a Gaussian white noise of variance
σ2

e . However, colored noise can be treated as well (see
Section 7). We further assume that G(z, θ0) is linear in θ0

i.e. G(z, θ0) = Λ(z)θ0 where Λ(z) = (Λ1(z) Λ2(z)...Λk(z))
is a row vector containing the first k elements of a series
of basis functions Λi(z) (i = 1...∞). Examples of those
basis functions are the FIR basis with Λi(z) = z−i and

the Laguerre basis with Λi(z) = z−1

√
1−ξ2

1−ξz−1

(
−ξ+z−1

1−ξz−1

)i−1

for some real-valued pole ξ (see Heuberger et al. (2005) for
other examples and a discussion on the generality of this
parametrization).

We consider the case where the system (2) is at rest for
t ≤ 0 i.e. u(t) = 0 for t ≤ 0 and where the data required

for the identification of a model G(z, θ̂N ) = Λ(z)θ̂N of
the true system G(z, θ0) are collected by applying, from
t = 1 to t = N , an input sequence u(t) (t = 1...N) to (2)
and by measuring the corresponding output signal y(t)
(t = 1...N). Based on this (possibly small) input-output

data set, the parameter vector θ̂N of the identified model is
computed in the prediction error framework (Ljung, 1999):

θ̂N = M−1 1

N

N∑

t=1

φ(t)y(t) (3)

with M =
1

N

N∑

t=1

φ(t)φT (t) and φT (t) = Λ(z)u(t). (4)

By using the fact that y(t) = φT (t)θ0 + e(t), (3) can

be rewritten as: θ̂N = θ0 + M−1 1
N

∑N
t=1 φ(t)e(t). Since

e(t) is supposed to be Gaussian white noise, we see that

the identified parameter vector θ̂N is normally distributed
with mean θ0 and its covariance matrix is given by:

Pθ =
σ2

e

N

(

1

N

N∑

t=1

φ(t)φT (t)

)−1

=
σ2

e

N
M−1 (5)

It is important to note that the statistical properties of

θ̂N are exact even for small data sets. Note also that Pθ

is dependent on the data set only via the input sequence
u(t) (t = 1...N). In the sequel, the matrix M in (5) will be
called, with some abuse, the information matrix and we
will assume that we know (an estimate of) σ2

e .

3. EXPERIMENT DESIGN

In this paper, our objective is to determine an optimal
input sequence {u(t) t = 1...N} for the identification

of θ̂N . The optimal input sequence is here defined as the
solution of the optimal experiment design problem (1).
As mentioned in the introduction, we consider the case
where the input sequence has to be determined in the
class of multisines whose fundamental period is equal to
the number N of data. This class is given by:

u(t) =

m∑

i=1

Ai cos(iω0t + αi) with ω0 = 2π
N

(6)

where the amplitudes Ai ≥ 0 (i = 1...m) are the variables
to be designed in order to achieve the required objective
while the phase shifts αi (i = 1...m) are supposed given
(e.g. randomly chosen). The fundamental frequency ω0

is chosen equal to 2π/N in such a way that the input
sequence {u(t) | t = 1...N} exactly represents one period
of u(t) (t = −∞...+∞). The number m of cosines in (6) is a
user-choice and can be chosen up to N/2. Note that, with
m = N/2, the parametrization would allow to represent
any zero-mean signal of length N if the phase shifts could
be tuned with the amplitudes.

With an input signal such as in (6), the power of the
input sequence which is the cost function of the considered
optimal experiment design problem (1) can be rewritten
as:

1

N

N∑

t=1

u2(t) =

m∑

i=1

A2
i

2
(7)

and the information matrix M (see (5)) has a particular
structure:

M =
1

N

N∑

t=1

φ(t)φT (t) =
m∑

i=1

m∑

j=1

Ai Aj Mij (8)

with Mij =
1

N

N∑

t=1

φi(t)φ
T
j (t) (9)

where φT
i (t) = Λ(z)cos(iω0t + αi) (i = 1...m).

Based on the above expressions, the optimal multisine for
the identification is the multisine having the amplitudes
Ai which solve the following optimization problem:
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arg min
Ai (i=1...m)

m∑

i=1

A2
i

2

subject to
N

σ2
e

m∑

i=1

m∑

j=1

Ai Aj Mij

︸ ︷︷ ︸

=M

≥ Radm

(10)

This optimization problem is nonconvex since M is not
affine in the squared amplitudes A2

i (i = 1...m) like the
cost function. If it would have been the case, (10) would
boil down to an LMI-based optimization problem with de-
cision variables A2

i (i = 1...m). Since solving this problem
directly is not tractable, we will proceed in two steps. In a
first step, we will replace M in (10) by a (close) approxima-
tion Mappro which is well affine in A2

i (i = 1...m) and solve
the modified optimization problem. The input sequence
u1(t) obtained by solving this modified problem is designed
to meet the approximated constraint N

σ2
e
Mappro ≥ Radm

and thus not the actual accuracy constraint N
σ2

e
M ≥ Radm.

As a consequence, u1(t) could be not enough powerful
to meet this constraint or, conversely, the power of u1(t)
could be larger than strictly necessary for this constraint
to hold. The second step will therefore consist of scaling
u1(t) in order to meet (just) N

σ2
e
M ≥ Radm. In this two step

method, the first step is classical while the second, even
though obvious, seems new. This procedure is summarized
in the following algorithm:

Algorithm 1. Consider the optimal experiment design
problem (10) and a symmetric and positive-definite matrix

Mappro ∈ Rk×k that is affine in A2
i (i = 1...m) and that

is such that Mappro ≈ M . A (suboptimal) solution of
this experiment design problem is given by the multisine
u(t) = ξoptu1(t) where ξopt and u1(t) are defined as follows:

1) The signal u1(t) is a multisine (6) whose amplitudes
Ai (i = 1...m) are determined via the following convex
optimization problem with decision variables A2

i (i =
1...m)

arg min
A2

i
(i=1...m)

m∑

i=1

A2
i

2

subject to
N

σ2
e

Mappro ≥ Radm

(11)

2) The scaling factor ξopt is a scalar determined as the
solution of the following convex optimization problem:

ξopt = arg min
ξ

ξ

subject to
N

σ2
e

M(ξu1) ≥ Radm

(12)

where M(u) represents the information matrix M (see (8))
that is obtained for a signal u(t) (t = 1...N) and u1(t) is
the multisine determined via (11).

The correction factor ξopt can be easily determined since
we have that M(ξu) = ξ2M(u). It is important to note
that, due to the approximation Mappro ≈ M , the input

sequence determined via Algorithm 1 is only a suboptimal
solution of the actual experiment design problem (10).
However, the better the approximation Mappro ≈ M , the
closer to the optimum the determined input sequence will
be. In the sequel, we will therefore investigate how an
appropriate approximation for the information matrix can
be found. Recall that Mappro ≈ M must be affine in the
squared amplitudes A2

i (i = 1...m). A very common way
to obtain such a matrix Mappro is to use the asymptotic
theory i.e. to assume that N → ∞ (see e.g. (Bombois
et al., 2006)). However, asymptotic approximations could
not be appropriate for this paper since the number N of
data is possibly small. Another possibility to obtain an
approximation Mappro of M affine in the squared ampli-
tudes is to neglect the transient effects generated by the
excitation of the system. We review this in the next section
and we show that the approximation Mappro obtained as
such is in fact not different from the one we obtain by
assuming that N → ∞. Finally, in Section 5, we propose
an approximation Mappro which is more appropriate to the
case where N is (possibly) small.

4. EXPERIMENT DESIGN WITH THE
STATIONARITY ASSUMPTION

In this section, we present the approximation Mappro for
the information matrix (8) which is obtained by neglecting
the transient effects due to the excitation of the true
system i.e. by assuming that the signal vector φ(t) present
in the expression (8) of M has already reached its steady-
state. This assumption has been used e.g. in (Jansson,
2004)[Corollary 4.2]. Under this assumption (approxima-
tion), the matrices Mij for i 6= j (see (8)) are all identically
equal to 0 and the matrices Mii are equal to the real

part of Λ(ej(iω0))Λ∗(ej(iω0))
2 (i = 1...m). To show this, notice

that, when φT
i (t) = Λ(z)cos(iω0t + αi) has reached steady

state, its pth element is, in the time interval [1 N ], exactly
equal to νp,i cos(iω0t + λp,i) with νp,i = |Λp(e

j(iω0))| and

λp,i = αi + 6 Λp(e
j(iω0)). Consequently, the entry (p, l) of

the matrix Mij is:

νp,i νl,j

1

N

N∑

t=1

(cos(iω0t + λp,i) × cos(jω0t + λl,j)) =

νp,i νl,j

2

1

N

N∑

t=1

(cos((i + j)ω0t + λp,i + λl,j)

+cos((i − j)ω0t + λp,i − λl,j))

which is identically 0 when i 6= j since N represents
a period for each cosine at harmonics of ω0 = 2π

N
.

Consequently, Mij = 0 for all i 6= j. From the above
equation, we see also that the entry (p, l) of the matrix
Mii is given by

νp,i νl,i

2 cos(λp,i − λl,i) which is equal to

Re
(

Λp(ej(iω0))Λ∗

l (ej(iω0))
2

)

. Thus:

Mii = Re

(
Λ(ej(iω0))Λ∗(ej(iω0))

2

)

(13)

Consequently, the information matrix that would be ob-
tained if φ(t) had effectively reached steady-state would
be:
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Mst =

m∑

i=1

A2
i Re

(
Λ(ej(iω0))Λ∗(ej(iω0))

2

)

︸ ︷︷ ︸

Mii

(14)

We denote this matrix by Mst to distinguish it from the
actual information matrix M . The matrix Mst is indeed
only an approximation of M since the transient effects
that are necessarily present in the vector φ(t) are here
neglected. We observe that Mst is linear in A2

i (i = 1...m).
Consequently, this matrix can be used as the matrix
Mappro in Algorithm 1 to determine the input sequence for
the identification. We finish this section by two important
comments.

Comment 1. The matrix Mst is nevertheless equal to
the actual information matrix M in the particular case
(not considered here) where, even though u(t) and y(t)
are measured between t = 1 and t = N , the signal u(t)
has been applied since t = −∞. This fact will be used to
determine via an example if there is something to gain (or
to loose) from an identification point of view by collecting
the data only when they have reached steady-state com-
pared to the situation where the data are collected with
u(t) = 0 for t ≤ 0 and which is considered in this paper.

Comment 2. There is in fact no difference between
the approximation Mappro = Mst and the approxima-
tion Mappro = Mas obtained via the asymptotic the-
ory. To evidence this, let use recall that the asymp-
totic information matrix is given by Mas = Ēφ(t)φT (t)
and that, using Parseval theorem, it can be rewritten
as: Mas = 1

2π

∫ π

−π
Λ(ejω)Λ∗(ejω)Φu(ω) where Φu(ω) is

the power spectrum of the multisine (6) i.e. Φu(ω) =
π
2

∑m
i=1 A2

i (δ(ω − iω0) + δ(ω + iω0)) Replacing the ex-
pression of Φu(ω) within the expression of Mas yields (14).
Consequently, when using Mappro = Mst in Algorithm 1
for small N , the designed input sequence could be far from
optimal.

5. EXPERIMENT DESIGN TAKING THE
TRANSIENT EFFECTS INTO ACCOUNT

The main drawback of the approximation M ≈ Mst

presented in Section 4 is that the transient effects are
neglected while they can be important certainly when N
is small. In this section, we present new approximations
Mappro for M which will take these transient effects
into account. For this purpose, note that the information
matrix M in (8) can be rewritten as follows:

M =

(
m∑

i=1

A2
i Mii

)

+





m∑

i=1

m∑

j=1(j 6=i)

AiAjMij



 (15)

Remember that Mappro must be affine in the squared
amplitudes A2

i (i = 1...m). Consequently, by looking
at (15), we can straightforwardly obtain the following
approximation:

Mappro,1 =

m∑

i=1

A2
i Mii (16)

In (16), the elements of Mii are computed with expres-
sion (9) with j = i. The transient effects present in the

vector φ(t) are thus taken into account: we do not indeed
use the expression (13) for Mii as in the previous section.
However, the transient effects are only partially reflected
in (16) since the matrices Mij for i 6= j are neglected. This
approximation can be justified by the fact that, when N
is taken larger and larger, Mij → 0 for i 6= j while Mii

converges to a nonzero value. We therefore expect that the
contribution to M of the matrices Mii are more important
than the one of the matrices Mij for i 6= j.

The approximation Mappro,1 for the information matrix
is affine in the squared amplitudes A2

i (i = 1...m) and
can therefore be used in Algorithm 1. Denote by βi (i =
1...m) the amplitudes A2

i (i = 1...m) obtained by using
Algorithm 1 with Mappro,1. This initial set of amplitudes
can be used to determine two refined approximations for
M which, unlike Mappro,1, take explicitly the contribution
to M of the matrices Mij for i 6= j and this without
loosing the property of affinity in A2

i (i = 1...m). Indeed,
the information matrix M obtained with a multisine (6)
with amplitudes Ai ≈ βi (i = 1...m) can be approximated
by:

Mappro,2 =

(
m∑

i=1

A2
i Mii

)

+





m∑

i=1

m∑

j=1(j 6=i)

βiβjMij





︸ ︷︷ ︸

Mβ

(17)

In this approximation, the contribution of the matrices
Mij for i 6= j for the multisine with amplitude Ai is taken
equal to the contribution Mβ of these matrices for the
multisine with the (initial) amplitudes βi.

A more sophisticated approximation for M (see (15)) can
be obtained by linearizing the contribution of the matrices
Mij around β2

i :

m∑

i=1

m∑

j=1(j 6=i)

AiAjMij =
m∑

i=1

m∑

j=1(j 6=i)

√

A2
i

√

A2
jMij

≈
(

m∑

i=1

∆Mi(A
2
i − β2

i )

)

+ Mβ

where ∆Mi is the partial derivative of
∑∑√

A2
i

√

A2
jMij

with respect to A2
i and evaluated at β2

i :

∆Mi =

m∑

i=1

1

2βi





m∑

j=1(j 6=i)

βjMij





for βi 6= 0. Consequently, the information matrix M
obtained with a multisine (6) with amplitudes Ai ≈ βi

(i = 1...m) can thus also be approximated by

Mappro,3 =

(
m∑

i=1

A2
i (Mii + ∆Mi) − ∆Miβ

2
i

)

+ Mβ (18)

Like (16), the refined approximations (17) and (18) are
affine in the squared amplitudes A2

i (i = 1...m) and can
therefore be used in Algorithm 1 in order to refine the
input sequence with amplitudes βi (i = 1...m) obtained
by using Algorithm 1 with Mappro,1. We now summarize
the overall procedure:
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Procedure 1. The multisine (6) for the identification is
determined via the following steps:

a) Apply Algorithm 1 with Mappro = Mappro,1. It yields
ua(t).

b) Apply Algorithm 1 with Mappro = Mappro,2 and βi

given by the amplitudes of ua(t). It yields ub(t). If the
power of ub(t) is smaller than ua(t), then pose ua(t) =
ub(t). Otherwise ua(t) remains unchanged.

c) Apply Algorithm 1 with Mappro = Mappro,3 and βi

given by the amplitudes of ua(t). It yields uc(t). If the
power of uc(t) is smaller than ua(t), then pose ua(t) =
uc(t). Otherwise ua(t) remains unchanged.

d) Go back to step (b) and stop when a power reduction
is no longer observed. The input sequence for the identifi-
cation is then ua(t)

We have observed in numerical examples that steps (b) and
(c) do not always provide an improvement with respect to
step (a). This generally happens when the scaling factor
ξopt to apply to u1(t) obtained with Mappro = Mappro1

is very close to one; showing that the contribution of the
matrices Mij for i 6= j is indeed negligeable. Moreover,
when steps (b) and (c) are providing an improvement, it
is generally sufficient to stop after one iteration.

6. NUMERICAL ILLUSTRATION

10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6

N

Fig. 1. First example: Pst

Pfinite
(crosses) for different values

of N

In this section, we will illustrate the results presented in
this paper. As a first example, we consider the following
true system: G(z, θ0) = 0.1766Λ1(z) + 0.1187Λ2(z) +
0.32Λ3(z) where Λi(z) are Laguerre basis functions with
a pole at ξ = 0.8147. For this G(z, θ0), we want to
determine the least powerful multisine of the type (6)
(with m = ceil(N/2) − 1) which guarantees that the
model identified with this multisine has a relative error
(G(z, θ̂N )−G(z, θ0))/G(z, θ0) which is smaller than 0.1 in
the frequency range [0 0.1] (see Jansson and Hjalmarsson
(2005) to see how this constraint can be expressed similarly
as the constraint in (10)).

We will compare two methods to determine this multisine.
The first method consists of using Algorithm 1 with the
approximation Mappro = Mst which neglects the transient
effects (see Section 4). The second method presented in
Procedure 1 (see Section 5) involve successive applications
of Algorithm 1 and takes the transient effects into account.

Denote by Pst and Pfinite the power (7) of the multisine
obtained via these two approaches. Note that, with these
two multisines, the accuracy constraint is guaranteed to
be met. These multisines and their respective powers are
computed for different values of the number N of data.
Figure 1 represents the ratio Pst

Pfinite
for these different

N . We observe, as expected, that the approach which
explicitly takes into account the transient effects (i.e.
the one of Section 5) delivers a multisine which is much
closer to the optimal solution of the experiment design
problem (10) than the one which neglects these effects.
As expected also, the discrepancy is the largest for small
values of N and decreases for larger values of N . For these
larger values of N , the transient effects are indeed more
and more negligeable. In fact, when looking at the impulse
response h(t) of G0(z), we observe that h(t) is significant
for t < 40 and we see that N < 40 is approximately also
the region where the transient effects can not be neglected
for experiment design. We are grateful to Johan Schoukens
for having pointed us to this relation.

10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N

Fig. 2. First example: scaling factor ξopt required for the
approximation of Section 4 (circle) and scaling factor
ξopt corresponding to the last step of Procedure 1 in
Section 5 (crosses) for different values of N

That, for small N , the multisine obtained with the
methodology of Section 5 is much closer to the optimal
multisine than the one obtained via the approach of Sec-
tion 4 can also be deduced by looking at the scaling factor
ξopt that had to be applied to be sure to meet the accuracy
constraint (see Algorithm 1). As can be seen in Figure 2,
this scaling factor is almost equal to one for all values of
N for the methodology of Section 5 while being relatively
far away from one with the method of Section 4.

15 20 25 30 35 40 45
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

N

Fig. 3. Same figure as in Figure 1 but for the second
example
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Fig. 4. Same figure as Figure 2 but for the second example

We now consider a second true system where five parame-
ters are to be identified: G0(z) = 1.766Λ1(z)+1.187Λ2(z)+
0.2Λ3(z) + 0.1Λ4(z) + 0.05Λ5(z). Here, the Λi(z) are La-
guerre basis functions with a pole at ξ = 0.65. The results
are presented in Figures 3 and 4. We observe the same
phenomena as in the first example.

We will now compare the experimental condition con-
sidered in this paper i.e. the case where u(t) = 0 for
t ≤ 0 and the case where, even though the data are
only measured from t = 1 to t = N , the input signal
has been applied from t = −∞. In the latter case, the
information matrix M is exactly given by Mst and the
optimization problem (10) can be exactly solved without
passing through Algorithm 1. Denote by P∞ the power
of the optimal multisine designed in this way. Note that
P∞ 6= Pst since the multisine corresponding to P∞ must
not be scaled by ξopt. We compute this power P∞ for
different values of N and we compare them with the powers
Pfinite in the case where u(t) = 0 for t ≤ 0 and which had

been computed previously. In Figure 5, the ratio P∞

Pfinite

corresponding to the first true system is represented for
these different values of N . For the second true system, the
results are similar and are thus omitted. We observe that
the power P∞ required to meet the accuracy constraint
when the signals are all in steady-state is, for small value
of N , much larger than the power Pfinite which is required
to meet this constraint when the data contain transient
effects. This shows that transient effects are useful for
the identification. This phenomenon can also be seen by
looking at the designed multisine in both cases. In the
stationary case, the optimal input sequence is made up
of (at least) two cosines for the first example and of (at
least) three cosines for the second example as required by
the persistence of excitation condition since θ0 lies in R3

and R5, respectively. In the case where u(t) = 0 for t ≤ 0,
the designed input sequence contains for small values of
N one cosine in the first example and two cosines in the
second example and this would in both cases imply a non-
informative experiment in the absence of these transient
effects.

7. CONCLUDING REMARKS

Until now, we have assumed that the true system was cor-
rupted by a white noise e(t) (see (2)). In the case of colored
noise i.e. when y(t) = G(z, θ0)u(t)+H0(z)e(t), we can then
proceed as follows for the identification of G(z, θ0). Instead
of using, as usual, the data set {u(t), y(t) | t = 1...N}, the
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Fig. 5. First example: P∞

Pfinite
(crosses) for different values

of N

identification will be performed using a modified data set
{uF (t), yF (t) | t = 1...N}. The signal uF (t) (t = 1...N) is
the signal that will be optimally designed, but will not be
directly applied to the true system. Indeed, this signal will
be first filtered by (an estimate of) the noise model H0(z)
yielding u(t) = H0(z)uF (t) before being applied to the
true system. The corresponding output y(t) (t = 1...N) is
measured and is subsequently filtered by (an estimate of)
H−1

0 (z) to deliver the signal yF (t) (t = 1...N) which will be
used for the identification. The reason why the data uF (t)
and yF (t) are used for the identification instead of the data
u(t) and y(t) is that the relation between yF (t) and uF (t) is
(approximately) given by yF (t) = G(z, θ0)uF (t)+e(t) such
as in (2) and that, consequently, the design of uF (t) can
be done as presented in the previous sections of this paper
(with a slight adaptation of the cost function since it is the
power of u(t) = H0(z)uF (t) which has to be minimized).

Future development of the results in this paper should
consider the optimization of the phase shifts αi in (6) and
alternative relaxation techniques to improve Procedure 1.
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