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Abstract: This paper gives a new modeling and passivity based control of a class of fluid
mechanical systems with Casimir functions. First, we propose two stabilization methods, a
new dynamic asymptotic stabilization method and a new partial stabilization method. Second,
we give a new model of a class of hydraulic mechanical systems using Casimir functions.
Furthermore, the proposed two stabilization methods are applied to the derived model. Finally,
the validity of our methods are confirmed by numerical simulation.

1. INTRODUCTION

This paper gives a new modeling and passivity based
control of a class of hydraulic mechanical systems such
as hydraulic robot arms, pneumatic robot arms and so on.
It is well known that modeling and control of this class
of hydraulic mechanical systems are much difficult than
those of mechatoronical systems. This is due to that the
driving system is complex and consists of “compressible”
fluid systems, which are nonlinear dynamical systems with
unknown (or hard-to-be identified) parameters.

To solve these problems, this paper gives fundamental re-
sults about modeling and control of this class of hydraulic
mechanical systems, especially of the driving system, by
focusing and developing port-Hamiltonian systems and
control theory.

Port-Hamiltonian systems (van der Schaft (2000)) are
generalization of Hamiltonian systems in classical me-
chanics and can model many systems such as electro-
mechanical systems, mechanical systems with nonholo-
nomic constraints (Maschke and van der Schaft (1994))
, distributed systems and their mixed systems (Macchelli
and Melchiorri (2005)) as well as classical mechanical sys-
tems.

Passivity is the most important property of port-Hamiltonian
systems and some passivity based control methods, origi-
nally from Takegaki and Arimoto (1981), were developed,
such as, Energy-Casimir methods (van der Schaft (2000))
, the generalized canonical transformations (Fujimoto and
Sugie (2001)), IDA-PBC (Ortega and Garcia-Canseco
(2004)) and IPC approach (Stramigioli et al. (1998)) and
so on. These methods can give nonlinear robust controllers,
for example, the generalized canonical transformations
give nonlinear robust dynamic output feedback stabilizers
(Sakai and Fujimoto (2005)).

Modeling and control of several fluid systems are al-
ready discussed in port-Hamiltonian form. For example,
Ramkrishna and van. der. Schaft (2006) discuss infinite
dimensional canal systems in three dimensional space and

Johanson (2006) discuss the four-tank systems based on
IDA-PBC. These fluid systems have free-surface and are
incompressible. Riccardo et al. (2006) discuss the modeling
of hydraulic arms and show some experimental results.
Gernot and Schlacher (2005) discuss the control of the
hydraulic arms in port-Hamiltonian form. In these ap-
proaches, the modeling is based on the standard proce-
dure in port-Hamiltonian framework. Apart from these
approaches, we discuss the modeling and control of the
class of fluid mechanical systems, such as hydraulic robot
arms, pneumatic robot arms, based on a new structural
property, (natural) Casimir functions.

Advantages of port-Hamiltonian systems are from their
structural properties, such as passivity, which do not ex-
ist in general nonlinear systems. In this paper, we focus
on new structural properties of special port-Hamiltonian
systems, that is, port-Hamiltonian systems with Casimir
functions which do not exist in general port-Hamiltonian
systems. In a word, a key point of this paper is that the
class of hydraulic mechanical systems are found to be “spe-
cial” port-Hamiltonian systems, that is, port-Hamiltonian
systems with Casimir functions. The Casimir functions
are used in the modeling and control as a new structural
property of port-Hamiltonian systems in addition to the
standard structural properties, such as passivity.

This paper is organized as follows. In Section 2, we refer
port-Hamiltonian systems and their properties, especially
Casimir functions. In Section 3, we propose two stabi-
lization methods, a new dynamic asymptotic stabilization
method and a new partial stabilization method. In Section
4, we give a new model of the class of hydraulic mechanical
systems using Casimir functions. At the same time, a very
fundamental coordinate of the class of hydraulic mechan-
ical systems is discovered. In Section 5, the proposed two
stabilization method are applied to the new model and a
new passivity based control are proposed. In Section 6,
the validity of our methods are confirmed by numerical
simulation and finally we conclude this paper in Section 7.

In this paper, In is n×n identity matrix, Rm×n is the real
space of m rows and n columns matrix.
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2. PORT-HAMILTONIAN SYSTEMS

2.1 Port-Hamiltonian systems

A port-Hamiltonian system with a Hamiltonian H(x) ∈ R

is a system described by














ẋ = J(x)
∂H(x)

∂x

T

+ g(x)u

y = g(x)T
∂H(x)

∂x

T
(1)

with u, y ∈ R
m, x ∈ R

n and a skew symmetric matrix
J(x), i.e. −J(x) = J(x)T holds 1 . The following property
is known.

Lemma 1 (van der Schaft (2000)) Consider the port-
Hamiltonian system (1). Suppose the Hamiltonian H(x)
satisfies H(x) ≥ 0. Then the input-output mapping u �→ y
of the system is passive with respect to the storage function
H, and the feedback

Σsd : u = −D(x) y (2)

with a matrix D(x) ≥ εI > 0 ∈ R
m×m renders (u, y) → 0.

Furthermore if H(x) is positive definite and if the system
is zero-state detectable, then the feedback (2) renders the
origin asymptotically stable.

The zero-state detectability and the positive definiteness
of the Hamiltonian assumed in Lemma 1 do not always
hold for general port-Hamiltonian systems. In such a case,
the generalized canonical transformation is useful.

2.2 Casimir functions

One of the properties of port-Hamiltonian systems are the
existence of Casimir functions. Casimir functions (with
respect to J) are defined as the solutions of the following
PDE,

∂C(x)

∂x
J(x) ≡ 0. (3)

Casimir functions are the special first integrals, that is,

Ċ ≡ 0 (4)

for any Hamiltonian H(x) at u = 0. Casimir functions
are not bounded from below nor upper in general. Casimir
functions do not alway exist for port-Hamiltonian systems
in general.

Note that in this paper we do not treat Casimir functions
of the closed-loop systems but treat only Casimir functions
of controlled systems (plants). The former Casimir func-
tions are discussed in the Energy-Casimir method and are
artificially designed functions. From this point of view, we
call the latter “natural” Casimir functions in this paper.

1 J was replaced by a negative semidefinite matrix in order to
describe dissipative elements van der Schaft (2000).

3. DYNAMIC AND PARTIAL STABILIZATION FOR
PORT-HAMILTONIAN SYSTEMS

3.1 Dynamic stabilization for port-Hamiltonian systems

In this subsection, we give a dynamic stabilization method
for port-Hamiltonian systems. In the previous section,
port-Hamiltonian systems can be stabilized by the static
stabilizers. However, the dynamic stabilizers are also useful
and will be applied later.

Theorem 1 Consider the following (mechanical) port-
Hamiltonian systems

Σphm :







































[

q̇
ṗ

]

=

[

0 I
−I 0

]









∂Hm

∂q

T

∂Hm

∂p

T









+

[

0
G

]

u

y = GT ∂Hm

∂p

T

(5)

where x = (q, p) ∈ R
n are the position and the mo-

mentum, G is nonsingular matrix, the Hamiltonian is
Hm = (1/2)(pT M−1p) + U(q) and M = MT > 0,
U(q) ≥ U(0) = 0. Then, the following dynamic feedback

Σdd :



















ṙ = P (x)T GT ∂Hm

∂p

T

− D
∂Hr

∂r

T

u = −P (x)
∂Hr

∂r

T

(6)

makes Ω0 = {(q, p)|y = u = 0} asymptotically stable,
where r ∈ R

l, Hr = (1/2)rT Rr , PT is tall matrix,
D = DT > 0 and R = RT > 0.

Proof of Theorem 1

The closed-loop system is

Σcl :

[

q̇
ṗ
ṙ

]

=





0 I 0
−I 0 −GP (x)
0 P (x)T GT −D(x)





















∂(Hm + Hr)

∂q

T

∂(Hm + Hr)

∂p

T

∂(Hm + Hr)

∂r

T

















(7)

and (may be non-canonical) Hamiltonian systems with a
new Hamiltonian Hm +Hr and dissipation. Since the time
derivative of Hm + Hr is

Ḣm + Ḣr = −∂Hr

∂r
D

∂Hr

∂r

T

≤ 0 (8)

and Hm + Hr is bounded from below,

∂Hr

∂r

T

→ 0 (9)

as t → ∞ and the {u = 0} is asymptotically stable. This
implies r → 0, that is, ṙ → 0 because Hr belongs to class
K with respect to ‖r‖.
From Equation (7) and the tall matrix P (x)T , we have

P (x)T ∂(Hm + Hr)

∂p

T

= 0 ⇒ ∂H

∂p

T

= 0. (10)
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This means that the set {y = 0} is asymptotically stable.
In all, the set {y = u = 0} is asymptotically stable.
(Q.E.D.)

Note that the proposed dynamic asymptotic stabilization
is a generalization of the result of our previous result
(Sakai and Fujimoto (2005)). It is easy to extend Σphm

to more general port-Hamiltonian systems but Σphm will
be applied directly later.

3.2 Partial stabilization for port-Hamiltonian systems
with Casimir function

Advantages of port-Hamiltonian systems are from their
structural properties, such as passivity, which do not
exist in general nonlinear systems. In this subsection, we
focus on structural properties of special port-Hamiltonian
systems, that is, port-Hamiltonian systems with Casimir
functions which do not exist in general port-Hamiltonian
systems.

The following theorem gives a new partial stabilization
method for port-Hamiltonian systems with Casimir func-
tions.

Theorem 2 Consider the following port-Hamiltonian sys-
tems with Casimir functions C(x)

Σphc :







































[

q̇
ṗ

]

=J(q, p)









∂H

∂q

T

∂H

∂p

T









+

[

0
G

]

u

y = GT ∂H

∂p

T

(11)

where x = (q, p)T , G is nonsingular matrix. Suppose there
exist a coordinate transformation x �→ φ(x) = (xr , C)T

such that

H(φ) = Hr(xr) + Hc(C). (12)

where xr ∈ R
r, r = rank(J) and Hr is bounded from

below. Then the feedback

u = −D(x) yr (13)

makes the set {yr = 0} asymptotically stable where

yr = [0 GT ]
∂φ

∂x

T [

Ir

0

]

∂Hr

∂xr

T

. (14)

Proof of Theorem 2

From the existence of Casimir functions C(x), there exist
a coordinate transformation which convert the system (11)
into



































[

ẋr

Ċ

]

=

[

Jr(xr, C) 0
0 0

]









∂H(xr, C)

∂xr

T

∂H(xr, C)

∂C

T









+
∂φ

∂x

[

0
G

]

u

y = [0 GT ]
∂φ

∂x

T ∂H

∂C

T

.

(15)

where Jr = −JT
r ∈ R

r×r. The time derivative of the
function Hr is given as

Ḣr =
∂Hr

∂xr

ẋr +
∂Hr

∂C
Ċ

=
∂Hr

∂xr

[

Jr

∂H(xr, C)

∂xr

T

+ [Ir 0]
∂φ

∂x

[

0
G

]

u

]

=
∂Hr

∂xr

[

Jr

∂Hr

∂xr

T

+ [Ir 0]
∂φ

∂x

[

0
G

]

u

]

=
∂Hr

∂xr

[Ir 0]
∂φ

∂x

[

0
G

]

u (16)

due to the special Hamiltonian structure (12).

The system with input u and output yr is passive (lossless)
with respect to the storage function Hr, that is,

Ḣr = yT
r u. (17)

and the controller (13) makes the set {yr = 0} asymptot-
ically stable since

Ḣr = −yT
r Dyr ≤ 0 (18)

and Hr is bounded from below. (Q.E.D.)

Note that the above output yr is different from the
usual output y of port-Hamiltonian function and a new
output based on the structural properties of special port-
Hamiltonian systems, that is, port-Hamiltonian systems
with Casimir functions. Furthermore, not all states, but
only the partial state xr can be stabilized in Theorem 2.

4. MODELING USING CASIMIR FUNCTIONS

In this section, modeling of a class of hydraulic mechan-
ical system (such as Fig.1 and Fig.2) is discussed with
Casimir functions. In this section, this class of hydraulic
mechanical systems are discussed in practical way, that
is, we start not from infinite dimensional model but from
finite dimensional model and we take input not as torque
but as spool displacement. This finite dimensional model
with spool displacement input is well-known in practical
control situations (Jelali and Kroll (2002)). In addition, it
is also known that the multi-degree of freedom case can be
separated into this one degree of freedom cases completely.

Robot Arm

Hydraulic

 Cylinder

AB

Spool

TS

Pipelines

Fig. 1. Hydraulic robot arms (example)
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Fig. 2. The driving system

4.1 Generalized continuity equation

A continuity equation for incompressible fluid is

ṗi =
E

V
(Qin

i − Qout
i ) (19)

where pi is the pressure of chamber i, Qin is flow to
chamber i, Qout is flow from chamber i, E is the bulk
modulus and V is fluid volume, For example, see Jelali
and Kroll (2002) for this modeling assumptions in detail.

As the port-Hamiltonian systems are generalization of
classical Hamiltonian system (with no inputs and out-
puts), we give the following generalization of continuity
equation

Σf :























[

ẋf1

ẋf2

]

=

[

−A
αA

]

uo+

[

gp1

gp2

]

uf

yf =[−A αA]
∂Hf

∂xf

T
(20)

where

Hf =
1

2V
E(x2

f1 + x2

f2) (21)

xf = (xf1, xf2)
T , xfi = (V/E)pi, gpi = gpi(xfi) are from

Bernoulli’s equation (omitted from its uniqueness), uf is
the spool input displacement, A and αA (α ∈ (0, 1)) are
the area in the chambers.

Note that the system Σf is NOT port-Hamiltonian sys-
tems and that the state is not pressure and different from
that of the model by Gernot and Schlacher (2005).

4.2 Interconnection with generalized continuity equation

Now the mechanical system Σphm and the fluid system Σf

are interconnected by the following

{

uo = y
u = −yf .

(22)

Then the interconnected system is

Σfm

















































































q̇
ṗ

ẋf1

ẋf2






=







0 I 0 0
−I 0 GA −αGA
0 −AGT 0 0
0 αAGT 0 0

































∂Hfm

∂q

T

∂Hfm

∂p

T

∂Hfm

∂xf1

T

∂Hfm

∂xf2

T



























+

[

0
Gf

]

uf

yfm =GT
f

∂Hfm

∂xf

T

(23)

where Hfm = Hf + Hm and Gf = [gp1 gp2]
T and is easily

confirmed to be port-Hamiltonian systems since J matrix
part is again skew symmetric.

Note that the interconnected system of the fluid system
Σf and the mechanical system Σphm is again a port-
Hamiltonian system although the fluid system Σf is NOT
port-Hamiltonian system.

This situation is different from that in classical mechanics
where we should take only energy conservation in Navier-
Stokes equations and, apart from this, take only mass
conservation in continuity equation. Thanks to the for-
mulation of the generalized continuity equation and the
existing port-Hamiltonian framework, we can take not
only energy conservation but also mass conservation into
account simultaneously.

4.3 Modeling based on Casimir functions

In this section, we give the most important result about
the modeling of the class of hydraulic mechanical systems.

Lemma 2 Consider the fluid-mechanical Hamiltonian
systems Σfm. Then there exist a Casimir function

Cf = αxf1 + xf2. (24)

Proof of Lemma 2.

It is confirmed that Cf satisfies the PDE (3) by a direct

calculation, that is, Ċf ≡ 0 holds for any Hamiltonian
Hfm with zero-input. (Q.E.D.)

Theorem 3 Consider the fluid-mechanical Hamiltonian
systems Σfm. Then there exist a coordinate transformation
φ such that the transformed systems satisfy the condition
(12).

Proof of Theorem 3.

Consider the following coordinate transformation,







q
p

xfr

Cf






=φ(q, p, xf1, xf2)

=







I2n 0 0

0
1√

1 + α2

−α√
1 + α2

0 α +1













q
p

xf1

xf2






. (25)

It is calculated that the fluid-mechanical systems are trans-
formed to a new port-Hamiltonian systems which satisfies
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the conditions (12) as Hfm = Hr + (1/2)CT
f Cf where Hr

is given in the following partial dynamics corresponding to
that by Jr part in Equation (15)

[

q̇
ṗ
˙xfr

]

=





0 I 0

−I 0
√

1 + α2A

0 −
√

1 + α2A 0





















∂Hr

∂q

T

∂Hr

∂p

T

∂Hr

∂xfr

T

















+

[

0
gr

]

uf (26)

where gr is omitted because of its uniqueness and

Hr = H +
1

2V
Ex2

fr (27)

is bounded from below. (Q.E.D.)

5. CONTROL USING CASIMIR FUNCTIONS

In this section, we give a new stabilization method for
the class of hydraulic mechanical systems based on the
previous results in this paper. The proposed controller in
this section can stabilize only mechanical part, even if
the parameters of fluid systems, the bulk modules E, is
unknown and the mechanical part has few damping effect.

Lemma 3 Consider the fluid-mechanical systems Σfm and
suppose that U(q) is the positive definite function. Then
the feedback

uf = −DgT
r

∂Hr

∂xfr

T

(28)

makes the set {(q, p) = 0} asymptotically stable.

Proof of Lemma 3.

First, from Theorem 2 and Theorem 3, the set

{yr = gT
r

∂Hr

∂xfr

T

= 0} (29)

is asymptotically stable. Second, since the closed-loop
system of (26) and (28) is equivalent to that of Theorem
1, the feedback makes the set

{y =
∂H

∂p

T

= 0} (30)

asymptotically stable. This implies that the set {(q, p) =
0} is asymptotically stablized due to the zero-state de-
tectability. (Q.E.D.)

Note that the proposed controller stabilizes for any param-
eter E. It is very important that xfr is a new (natural)
coordinate for fluid-mechanical system and never reported
in existing results (Merrit (1967), Jelali and Kroll (2002)).

6. NUMERICAL SIMULATION

In this section, we confirm the validity of our methods
by numerical simulation. All parameters of plants are
normalized as 1.

Fig.3 shows the time response of a standard linear
mechanical-spiring SISO system with the stabilizer in The-
orem 1. All states converts to the origin smoothly and the
validity of Theorem 1 is confirmed.

0 10 20 30 40 50 60 70 80 90 100
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

time [s]

x1
x2
x3

Fig. 3. Time response of the state of the linear system

Then we show the hydraulic arm in Fig.2 with the sta-
bilizer in Lemma 3. Initial states are (1,−1, 1, 1). Fig.4
shows the time responses of the state at D = 1/2. Only
the state of mechanical systems (q, p) converts to the origin
smoothly. This implies that the validity of the partial
stabilization methods in Theorem 2 is confirmed. In Fig.4
the settling time is about 20s.

Fig.5 shows the time responses of the state at D = 1/5.
In this case, only the state of mechanical systems (q, p)
also converts to the origin smoothly but the settling time
is about 12s even when the gain D is smaller than that
in Fig.4. This is the same tendency as that by Sakai and
Fujimoto (2005), where the authors gave a effective gain-
tuning guideline based on the analysis of the linearized
system. Fig.6 and Fig.7 show the time response of the
discovered coordinate xfr in the case of D = 1/2 and 1/5,
respectively. The states convert to the origin. In all, the
validity of our methods are confirmed.

0 10 20 30 40 50 60 70 80 90 100
-1.5

-1

-0.5

0

0.5

1

1.5

time [s]

q
p
p1
p2

Fig. 4. Time response of the all state (D = (1/2))
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Fig. 5. Time response of the all state (D = (1/5))
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Fig. 6. Time response of xfr (D = (1/2))
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Fig. 7. Time response of xfr (D = (1/5))

7. CONCLUSIONS

First, we propose two stabilization methods, a new dy-
namic asymptotic stabilization method and a new partial
stabilization method. Second, we give a new model of
a class of hydraulic mechanical systems using Casimir
functions. At the same time, a very fundamental coordi-
nate (xfr) of the class of hydraulic mechanical systems is
discovered. Third, the proposed two stabilization methods
are applied to the new model of the class of hydraulic
mechanical systems and a new passivity based control
are proposed. Finally, the validity of our methods are
confirmed by numerical simulation.
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