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Abstract: An approach for modelling a natural dam-river network system is proposed in this
paper. Generally, the relationships among the variables of a natural dam-river network system
are complex and difficult to be described. In this paper, we present some simple first principle
relationships among the water levels measured at a limited number of points of the network
system such that a model is achieved, and data-driven. The model is identified and validated
with the real time operational data. An example is given and the result shows the feasibility
of the modelling methodology. It is expected that the proposed approach can be used in the
operation of natural dam-river or river network systems.

1. INTRODUCTION

Due to the scarcity of water resources, modelling and
control of water resources in open channel flows have
attracted a lot of studies in recent years. The common
natural examples of open channels are water flows in rivers
and streams while manmade examples are in irrigation
canals and sewer lines. Generally, the channel bed and
channel geomorphological features of a manmade channel
are regular and the material types of the channel are uni-
form while the channel bed and channel geomorphological
features of a natural channel are irregular and the material
types of channel vary in different space locations.

Except for flood control, the ongoing subject is mainly
on the dynamics of manmade channels. This is because
the dynamics are regular and the dynamical parameters
are regular in manmade channels, enabling the possibility
of the model-based study. A recent survey of the models
can be seen in Zhuan and Xia (2007), where the models
are classified into physical principle models and data-
driven models. There are two principles used in water
flow dynamics. One principle is the so-called Saint Venant
equations (Chow (1954)). From Saint Venant equations, a
class of models are derived (discretized in Balogun et al.
(1988); Garcia et al. (1992); Georges (1994), and linearized
in Litrico and Georges (1997) and Baume and Sau (1997)).
The other principle is water volume or mass balance
principle (Corriga et al. (1979); Schuurmans et al. (1995)
and Schuurmans et al. (1999)), with which some volume
(mass) balance models are presented. The parameters in
data-driven models are identified from real time data. Such
models include black-box models in Elfawal-Mansour et al.
(2000), grey-box models in Weyer (2001) and Maxwell
and Warnick (2006), high order transfer function models
in Sawadogo et al. (1998) and neural network models
in Toudeft and Gallinari (1996). The difference between
black-box models and the grey-box models is that grey-box
models partially satisfy volume/mass balance principle.

⋆ Corresponding author.

For natural channels, although the dynamics can be de-
scribed by Saint Venant equations, the equations are not as
useful as in manmade channels because the parameters in
Saint Venant equations vary with respect to the different
space and time coordinates. The variation of the para-
meters leads to difficulties in studying the flow dynamics
and therefore the control strategies of the flow dynamics
with a mathematical model. The control objective of open
channels is to transport the water resources from one
area to other area(s) such that water flows and water
levels meet the users’ demands, ecology demand, safety
requirements (flood control), navigation control, pollution
control, and decreasing water waste.

For a natural dam-river network system, the existing
control strategies are scheduled on the basis of the ex-
perimental operation and information in a limited lo-
cal area (points) for a limited period without accurate
prediction. For example, in a flood-preventing hydraulic
structure–Enclosing Dike, a dike surrounding an area with
gates/pumping stations connecting the outside and inside
of the dike, is operated in a very simple way. When the
water level at a point of inside area is detected to be higher
than the security water level, the water in inside area will
be immediately pumped out through the pumping station.
When the water level is so low that the environment of
inside area is scarce of water, the gate will be immediately
opened to introduce water from outside. All those opera-
tions are based on the accumulated experiences and based
on the observation of local present states without consid-
ering the whole system and predicting the development
trends. Such a kind of decision-making of control strate-
gies cannot realize global optimal control for a large and
complicated river network system. The study subject in
this paper is such a kind of large and complicated natural
river network system. An investigation will be conducted
to obtain a mathematical model for such a network system
and it is expected that the model can facilitate the design
of control strategies.
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A simple modelling methodology is proposed in this paper
for a natural dam-river network system. Such a dam-river
system is very complex and at present there is no simple
mathematical model being applied to the system opera-
tion. A model established with the proposed approach is
simple because it only includes water level measurements
at some points and control variables. The model structure
is proposed based on the simplification of some hydraulic
principles. The parameters in the model can be identified
with the experimental data.

The structure of this paper is: The modelling methodology
is proposed in section 2 while in section 3 an application
example is given to show the feasibility of the modelling
methodology. The conclusions are in section 4.

2. MODELLING METHODOLOGY

The variables in modelling a dam-river network considered
in this paper are only the water levels at different points.
For simplicity, the control variables here are the gate
openings. The relationship between the water levels can
be classified into three types: gate connection, channel
connection and non-channel connection. Gate connection
indicates that there is one and only one gate structure
between the two points with water levels (upstream and
downstream of a gate) measured. Channel connection
means there exists a visible channel with water flow
connecting the two points with water levels measured.
When the connection between two points does not belong
to gate connection or channel connection, it is called non-
channel connection.

Fig. 1. Connection types

In this paper, the flow rates in channels are practically
assumed not to be measured and to vary in a small range
at least in a short time period.

The flow through porus medium (aquifer) in non-channel
connection is generally expressed by Darcy’s Law for-
mulated based on experiments (refer to Todd and Mays
(2005)). The calculation of flow through porus medium is
usually in relation to flow nets, which is very complex.
According to Darcy’s law, the flow rate through porus
medium is proportional to the head loss (generally the
difference between water levels) and hydraulic conductiv-
ity or intrinsic permeability, and inversely proportional to
the length of the flow path (distance). In this paper, such
a flow rate Qn(i, j, t) to point j from the point i is just
approximated by

Qn(i, j, t) = αn(i, j)y(i, t − td(i, j)) + βn(i, j)y(j, t) (1)

where y(i, t − td(i, j)) is water level at point i at the time
t − td(i, j), y(j, t) is the water level at point j at the time
t, td(i, j) is the time delay and αn(i, j) and βn(i, j) are

coefficients. This equation can also be approximated by a
higher order series, but it is simply approximated by a first
order function in this paper.

For gate connection, the relationship between the water
levels inside and outside of the gate depends on two items.
The first item is the flow through the gate when the gate
is open. The second is the flow through porus medium.

When the gate is open, the flow through the gate depends
on the water levels on both sides of the gate, the gate
opening and the gate type. In Eurén and Weyer (2007), the
flow rate Qg(i, j, t) for an undershot gate is approximated
by

Qg1(i, j, t) = c·δd(t)·sign(y(i, t)−y(j, t))
√

|y(i, t) − y(j, t)|
(2)

where c is a constant determined by the gate character-
istics, δd(t) is the gate opening and y(i, t) and y(j, t) are
the water levels at points i and j (the water levels on both
sides of the gate).

The flow rate through porus medium in gate connection is
in the same form as the equation (1), i.e.,

Qg2(i, j, t) = αg(i, j)y(i, t − td(i, j)) + βg(i, j)y(j, t). (3)

So for a gate connection, the flow rate is described by

Qg(i, j, t) = Qg1(i, j, t) + Qg2(i, j, t). (4)

The flow rate of channel connection can be calculated
by Saint Venant equations, a group of partial differential
equations. With the assumption that the flow speed varies
slowly, the flow rate Qc(i, j, t) to point j at time t in the
channel connecting to point i is approximated by

Qc(i, j, t) = αc(i, j)y(i, t − td(i, j)) + βc(i, j)y(j, t) (5)

with y(i, t) and y(j, t) water levels at points i, j at time t,
td(i, j) time delay and αc(i, j) and βc(i, j) coefficients.

Another assumption in this paper is that the water volume
storage in the neighbour of point i is proportional to the
water level y(i, t). With this assumption, according to mass
balance principle, y(i, t) could be predicted as follows.

γ(i)
dy(i, t)

dt
=

∑

l∈Gi
g

Qg1(l, i, t) +
∑

l∈Gi
g

Qg2(l, i, t)

+
∑

j∈Gi
c

Qc(j, i, t) +
∑

k∈Gi
n

Qn(k, i, t) + e(t),

where Gi
c, Gi

n and Gi
g are the sets in which the elements

with respect to point i, respectively belong to channel con-
nection, non-channel connection and gate connection, γ(i)
is a coefficient and e(t) is the disturbance or unmodelled
flow, such as rainfall and irrigation flow.

Comparing the equations (1), (3) and (5), they are in
the same form. Let Gi = Gi

g ∪ Gi
c ∪ Gi

n. With the above
equations combined, the equation (6) holds,

dy(i, t)

dt
=

∑

k∈Gi

(α(k, i)y(k, t − td(k, i)) + β(k, i)y(i, t))

+
∑

l∈Gi
g

ν(i)Qg1(l, i, t) + e(t),

(6)
where α, β, and ν are coefficients and can be identified
with real data.
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The model (6) can be discretized with various discretiza-
tion methods, resulting in different kinds of discrete mod-
els. In this paper, for simplicity, we choose an AutoRe-
gressive model with eXogenous input (ARX model) in the
form

A(q)y(t) = B(q)u(t) + P (q)w(t) + Q(q)e(t),

= [B(q) P (q)][u(t) w(t)]T + es(t),
(7)

with e(t) unknown disturbance, y(t) = y(i, t) ith output,
u(t) = Qg1(t) control input, w(t) = (y(k, t))k∈Gi uncon-
trollable input, es(t) the unknown disturbance in a new
form, q−1 delay operator and t discrete time series.

To date, there is no accurate model to describe the
dynamics of natural dam-river network systems. Even the
introduction of Saint Venant equations is based on some
assumptions and furthermore, the parameters in Saint
Venant equations are variable in natural channels and
difficult to be determined. The model (7) is based on some
practical assumptions and the coefficients are determined
by system identification with realtime data. For the slow-
varying coefficients, they can be updated with the most
recent operational data. The model (7) is very simple
compared with Saint Venant equations or Darcy law.

The more the measurement points there are, the more
accurate the model is. However, when the number of
the measurement points is limited, we can schedule the
measurement points at the places where there are obvious
geomorphological variations to improve the accuracy of
model (7), i.e., the geomorphological features can be con-
sidered in scheduling the measurement points to improve
the model accuracy. For example, a measurement point can
be scheduled at the place where the cross section changes
abruptly, to improve the accuracy of the model.

Another remark is that (7) is obtained from the simple
model (6) by employing a discretization scheme. This
discretization scheme could be for instance analogous to
the finite element scheme in solving the Saint Venant
equations. This may result in high orders in terms of q
in model (7), therefore with higher accuracy than (6).

3. APPLICATION OF MODELLING
METHODOLOGY

An example is given in this section to show the feasibility
of the proposed modelling methodology. The example,
namely Enclosing Dike, is a typical kind of hydraulic
structure, composed of enclosing dike, sluice gates and
pumping stations, which is constructed beside a river
connected to the sea in South China to dampen the
influence of the large tidal variations and to allow the
consolidation of upstream urban infrastructure.

Sixiang Enclosing Dike, as shown in Fig. 2, located in
Nanhai city, Guangdong Province, protects the city from
flooding and ensures the environment balance. It is com-
posed of 17 sluice gates, ten pumping stations and a long
enclosing dike. The main aim is to drain away flooded
water when the water level in Enclosing Dike excesses
the security level, and to draw water from the river when
Enclosing Dike is in need of water. In the past, the sluice
gates and pumping stations were operated by hand with
the experiences of the operators. With the automatic op-
eration facilities equipped and optical fiber cabling net-

Fig. 2. Sixiang Enclosing Dike

work built in recent years, all information is collected
and transmitted to a supervising and controlling center.
The information includes running states of the facilities,
such as gate openings, running states of the pumps, and
water levels at some points inside and outside of Enclosing
Dike, and even the video images of the supervised points.
Thus the operators can know the situations of all pumping
stations and sluice gates, and furthermore decide and send
operational commands to the stations and gates. With
the project applied, the level of Enclosing Dike automatic
control is advanced and the reliability is enhanced. It
is possible to realize the optimal control in the global
viewpoint of Enclosing Dike. The present control is still
local and the performance depends on the experiences of
the operators. The difficulty of the application of global
automatic control lies in the absence of a model describing
the whole dynamics of Enclosing Dike.

In the supervising and controlling center, data are col-
lected from pumping stations and undershot sluice gates
(hydraulic structures), including water levels inside and
outside of the hydraulic structures, the pump status
(on/off) and gate openings. At present, gate openings only
have two states: open and close, where open state means
that the plate bottom is over the water surface and close
state means there is no water flowing through the gate.

The measured variables in the above-mentioned project
are water levels ynj(i) and ywj(i) inside and outside of
the hydraulic structures (i is the index of the hydraulic
structure). The control variables are the gate openings
δd(i) and pump state δd(i).

The available operational data of Enclosing Dike were
limited to four sluice gates (indexes of the hydraulic
structures are 14, 16, 19 and 20) and one pumping station
(its index is 17, it is connected to structure 16 and the two
structures are almost in the same place). The data for the
other hydraulic structures were not continuously measured
or recorded. During the period of data sampling, there was
no record about the operation of the pumps. Because the
project is used to show the applicability of the modelling
approach in Section II, the above mentioned data only
with four points in Enclosing Dike are enough.

The data have the following features:

• The time length of the data is about 17 days.
• The measured water levels are Yellow Sea’s altitudes.
• The data were collected with asynchronous samples.
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• The time intervals of the data are about 5 minutes.
• Some data were missed in the record.
• With the installation of the sensors and calculation

formula considered, there are different offsets for
various water levels.

Based on the available data, the model as (8) is expected
to be established for Enclosing Dike. In (8), Qg1 are in the
form of (2), and the coefficients A(i), B(i) and P (i) will
be identified with the operational data.

A(i, q)ynj(i, t) = B(i, q)u(i, t) + P (i, q)w(i, t) + ei(t), (8)

where u(i, t) = Qg1(i, t), i = 14, 16, 19, 20,

w(14, t) = [ywj(14, t), ynj(16, t), ynj(19, t), ynj(20, t)]T ,

w(16, t) = [ywj(16, t), ynj(14, t), ynj(19, t), ynj(20, t)]T ,

w(19, t) = [ywj(19, t), ynj(14, t), ynj(16, t), ynj(20, t)]T ,

w(20, t) = [ywj(20, t), ynj(14, t), ynj(16, t), ynj(19, t)]T .

The water levels outside of the dike are mainly influenced
by the tidal process and flow rate from upstream of
the river. They can be estimated by using the approach
proposed in this paper in a wider system incorporating
the tidal prediction. In this paper, the water levels outside
of the dike are assumed to be known.

In the above model, Qg1 is thought as the control variable.
In modelling Enclosing Dike, pump flow rates of pumping
stations can also be expressed in the the form as control
variables and thus we can study the control problem of
Enclosing Dike.

3.1 Data preprocessing

The sampled data were processed prior to using them
for identification. The preprocess includes virtual synchro-
nization, offset correction and missing data estimation.

The sampled data were not synchronous because they
were independently collected at different points and it was
inconvenient to synchronize the sampling time for them.
However, in the model (8), the data are required to be
synchronous. So, the data are virtual synchronized in the
way of linear interpolation.

The offsets in the data for different variables are various.
In our model, it is difficult to know the offsets of each
measurement. The measurement sensors were installed
individually and calibrated with respect to the Yellow
Sea’s altitude according to the workers’ experiences. Each
measurement has a different offset. So it is better to employ
a second-order model to decrease the effect of offsets.

The missing data were corrected by linear interpolation. If
the time interval of the continuous missing data is short,
such a method will not lead to a large error in the model.

3.2 Model identification and validation

The time length of the experiment data is about 17 days
(4700 × 5 minutes), in which half of the length (2500
sampling points) is used for the model identification, and
remaining data for the model validation.

The model structure is a second order ARX model
(A(q), B(q) and P (q) are polynomials of q−1 of two con-
secutive orders). The disturbance is not considered for it is

difficult to know its distribution class. A second order ARX
model is employed and expected to decrease the influence
of the offsets of measurements and the disturbance in a
limited period.

The next step is to identify the time delays in (8). The
delays in the variables, gate flows and water levels outside
of the gate, are 1. The other time delays are estimated
based on comparison of ARX models with different delays
in the range of [1 100]. The result is shown in Table 1.

Table 1. Time delays identified from the data

X
X

X
X

X
X

X
X

Output
Input

14 16 19 20

14 - 14 67 97

16 72 - 19 38

19 98 35 - 8

20 95 32 14 -

The parameters in an ARX model (7) are estimated with
least squares method, and the results are shown as follows.

If y(t) is the water level ynj(14, t), then the parameters are

A(14, q) = 1 − 1.456q−1 + 0.459q−2,

B(14, q) = 0.073q−1 − 0.014q−2,

P (14, q) =









−0.004q−1 + 0.010q−2

−0.039q−14 + 0.041q−15

−0.085q−67 + 0.085q−68

−0.007q−97 + 0.009q−98









.

(9)

If y(t) is the water level ynj(16, t), then the parameters are

A(16, q) = 1 − 1.342q−1 + 0.346q−2,

B(16, q) = 0.256q−1 − 0.061q−2,

P (16, q) =









−0.039q−1 + 0.0484q−2

−0.075q−72 + 0.081q−73

−0.002q−19 − 0.016q−20

−0.011q−38 − 0.004q−39









.

(10)

If y(t) is the water level ynj(19, t), then the parameters are

A(19, q) = 1 − 1.015q−1 + 0.028q−2,

B(19, q) = 0.327q−1 − 0.031q−2,

P (19, q) =









−0.006q−1 + 0.009q−2

0.049q−98 − 0.046q−99

0.113q−35 − 0.121q−36

0.170q−8 − 0.170q−9









.

(11)

If y(t) is the water level ynj(20, t), then the parameters are

A(20, q) = 1 − 1.661q−1 + 0.668q−2,

B(20, q) = 0.260q−1 − 0.163q−2,

P (20, q) =









−0.054q−1 + 0.059q−2

−0.068q−95 + 0.072q−96

0.016q−32 − 0.028q−33

0.020q−14 − 0.029q−15









.

(12)

It is noticed that the control input u(i) is zero during most
of the experimental period, which may result in difficulty
in identifying A(q). The coefficient A(q) may be identified
with the subset of the data when u(i) is not equal to zero.
In this paper, A(q) is identified together with B(q) and
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P (q) because u(i) in the identification data is assumed to
be persistently exciting (Ljung (1999)).

When the identified model is used for 24-step (two-hour)
ahead prediction, the result for ynj(14, t) is shown in Fig. 3.

0 1000 2000 2500 3000 4000 5000
−1

−0.5

0

0.5

1

1.5

2

2.5

y
n

j
(1

4,
t)

predict value

original value

predict error

time series k

identification data validation data

Fig. 3. Validation result for water level ynj(14, t)

3.3 Analysis

From Table 1 and Fig. 2, it can be seen that the length
of time delay is consistent with the distance between the
measurement points. The longer the distance is, the longer
the time delay is. This is because in the studied Enclosing
Dike, the connection types of the measurement points
(excluding the water levels outside of Enclosing Dike) are
non-channel connections, whose time delay is influenced
by the hydraulic conductivity and distance. In the regional
area of Enclosing Dike, hydraulic conductivities are almost
the same. So the time delays mainly reflect the distance
difference, which is confirmed by the identification result.

It can be seen from Fig. 4 that the water levels inside
and outside of the gate are almost equal when the gate
is open. This is easy to be understood. When there is a
difference between the water levels, a flow will occur to
compensate for the difference. In the model, the flow rate
through the gate is very small when the gate is open if it
is calculated through the difference of the water levels at
a specific time. Actually, the flow rate refers to the flow
during a sampling period, so in the model, such a flow
is calculated based on the difference between inside water
level at present and outside water level at next sampling
time. With the offsets of the measurements considered, it
is calculated based on the difference between the inside (or
outside) water levels at present and next sampling time.
The contribution to inside water level variation is from the
outside water level when gate is open. Such a phenomenon
is reflected on the parameter value of the flow rate through
gate, which is usually larger than other parameters in the
model, as can be seen from equations (9)–(12). For a more
accurate model, it can be simply assumed that when the
gate is open, the inside water level is equal to the outside
water level and is not related to other variables. When the
gate is closed, the relationships with other variables are
identified with experimental data.

2160 2180 2200 2220 2240 2260 2280 2300 2320
−0.4

0

0.4

0.8

1

1.4

inside water level

outside water level

gate opening

time series k

Fig. 4. Water levels variation with gate opening

When a gate is closed, the inside water level is influenced
much by the disturbances or unmodelled variables, for
example, unmodelled water resources, rainfall, irrigation
demands, evaporation. The fast variation of unmodelled
variables leads to the large error of the prediction. So,
in further study, more variables, such as the rainfall,
evaporation rate, water levels in other points of the area
and irrigation flows, could be included in the model.

The statistics of predict errors are shown in Table 2 for
identification period and Table 3 for prediction period.
Comparing Table 2 with Table 3, it can be seen that the
prediction errors are not much worse in prediction period
than those in identification period, which means that the
predict errors are mainly from the unmodelled variables.
With more variables included in the model, the errors
will decrease. This shows the feasibility of the modelling
methodology.

Table 2. Predict error in identification period

min max mean std

ynj(14, t) -0.5216 0.8047 0.0130 0.1637
ynj(16, t) -0.2301 2.4509 0.7914 0.4076
ynj(19, t) -0.2701 2.4171 0.5088 0.3943
ynj(20, t) -0.4527 2.5366 0.5730 0.4583

Table 3. Predict error in prediction period

min max mean std

ynj(14, t) -0.3832 0.6324 -0.0035 0.1366
ynj(16, t) 0.0489 1.8466 0.7894 0.3014
ynj(19, t) -0.1309 1.0925 0.4181 0.2422
ynj(20, t) -0.2582 1.2037 0.5135 0.3143

From Table 3, it is also seen that the errors with two
hours ahead prediction are acceptable in the decision-
making of the management and operation of Enclosing
Dike. When a certain security redundancy of the water
level is considered, the operation can be planned based on
the model (8) and the prediction error will be tolerant.
With the decrease of the prediction period and increase of
measurement points, the accuracy will be improved.

4. CONCLUSION

A very simple modelling methodology is proposed in this
paper for modelling natural dam-river network systems. In
the model, only water level measurements are included.
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Considering the complexity of a natural dam-river network
system, this modelling methodology is very simple. The
proposed model structure is proposed based on some
hydraulic principles. With the experimental data, the
parameters in the model can be identified.

An application example is given to show the feasibility
of the modelling methodology. Some application issues in
the example are considered, such as data synchronization,
data offsets and missing data. With the analysis of the
model identification and validation results, the physical
significance of time delays is discussed with the hydraulic
characteristics. Some improvement measures of the model
are proposed based on the analysis results.

The accuracy of such a model in the application of pre-
diction is discussed. The model shown in this paper is
good enough for two-hour ahead prediction. This means,
the decision of the management and operation can be
made based on two-hour ahead prediction. Comparing
with the present descision-making mechanism (based on
present states), it is an improvement. Moreover, the ex-
isting decision-making is based on local present measure-
ments, while with the proposed model, such a decision-
making can be based on the measurements in the network
system. An optimal operation is possible from the point of
view of the network system.

Further study based on a specific dam-river network sys-
tem will be proceeded with application issues considered.
The other direction is the application of a model based on
the proposed modelling methodology in the operation.

The model (7) facilitates the study on the control problem.
With a model, we can formulate different kinds of control
problem for a dam-river network system. For example,
when there are several points considered in a study, there
are coupled equations in the form of (7) composing a
model for the network systems. Then based on the series of
models, we may formulate the control problem in a global
viewpoint. For example, an optimal water level regulation
can be formulated as follows,

Optimal water level regulation: To find a controller as

u(t) = L(y(t), w(t)), (13)

such that the performance function

f =

∫

(yT Λy + uT Πu)dt, (14)

is minimized with Λ,Π as weighting matrices.

Of course, many other formulations can be proposed based
on the mathematical model (7). These control problems
will be dealt with elsewhere.
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