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Abstract: A pumped storage plant is one of the fastest reacting types of power generating units within
power systems. Typically, the desired value curves for the power output during set point changes are
provided in form of non-smooth ramp shaped curves. These cannot be followed exactly by the plant
process due to its physical limitations. Resulting oscillations of the water pressure with potentially high
pressure peaks can cause severe damage to the plant. Therefore, the gradients of set point changes of the
power output have to be carefully limited.
In order to improve the control performance, a flatness-based two-degree-of-freedom control concept
is applied: smooth trajectories for set point changes of the generator output are provided, which take
the plant dynamics into account. The matter of trajectory planning is thereby addressed in detail.
The improved control performance is shown by simulations, also in comparison with the widespread
conventional PID control concept.

1. INTRODUCTION

Pumped storage plants are an important element of large power
systems. Their ability to react fast allows them to cover a large
part of the power system control demand — especially within
the framework of secondary control, but also primary control.
Since pumped storage plants can generate as well as consume
electrical power, they also have the important capability to
balance the highly increasing but non-deterministic feed-in of
wind power into the grid. Therefore, the operation require-
ments for pumped storage plants in modern power systems are
flexibility and manoeuvrability, which leads to an increasing
number of set point changes during plant operation.

Due to the fact that the used medium liquid water has a very low
compressibility in comparison to steam used in steam power
plants, oscillations of the water pressure with potentially high
pressure peaks can occur during set point changes, which can
cause severe damage to the plant. This type of oscillations typ-
ically are stimulated by desired-value-curves for the generator
output that cannot be followed by the plant, as e.g. the edges at
the beginning and end of a ramp-like set point change. To apply
standard PID control concepts, the gradient of the ramp has to
be carefully limited to keep the pressure peaks within tolerated
boundaries.

Based on a recently presented approach of applying a flatness-
based two-degree-of-freedom control concept to a pumped stor-
age power station [Treuer et al., 2007], this paper presents a
novel ansatz for trajectory planning. First, the basic ideas of the
control concept are introduced. Then, the dynamic model of
a pumped storage plant is presented. Subsequently, a flatness-
based two-degree-of-freedom control concept is designed, in-
cluding the trajectory planning with a novel trajectory type. The
achieved improvements are shown via simulation results within
the framework of a relevant scenario.

2. FLATNESS-BASED TWO-DEGREE-OF-FREEDOM
CONTROL

In order to present the flatness-based two-degree-of-freedom
control scheme, the property of differential flatness is briefly re-
called in the following. Thereafter, the two-degree-of-freedom
control structure is discussed, and it is shown how differential
flatness supports a direct design of the dynamic feedforward
control part of the two-degree-of-freedom control structure.

2.1 Differential flatness

Differential flatness is a structural property of a class of mul-
tivariable nonlinear systems, for which, roughly speaking, all
system variables can be written in terms of a set of specific
variables – the so-called flat outputs – and their derivatives. 1 In
this contribution, only SISO flat systems are briefly presented
for the sake of simplicity. Given the SISO nonlinear system

Σ :
ẋ(t) = f(x(t),u(t)), x(0) = x0 (1)

y(t) = h(x(t)) (2)

where the time t ∈R, the state x(t)∈R
n, the input u(t)∈R and

the controlled output y ∈ R. The vector field f : R
n ×R → R

n

and the function h : R
n → R are smooth. The system (1) is said

to be differentially flat [Fliess et al., 1995, 1999] if and only if
there exists a flat output z ∈ R such that

z = F(x) (3)

x = φφφ(z, ż, . . . ,z(n−1)) (4)

u = ψ(z, ż, . . . ,z(n)) (5)

1 For a text book presentation of differential flatness, cf. Sira-Ramı́rez and

Agrawal [2004].
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are smooth at least in an open dense subset of R
n, R

n and R
n+1,

respectively. The flat output z = F(x) is a function of the state
variables x and represents in most cases a meaningful physical
variable. These equations 2 yield that for every given trajectory
of the flat output t 7→ z(t), the evolution of all other variables
of the system t 7→ x(t) and t 7→ u(t) is also given without
integration of any system of differential equations. Thus the flat
output z(t) and its derivatives parameterize the state x(t) and the
input u(t) via (4) and (5). Thereby it is important to remark that

a trajectory z(t) is such that its n-th derivative z(n)(t) admits
a left and right limit everywhere. Furthermore z(t) has to be
consistent with the initial condition of the system (1), which is
given by

x0 = φφφ
(

z(0), ż(0), . . . ,z(n−1)(0)
)

(6)

This relation can also be expressed by

[

z(0), ż(0), . . . ,z(n−1)(0)
]T

= φφφ−1 (x0) (7)

since the function φφφ : R
n 7→ R

n is at least locally bijective.

Moreover, if the controlled output y is a flat output, i.e. z = y,
then (5) evidently represents the left and right inversion of the
system as defined by Respondek [1990]. If the controlled output
is not a flat output, i.e. z 6= y, then the evolution t 7→ y(t) of the
controlled output is also parameterized by the flat output z(t)
and its derivatives, since considering (2), (4) and the results of
Hagenmeyer and Zeitz [2004] leads to

y = h
(

φφφ(z, ż, . . . ,z(n−1))
)

= Γ

(

z, ż, . . . ,z(n−r)
)

(8)

where r is the relative degree of the n-th order flat SISO system
(1) with respect to the output (2). Thus (8) represents the
parameterization of the controlled output by the flat output and
its derivatives up to the order n− r.

2.2 Flatness-based two-degree-of-freedom control

In many practical applications a model-based feedforward is
used in order to enhance the tracking performance of a control
loop. Thereby a simple closed-loop control structure consisting
of a system Σ and a feedback control ΣFB is extended by
an open-loop feedforward control ΣFF as depicted in Fig. 1.
The extended structure combining the feedforward control and
the feedback control has two degrees of freedom for the in-
dependent design of both the tracking performance and the
disturbance behaviour, cf. Horowitz [1963]. When using both
degrees of freedom for a control with feedforward, it becomes
evident that for the design of the feedback control part ΣFB

there are many different methods, whereas there are few sys-
tematic methods to design dynamic feedforwards ΣFF , which
take the desired motion of the controlled variable into account.

In this work a steering between two equilibrium points y∗0
and y∗T of the controlled output is considered when no desired
trajectory y∗(t) is given. The respective boundary points of the
flat output z∗(t) can be determined using (8):

y∗0 = Γ

(

z∗(0),0, . . . ,0
)

, y∗T = Γ

(

z∗(T ),0, . . . ,0
)

(9)

2 The independence of (3) of the input u and the maximal number of deriva-

tives of z in (4) and (5) respectively are due to the results of Jakubczyk and

Respondek [1980] and Charlet et al. [1989].
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Fig. 1. Two-degree-of-freedom control structure with system
Σ, feedback control control ΣFB, feedforward control ΣFF

and reference generator Σ∗ for a tracking control y(t) →
y∗(t).
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Fig. 2. Polynomial desired trajectory z∗(t) of the flat output for
a set point change (11) in the time interval t ∈ [0,T ]. At
the boundary points, the first n derivatives are zero and
therefore continuous, indicated by black boxes.

where T represents the time of the terminal point. These equa-
tions have to be solved for z∗(0) and z∗(T ), respectively. There-
after a sufficiently smooth desired trajectory t 7→ z∗(t) for the
flat output can be planned which connects these two points.
Given this desired trajectory for the flat output z∗(t), differential
flatness yields a direct way to design a two-degree-of-freedom
control scheme by system inversion. Equation (5) can be used
to design the corresponding feedforward u∗(t) directly:

ΣFF = Σ−1 : u∗(t) = ψ(z∗, ż∗, . . . ,z∗(n)(t)) (10)

The related trajectory y∗(t) of the controlled output can be cal-
culated by (8). Then, the flatness-based two-degree-of-freedom
control structure can be represented by the blockdiagram shown
in Fig. 1, in which the flatness-based inversion feedforward
ΣFF = Σ−1 as in (10) holds for a tracking control y(t) → y∗(t).
Equation (10) clarifies the necessity of the sufficient differentia-
bility of the desired trajectory. For instance, a desired set point
change of the flat output z∗(t) t ∈ [0,T ]:

z∗(0) = z∗0 = F(x∗0) → z∗(T ) = z∗T = F(x∗T )

with z∗
(i)
∣

∣

∣

0,T
= 0, 0 < i ≤ n

(11)

has to connect both boundary points z∗0 and z∗T in a suffi-
ciently smooth way; one possible solution is depicted in Fig. 2.
The basic idea of flatness-based two-degree-of-freedom control
is that the flatness-based feedforward control ΣFF = Σ−1 as
in (10) steers the system by inverting its dynamic model Σ,
such that the feedback part ΣFB has only to deal with small
deviations stemming from parameter uncertainties, exogenous
disturbances or modelling errors. This enables the use of linear
PID-like structures for the feedback part ΣFB in the blockdia-
gram shown in Fig. 1.

It is evident, that the pure nominal feedforward (10) does nei-
ther guarantee stability nor robustness. Therefore a stabilizing
and robustifying feedback ΣFB has to be designed as in Fig. 1.
In Hagenmeyer and Delaleau [2003] it has been shown, that the
nominal feedforward (10) exactly linearizes the system (1) if
the desired trajectory z∗(t) is consistent with the initial condi-
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Fig. 3. Schematic outline of a pumped storage hydro power
plant.

tion of the system. Thus the feedback can be designed linearly
as a PID-like control, see Hagenmeyer and Delaleau [2003] for
further details.

In an industrial context, the discussed structure is very useful
for tracking control. If a differentially flat system is consid-
ered 3 , for which there already exists a linear PID feedback
control stabilizing the system in the respective vicinities of dif-
ferent operation points, a flatness-based feedforward combined
with the existing disturbance rejection optimized PID feed-
back controller can lead to very good tracking of, for instance,
guided set point changes. The latter also represents the main
objective of application of the discussed structure on pumped
storage plants.

3. DYNAMIC MODEL OF A PUMPED STORAGE PLANT

The classic outline of a pumped storage plant is presented in
Fig. 3. All system variables are given in a normalized manner:
the initial pressure head is normalized to hb = 1. The total head
loss due to friction is taken into account by the head loss hf.
The role of the surge tank is to balance pressure oscillations
between pressure tunnel and penstock. The usable pressure
head is denoted with he.

The configuration of the dynamic model is depicted in Fig. 4a
[Treuer et al., 2007]. Neglecting the comparatively slow dy-
namics of the surge tank, the penstock model consists of two
parts: the inertia of the water and the dynamics of the compress-
ible water column. The traveling waves of the compressible
water column are substituted by a first order model, represent-
ing the fundamental wave of the oscillation of the compressible
water column. The mass flow qe through the turbine depends
on the usable pressure head and the turbine valve aperture aT

which is — via the valve characteristic f1 — a function of the
main servo position pM. The turbine output is P = qehe, which
is independent of the turbine type but could be corrected by a
load dependent efficiency factor.

The main servo position pM acts as an input to the considered
part system, but it has to be positioned by an actuating system
consisting of two servos as shown in Fig. 4b [Weber and
Zimmermann, 1996]. The main servo is controlled to its desired
value u via a permanent droop. Via the characteristic f2, which
realizes precise positioning for small displacements and an
over-drive for fast reaction, the main servo is actuated by a pilot
servo, usually an electro-hydraulic device. The overall system
dynamics are then given by

3 If the system is not flat, then cf., for instance, the seminal paper of Devasia

et al. [1996] and the recent contributions of Graichen et al. [2005], Graichen

and Zeitz [2005].
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Fig. 4. Dynamic model of a pumped storage plant with the
hydraulic power generation part and the electro-hydraulic
servo actuator.

dqb(t)

dt
=

1

Ti

(

hb −he(t)− ftq
2
b(t)
)

(12)

dhe(t)

dt
=

1

Tc

(

qb(t)−
√

he(t) f1(pM(t))
)

(13)

dpM(t)

dt
=

1

Tm
f2(pP(t)) (14)

dpP(t)

dt
=

1

Tp

(

(u(t)− pM(t))
σP

100
− kp pP

)

(15)

P(t) = he(t)
3
2 f1(pM(t)) . (16)

With x(t) = [qb(t), he(t), pM(t), pP(t)]
T and y(t) = P(t) the

system (12)–(15) and output (16) corresponds to the represen-
tation of a nonlinear SISO system in (1) and (2). The system
order is n = 4 and its relative degree is r = 2. Furthermore the
system is non-minimum phase [Hoppe, 1981]. The values of
the parameters are taken from Treuer et al. [2007].

When connected to a larger power system, the common control
task is to maintain a desired power output. This is achieved by
a PID-controller together with a static feedforward of the valve
position corresponding to the stationary desired output value.
A negative transient droop accounts for the non-minimum
phase behavior of the hydro-mechanical system [Weber and
Zimmermann, 1996].

In Treuer et al. [2007] a validation of the model with measure-
ments from a power plant is given.

4. FLATNESS-BASED TWO-DEGREE-OF-FREEDOM
CONTROL FOR A PUMPED STORAGE POWER STATION

Typically the two-degree-of-freedom control structure as shown
in Fig. 1 is already implemented in pumped storage hydro
power stations. But the open-loop feedforward part ΣFF is
usually only static and does therefore not consider the dynamic
behaviour of the system during set point changes. Within the
framework of differential flatness, a dynamic feedforward con-
trol can be designed, which accounts for the dynamic system
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behaviour. Therefore it avoids the excitation of unwanted pres-
sure oscillations.

4.1 Application of the concept

The water mass flow qb at the beginning of the penstock is a
flat output of the system (12)–(15), which will be shown in the
following. With the flat output

qb(t) = z(t) = φ1 (z) (17)

and (12) the pressure can be expressed as

he(t) = hb − ftz
2(t)−Tiż(t) = φ2 (z, ż) . (18)

Further, with (13) the main servo position is given by

pM(t) = f−1
1

(

z+2 ftTczż+TcTiz̈
√

hb − ftz2 −Tiż

)

= φ3 (z, ż, z̈) . (19)

In the same way (14) yields a representation

pP(t) = φ4

(

z, ż, z̈,z(3)
)

(20)

of the pilot servo position wherein φ4 includes the inverse

function f−1
2 (uM) of the main servo characteristic uM = f2(pP)

and the first derivative of the inverse function of the valve char-

acteristics
d f−1

1 (aT)
daT

. Finally, together with (15) a representation

for the input

u(t) = ψ
(

z, ż, z̈,z(3),z(4)
)

(21)

can be derived, which additionally includes the first derivative

of the inverse function of main servo characteristic
d f−1

2 (uM)
duM

and the second derivative of the inverse function of the valve

characteristics
d2 f−1

1 (aT)

daT
2 .

Equations (17)–(20) express the state variables of the system
(12)–(15) in terms of the flat output and its n−1 = 3 first time
derivatives and therefore correspond to (4). In the same way
(21) corresponds to (5) since it states the system input u in terms
of the flat output and its n = 4 first time derivatives.

Finally, the controlled output can be written considering (16) as

P(t) =
(

hb − ftz
2 −Tiż

)

(z+2 ftTczż+TcTiz̈)

= Γ(z, ż, z̈) .
(22)

This corresponds to (8) and represents the controlled output in
terms of the flat output and its n− r = 2 first time derivatives.

Due to the existence of the expressions (17)–(21), z = qb is
proven to be a flat output of the system (12)–(16), as long as the
inverse functions mentioned above exist and are differentiable
once or twice, respectively. Since the valve characteristic f1

is smooth and invertible and the servo characteristic f2 is at
least continuous and invertible, these requirements are met. The
system is therefore a flat one and methods described above can
be applied for designing a feedforward control.

4.2 Trajectory planning

Considering the problem of a set point change, no desired
trajectory y∗(t) is given in advance. The target is to change
the power output from an initial stationary value P0 to a final
stationary value PT which is to be reached after a transition time
T , i.e. a steering between two equilibrium points y∗0 = P0 and
y∗T = PT , cf. section 2.2.

Using (22), the respective boundary points of z∗(t) can be found
by solving

y∗0 = Γ(z∗0,0,0) and y∗T = Γ(z∗T ,0,0) (23)

for z∗0 and z∗T , respectively. Thereafter a sufficiently smooth
desired trajectory z∗(t) can be planned which connects these
two points, i.e.

z∗(0) = z∗0 and z∗(T ) = z∗T . (24)

Then (21) is used to get the nominal feedforward u∗(t), and
the related trajectory y∗(t) of the controlled output can be
calculated by (22).

In addition to connecting the boundary points (24), the trajec-
tory z∗(t) has to satisfy the conditions

ż∗(0) = 0 , z̈∗(0) = 0 , z∗(3)(0) = 0

ż∗(T ) = 0 , z̈∗(T ) = 0 , z∗(3)(T ) = 0
(25)

because the to-be-connected boundary points are equilibrium
points of the system. Furthermore z∗(t) has to be four times
differentiable on [0,T ], since the derivatives up to the forth

derivative z∗(4) are required to calculate the nominal feedfor-
ward u∗(t) in (21). Because the input u(t) is an electrical vari-
able, steps in the evolution of u∗(t) can be allowed and therefore

z∗(4) does not have to be continuous. A continuity condition
for the fourth time derivative — as demanded in (11) — can
therefore be waived. The choice of an ansatz function for a
trajectory meeting the requirements (24) and (25) is a degree of
freedom in the design of the flatness-based feedforward control.

In Treuer et al. [2007] three different ansatz functions are
compared, namely a polynomial, a Gevrey function and a
mewly introduces spline. The spline ansatz proposed in the
current contribution defined by

ΨT,κ,σ (t) =
T 4

4!

4

∑
i=1

bi

[

( t

T
− ci(κ,σ)

)4

h
( t

T
− ci(κ,σ)

)

+w
( t

T
−1+ ci(κ, σ̄)

)4

h
( t

T
−1+ ci(κ, σ̄)

)

]

(26)

where h(·) is the Heaviside function. The step sizes b =
(b1, · · · , b4) are given by

b = (1, −2, 2, −1) (27)

and the step times c(κ,σ) = (c1(κ,σ), · · · , c4(κ,σ)) are

c(κ,σ) =

(

0,
1

4
κ −σ ,

3

4
κ −σ , κ

)

. (28)

In order to fulfill the consistency conditions

Ψ
(i)
T,κ,σ (t)

∣

∣

∣

0,T
= 0, 0 < i ≤ 3 , (29)

the variables w and σ̄ have to be determined appropriately. For
the boundary t = 0 as well as for the third time derivative at
the boundary t = T these conditions are met inherently. An
evaluation of the second time derivative at the boundary t = T
yields

Ψ
(2)
T,κ,σ (t)

∣

∣

∣

T
= T κ(σ +wσ̄) = 0 (30)

which provides

w = −
σ

σ̄
(31)

Setting the first time derivative of (26) to zero at the boundary
t = T yields the quadratic equation

σ̄2 +(σ +2κ −2−
κ2

σ16
)σ̄ −

κ2

16
= 0 (32)

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

11083



that can be solved for σ̄ .

With the choice of σ = σ̄ = 0 and w = 1 the ansatz (26) is
equivalent to the spline defined in Treuer et al. [2007], except
for the factor T/4! that is introduced for convenience.

During the main time of the transition, i.e. t ∈ [κT,(1−κ)T ],
a constant slope is maintained. Only for t ∈ [0,κT ] at the
beginning and t ∈ [(1− κ)T,T ] at the end of the trajectory a
tight curvature is used to obtain a smooth changeover. Due to
the symmetry of (26) with σ = 0 the first, second, and third time
derivative is zero at the transition boundaries t = 0 and t = T ,
i.e. the consistency conditions (29) are met. Furthermore, the
second time derivative is zero for t ∈ [κT,(1 − κ)T ], which
yields the constant slope described above. With the design
parameter σ 6= 0 the second time derivative results in a constant
value not equal to zero for t ∈ [κT,(1−κ)T ], and therefore (26)
has a constant curvature during the main time of the transitions.

In the following κ = 1/8 is used, i.e. the changeover takes
one eighth of the transition time T at the beginning and at the
end, respectively, and during three fourth of the transition the
curvature is constant. Fig. 5 shows the spline function ΨT,κ,σ (t)
and its first four time derivatives for κ = 1/8 and a transition
time T = 10 s. Two choices for the parameter σ are depicted.
For σ = 0 the constant slope of ΨT,κ,σ (t) during the main time
of the transition becomes obvious by looking at the first time
derivative, which is constant. For σ = −3.5e−4 s the slope of
ΨT,κ,σ (t) has a curvature, which can be observed in the slope of
the first time derivative. The tiny shifts in the step-times of the
fourth derivative are hardly noticeable, but the resulting change
in the step height at the end of the transition is considerable.

A desired trajectory for the flat output satisfying the conditions
(24) and (25) is given by

z∗(t) = z∗0 +
z∗T − z∗0

ΨT,κ,σ (T )
ΨT,κ,σ (t) , t ∈ (0,T ) . (33)

4.3 Simulation results

A set point change output from 90% to 40% of the power output
within 10 seconds is considered in the following. Convention-
ally this as achieved by applying a ramp like desired value curve
to a static feedforward and the PID control. The control action
is retarded by a negative transient droop.

In comparison a flatness based feedforward is designed. A
desired trajectory for the flat output is planed with the spline
ansatz (33). A nominal feedforward u∗(t) is determined via
(21) and applied directly to the system, i.e. not modified by the
transient droop. A reference output trajectory y∗(t) is calculated
via (22) and used as the reference trajectory for the existing
PID-controller.

In Fig. 6 the simulation results are shown for the conventional
ramp as reference and for the flatness based feedforward with
two different parametrisations of the spline ansatz. Both use
κ = 1/8 and T = 10s. The design parameter σ is chosen to

σ = 0s (dotted) and σ = −3.5e−4 s (solid).

When reducing the power output, the pressure in front of the
turbine increases to a higher stationary value, due to reduced
friction losses. But during the transition the pressure reaches
significantly higher peak values due to the inertia of the water
masses in the penstock. This peak values can cause severe
damage to the plant. Therefore the considered negative set point
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Fig. 5. Spline function ΨT,κ,σ (t) and its first four time deriva-
tives for κ = 1/8, a transition time T = 10s and the pa-

rameter σ = 0s (gray dashed) and σ = −3.5e−4 s (solid).

change is in fact a critical case. Furthermore, the non-minimum
phase behaviour of the plant due to these pressure dynamics can
be observed at the beginning of the transition, where the power
output in Fig. 6b increases for a short period of time. During
this time the increase in pressure is stronger than the decrease
in mass flow and therefore raises the power output.

A static feed forward, like in the reference simulation, does not
account for the pressure dynamics, resulting in an undershoot
in the power output at the end of the transition, that is corrected
slowly. The pressure in front of the turbine, plotted in Fig. 6b,
shows significant oscillations.

In case of the flatness based feedforward control the transition
is planned in terms of the flat output z = qb, where the spline
can be seen in Fig. 6d. It connects the initial stationary value for
the water mass flow corresponding to the output at time t = 0s
smoothly with the final stationary value at time t = T = 10s.
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Fig. 6. Set point transition of the pumped storage plant using
flatness-based feedforward control with spline trajectories
and parameters κ = 1/8,σ = 0s (dotted) and κ = 1/8,

σ = −3.5e−4 s (solid). Reference simulation using static
feedforward and ramped desired values (dashed gray).

The resulting output, shown in Fig. 6b, follows from (22). The
pressure in front of the turbine, plotted in Fig. 6c, does not show
the oscillating behaviour of the reference case.

Its overshoot is due to the inertia of the water masses and
depends on the slope of the water mass flow as (18) reveals.
With a constant slope during the main time of the transition,
as in the case of the spline with σ = 0s, the pressure shows a
constant offset to its quasi-stationary value. But since the quasi-
stationary value increases during the transition, a higher offset
could be tolerated at the beginning and a lower offset at the end
of the transition. The offset is related to the slope of the flat
output and decreasing slope is realized by a spline parameter
σ = −3.5e−4 s. Thereby the peak value of the pressure is
significantly reduced.

5. CONCLUSIONS

The applied flatness-based two-degree-of-freedom control con-
cept results in a considerably improved control performance
of the considered pumped storage plant. Especially the critical
pressure oscillations during set point changes are prevented,
which leads to a preservation of the plant fittings. The type of
ansatz function used for trajectory planning strongly affects the
dynamic behaviour of the plant. The introduced spline ansatz
allows for a wider but less pronounced pressure peak during the
critical negative set point changes. The peak value is therefore
considerably reduced.
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