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Abstract: The robust fault detection filter design problem for singular TS fuzzy systems
with time-delay is studied. Using an observer-based fuzzy fault detection filter as the residual
generator, the fault detection filter design is converted to an H,, filtering problem such that
the generated residual is the H,, estimation of the fault. Sufficient conditions are given, which
guarantee the robust H., fault detection filter exists. And by using the cone complementarity
linearization iterative algorithm, the fault detection filter design is converted to solving a
sequence of convex optimization problems subject to LMIs. The premise variables of the designed
fuzzy filter are not demanded to be the same as the premise variables of the TS fuzzy model of

the plant.

1. INTRODUCTION

Over the past few decades, the problem of fault detection
and isolation (FDI) in dynamic systems has attracted
considerable attention of many researchers (Chen et al.,
1999; Chen et al., 2000; Ding et al., 2000; Jiang et al.,
2003; Zhong et al., 2005). Among the approaches for FDI,
the model-based approach has been extensively studied.
As is well known, the presence of time delays must be
taken into account in a realistic FDI filter design. However,
it seems that there are very few previous results on
the FDI problem for time-delay nonlinear systems (B.
Castillo-Toledo et al., 2005; Chen et al., 2006; E. Al-
corta et al., 2003; Magdy et al., 2006; Sing, Peng and
Steven, 2006; Sing, Ping and Steven, 2006). In (B. Castillo-
Toledo et al., 2005; Chen et al, 2006; E. Alcorta et
al., 2003; Magdy et al., 2006; Sing, Ping and Steven,
2006), fault detection problem for nonlinear systems was
studied without considering time delays. In (Sing, Peng
and Steven, 2006), fault estimation problem for time-
delay nonlinear systems described by TS fuzzy models
was studied and assumed that the premise variables of the
residual generator were the same as the premise variables
of the TS model of the plant. To the best of authors’
knowledge, however, there is a lack to the research on
FDI for singular TS fuzzy systems with time-delay, which
motivates the present study.

In this paper, we will deal with the problem of fault de-
tection for a class of singular time-delay nonlinear systems
described by TS fuzzy models. Using an observer-based
fuzzy fault detection filter as a residual generator, the
design of fault detection filter (FDF) will be formulated as
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an H.-filtering problem firstly. Then sufficient conditions
on the existence of a robust Ho.-FDF for singular time-
delay fuzzy systems will be derived in terms of linear
matrix inequalities (LMIs) by using the cone complemen-
tarity linearization iterative algorithm and a solution to
the robust H,.-FDF can be obtained.

2. PROBLEM FORMULATION

Consider a class of singular time-delay system described
by the following TS fuzzy model
Rule i: IF z1(t) is ©;; and - -- and z,(¢) is ©;,, THEN

Ei(t) = Ajx(t) + Ayt — 1) + Bad(t) + By f(t)
{ y(t) = Ciz(t) + Dad(t) + Dy f(t) (1)
z(0) = ¢(0),V0 € [-7,0]

where ¢ = 1,2,---,r, ©;; (j = 1,2,---,q) are fuzzy sets;
2(t) = [z1(t) - z4(t)]" is the premise variable which
may be a measurable variable or the state of the system,;
z(t) € R", y(t) € R™, f(t) € R™, d(t) € R" are
the state, measurement output, fault and unknown input,
respectively; f and d are assumed to be L5 -norm bounded,;
rankE =p, 0 <p <n. E, A;, Ay, Bg, By, C;, Dg and
Dy are known matrices with appropriate dimensions; 7 is
an unknown constant delay satisfying

0<7m<T<TM (2)

where 7,,, and 757 are known constants; ¢(+) is a continuous
vector valued initial function; r is the number of IF-
THEN rules. In this paper, it is supposed that system (1)
with f(t) = 0 and d(¢t) = 0 is asymptotically stable and
E = diag(1,0).

The resulting fuzzy system model is inferred as the
weighted average of the local models of the form
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Z.uzZt

+de(t) + Bff(t)]
Zuz ()[Cix(t) + Dad(t) + Dy f(t)]
5(0), 79 € [0

x(t) + Apjx(t — 1)

3)

z(0) =

q
Heij(zj(t)) "
where 11;(2(t)) = —5——— > 0, > pi(2(t)) = 1.
> Il etz i=1

i=1j=1

©;;(2;(t)) is the grade of membership of z;(t) in ©;;.
Note that the premise variable z(¢) may be a measurable
variable or the state of the system, so system (3) is a
nonlinear system. For the convenience of notations, we let

pi = pi(z(t)).

Defining 74, = %(TM + Tm), using x(t — 7) — x(t — 7ap) =

tt__: #(0)df, we can rewrite system (3) as
Z il A (t) + Ay [T i(6)do
+Aﬂa:( — Tav) + Bad(t) + By f(t)] @)
Zulcx )+ Dad(t) + Dy f(t)]
z(0) = ¢(9) Vo € [—1,0]

The main objective of this paper is to design an asymptot-
ically stable FDF such that the generated residual signal
r satisfies the H, performance

[Ir =W () fll2 < yllwl]2 ()
for a prescribed v > 0, where Wy(s) is a given stable
T

HOFR0)
Remark 1. The introducing of a suitable weighting matrix
Wy (s) was used to limit the frequency interval, in which

the fault should be identified, and the system performance
could be improved.

weighting matrix and w(t) = [d

Without loss of generality, we suppose that one minimal
realization of W (s) is

{ﬂ'ff( ) = Aways(t) + Bw f(t), z5(0) =0 ()
r(t) = Cwaxy(t)

where z¢(t) € R™, r¢(t) € R", Aw, Bw and Cy are
known constant matrlces Augmenting (4) and (6) yields

B, (t Zuz si®s(t) + Arsi@s(t — Tao)
+Am JIT #6(0)d0 + Bow(1)]
Z:uz 5is(t) + Dsw(t)] "
ri(t) = Cuya(t
5(0) = ¢4(0), V0 € [-7,0]

=[] e84 32

4.0 _[B4 By
ATsi—|:0 0:|7Bs—|:0 BW

],vee [—7,0], D, = [ D4 Dy,
Cor =10 Cw 1.

Consider the following fuzzy FDF of observer-type
Rule i: IF 21(t) is ©;1 and - -- and 2,4(¢) is ©;4, THEN

Esi‘s(t) - Aszjs(t) + A‘rsifi‘s(t - Tav)
+H;(y(t) — 9(1))

§(t) = Csi®s(t) (8)

r(t) = Cridea (1)

'Ts*(o) = d)s (9),V9 € [77-’ 0]

where ¢ = 1,2,---,r, 2;(t) is the estimation of z;(¢),
Zs(t) € R"+"W is the estimation of z4(t) and r(t) € R"/
is the residual of FDF. H; and C,; are the matrices to be
designed.

The final fuzzy FDF is inferred as the weighted average of
the local models of the following form

Zﬂz szxs

FH. () — (1)

= Z [iCsids (1) 9)
Z [1:Cridis (t

£.(6) = 6(6), V6 € [, 0)

Esms + A'rszxs( Tav)

Remark 2. In (B. Castillo-Toledo et al., 2005; E. Alcorta
et al., 2003; Magdy et al., 2006; Sing, Peng and Steven,
2006; Sing, Ping and Steven, 2006), the premise variables
of the residual generator are assumed to be the same as
the premise variables of the fuzzy systems model. This
actually means that the premise variables of the fuzzy
systems model are assumed to be measurable. However,
in general, it is extremely difficult to derive an accurate
fuzzy systems model by imposing that all the premise
variables are measurable. In this paper, we do not impose
that condition, we choose the premise variables of the
residual generator to be the estimated premise variables
of the plant.

Defining e(t) = z4(t) — &4(t), re(t) = r(t) — r(t), we have

= Z Z fuifij (Agi — H;iCyj)e(t)

i=1 j=1
+ZﬂiA‘rsie(t - Tav)

1=1
+Z(u Agizg(t)

(10a)

_ZZMl /’LJ HCS]xs( )

1=145=1
+ Z(Mz - ﬂi)ATSixS(t - Tav)

i=1

/1/1 A‘rsz f T i (H)de

+Z(
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i(0)do

+Zﬂz‘Amz’ ftt::av
i=1
"‘Zﬂi(Bs — H;D,)w(t)

=1
t) = Zﬂi(cm ZM'L ”6

=1
e(0) = 0,Y0 € [, 0]

(100)

sf 375

Defining #(t) = [z (?) eT(t)]T7 using Z(t — 7) — Z(t —

Taw) = [T #(6)d6, one obtains

t—Tao

Gij+ > AHE(t) + AAi(t)
=1
+AAE(t—T)

= Z i Cri(t)

— 50).0 € [—r.0)

Ei(t) =

#(0)

where

Gij = ZZ/U‘Z:U’J AZ] JFATZ 2)Z(t )JrBwiw( )

lel

'rz2ft7_ d9+A”1x(t—7)}

. [E, 0 Ay 0
E{o Es]’A” { 0 Asi—Hicsj}

Apio = [ ,STM A?sz:|7 Aria = [ﬁ:z 8]’
AA= [AOA 8} Ad, = [A?AL 8]

Bui = [Bs B;IiDJ’ AH; = [H?AC 8}
3(6) = [¢S(§") ] 0 € [~7,0],

Cri = [Cri = Cuy ~Cru), A = 3 (s = i) A

Based on the above discussion, the FDF problem to be
addressed is stated as follows.

The FDF Problem: Design an FDF of observer-type in
form (8) such that it is a robust Hoo-FDF of system (1) if
(i) system (11) with w(t) = 0 is asymptotically stable;

(ii) the Hoo performance ||re||2 < v||w]||2 is guaranteed for
all nonzero w(t) € £5[0,00) and a prescribed v > 0 under
the condition ¢(0) =0, V0 € [—,0].

3. MAIN RESULTS

The following theorem is essential for solving the FDF
problem formulated in the previous section.

Theorem 1. For given scalars v > 0 and 7 satisfying (2),
system (8) is a robust Heo-FDF of system (1), if there exist
scalars €1 > 0, e2 > 0, €3 > 0, matrices Q > 0, S > 0,
X >0,Z >0and P, Y, such that the following matrix
inequalities hold for 4,5 =1,2,---,r

EP=PTE>0 (12)

X Y
[* EZE] 20 (13)
wir PTA;1 wiz PT By wis wie
* -Q 0 0 was wog
* * -5 0 0 wse
* * * _nyI 0 wys <0 <14)
* * * * )
* % * * *

where . .
win =PTA;+ ALP + 7, X +Y + YT + Q4+ S+ €71,
wis=PTAL5—Y, wig=[1,A5Z 000],

2 2 -
wis = | g9 PT g4 PT ipTQi \[(I)T CT O],
0 0
[OOOOO }Q_{OH,»C]’
wWae = [T,w i1Z Tm,A 120 O}
w36 = [ij T ZZ TavATZ QZ TGUATZ 2Z 0]

wWi6 = [ 7awBL,Z 740 BL,Z 10y BT Z 10 BL,Z ),

U}'I U)7 'LUl
wee = diag(—TawZ, —TavZy —Tav Ly —Tav Z),

@:[AO},W [A 0} i=1,2,,1,

00 00
A=Y A A, 2 Argi, € = 2 C.;.
PI‘O(;;.l Choose a Lyapunov functlon candidate as
V(t) = ()PTEx + [ #T(0)Qz(0)dd
+ [, & )Sw( )
+ [0 ds It & (0)EZEi(9)dd

Taking the derivative of V(t) with respect to ¢ along the
trajectory of (11) yields

PTGy + zr:ﬂiﬁgiii(t) + AAE()
SF (- n)Qi(t - 7)
Qi(t) — (t — Tau)SZ(t — Taw)

L ( VEZE(t)

- - i (s)EZEi(s)ds

V(t) =2zT(t)

Using (13),
—22T(t)PT Ari 0 ft (9)do

- [ [8 e[
< [TO) [YY ]
z

—E(t—Ta)) + [} i (0)EZE:
Noticing that
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= Zu;T t)yPTAH;AHT Pi(t)

< 2T (1) Z(t) + - Z T () PTO, 0T P (t)
Li=1
Similarly, we have
;i:T( YPTAAZ(t) + &7 (t) AAT Pz(t)
< 3 (1)P" PE() + %T(t)wf(t) i)
€2
Tt PTAAE(t — 1) + 37 (t — ) AAT Pi(t)
< 237 (1) PT Pi(t )+€32 - neTuae -7 1S
3
Denote & (t) = [#7(t) 27 (t—7) ”T(t—Tav)}T. In the
case of w(t) =0, fro (15) (18) we obtain
t) < Z Zﬂiﬂjf?(t)Tlﬁl (t) (19)
i=1 j=1
where
Wil W12 w13
Tl = * (D22 TavA IZAT’L 2 5

TavAm QZA” 2 — S
@1, = PTA; +ATP+T(WX+Y+YT +Q
+S + €7 2T+ TaUA ZAZJ + (52 + sg)PTP
PTQ Qrp + - 2 <1>Tq>
Wiz = P ATZ,I + TavAZj ZATz,h
w13 =PTA,, Y+ Tav;l Z Ao,
W2 = VTV —Q + TaUA” ZALiq.

Notlclng that (14) implies T; < 0, there exists a scalar
0 > 0 such that

11 + diag(61,0,0) <0 (20)
From (19)-(20), we have
V(t) < =627 ()i (t)
which means that the system (11) with w(¢) = 0 is

asymptotically stable.

Define
“+o0o
J= fo e (re(t) =~ w (yw(t))dt
under zero initial condition, it can be shown that for any
nonzero w(t) € L£3]0,00) and t >0

J < [FR0T e t) — vl (Ww(t) + V(E))dt
Observing that
77 Z /'I”L T’L:I‘.

ZMJT

< Zu i (t)CLC,iz(t)

we have

re (H)re(t) < Zﬂzx (t)czzémi(t) (21)
Denote .

() = [&7(t) #(t —7) #7(t — ) W (1)),

From (15)-(18) and (21), we have

J< fuify Jy70€8 () Taka(t)dt (22)

i=1j=1

where
11 O12 @ng PT B z+TavA ZBun
T, = * @22 ‘:)23 Taqu—l 1Zsz
SR R AT 7B ’
w33 Tavri2 wi
* % %

_721 + Ta'UB Zsz
@ =PTA;j+ ALP+ 7, X +Y +YT +Q
+S +&i T+ 1AL Z A + (€5 +e3)PTP
2
+= PTQ or'p + - 5070 + CLC,,,

@1 = PT An,l + TavAUZATz,h

Wz = TavAzi71ZATi,25d33 = Tavlzizi’zZATi,Q -5,
@13=PTA, Y+ Tavle ZAi o,

%\DT\II — Q4 1AL ZA,, ;.

&22 = 7,1

Applying the Schur complement formula to (14), we obtain
Ty < 0. Thus J < 0, i.e. |Jre|l2 < 7|[w||2, which implies
system (8) is a robust H..-FDF of system (1). This

completes the proof.

Now, we are in the position to solve the robust H..-FDF
problem.

Theorem 2. For given scalars v > 0 and 7 satisfying (2),
system (8) is a robust H.-FDF of system (1), if there
exist scalars €1 > 0, e > 0, €3 > 0, matrices P, P, L;,
Cri, Xka ka Sk, Zk; Uk and }/27 1= ]-72;"'7717 1 S k S 37
1<1<4,where X; >0, X3>0,Q1>0,Q3>0,5 >0,
S3 > 0,7, >0, 23 >0,U; >0, U3 > 0, such that the
following matrix inequalities hold for i,j = 1,2,---,r
E,Py > 0,E,(P, — P1) >0

(A Xo+ X5 Az Yi+Y3]
* Xy Y+, Y

* * A33 A34
L * * * A44

(211 ZiMUSMT + Zo MU MT |

| Z01 Z3 MU M™ + ZsMU3M™ |

Ti1 Too X1+ 7o Xs + Y1+ Y] + Y2+ Y3
* Tm;Xl + Yl + YlT

(711 M2 M3 M4 M5 Mie N7 M8 119 |
Ti22 123 T24 725 T2 Tl27  7)28 7]29
M3 13 0 0 0 738 M39

-Q1 0 0 0 748 Mao
5 156 0 0 0 | <0
*¥ =81 0 0 ne9
¥ =T 0 1

L * * * * g
where

A =X+ X0+ X7 + X3, A3 =Y, + Yo + V3 4+ Y,
Ass = E;PLMU,MTPTE,,

g = ELPNIUNITPYE, + E MU M (P]

(23)

>0 (24)

=1 (25

>0 (26)

(27)

¥ X X X X X X *
¥ K K X X X X
* K X K X X
* %
*

*

- P)E,,

Ay = Ey(Py — PQ)MUQT MTPIE, + E,P,MU,
XMT(P1 - PYE, + E,P,MU,M"P]'E,
+E3(P1 - PQ)MU3MT(P1T - PQT)E‘M

M = [MZJ ]3><3, M117 M23 and M32 are 1dent1ty matrices

with appropriate dimensions, other block matrices are zero
matrices.
1 = 7Ta0 X1 + 700 Xo + TavXQT + TavX3 + Y1

Y+ Yo+ Yy + Y34+ Y + Y+ Y],
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m1 =Pl Ag + AL P + 263 + Q1 + Q2+ QF
+Q3 + Ta'qu + TavXQ + TavX;F + TavXB
4S8 4+ S + ST 4S54+ Y + Yo+ Y3+ Y,
+Y+ Y+ v+ vl
M2 ZPlTAsi—f—AZ;P1+O£L¢+€%I+Q1+Qg
+7av X1 + Taw X3 + 51+ 57 + Y1 + V("
+Y, + Y3,
M3 = T4 =123 = 124 = PlTArsiﬂhG =-Y - Y3,
ms =—Y1 —Ys — Y3 =Yy, mir = P! B,
_ T T V2 i T
s = EQPI 053P1 00 gA _Csf 01,
Mo = [TavAZiPI Taw(AL Py + C'STjLi) 00
0000],
Moo = PT Agi + AT Py + 21 4+ Q1 + Sy + 7w X1
+Y1 + Y,
Nos = —Y1 — Yo, pog = P Argi — PF A — Y7,
nor = PI By + LT Dy sz = —Q1 — Q2 — QF — Qs,
28 = [SQPQT ea(Pl = PJ) esPy es(P{ — P))
_VErre V2 jr ch-col o] )
€1 €2
M29 = [ Taw AL Py Ty ALP> 00000 0],
N3 = Mg = oooooooffif],
N30 = Nao = | Taw ALy Pt TawAL,P1 T AL Py

TawAL;PL0000],
nss = —S1 — So — ST — S3, 56 = —S1 — ST,
69 = [0 Taw ALy (Po = P1) 0 7oy AL (P2 — P1)

0 Taw AL, (P — P1) 0 0],
N9 = [TawBI Py 7001 TawBYP1 70Ty
TawBI Py 74,11 7o BY Py 70T |
Ty = BI'P + DTL;, n3a = —Q1 — QF,
799 = dmg(T27T2,T2,T2),
T i+ 2)
* _TavZI

In this case, a desired robust H,.-FDF is given in the form
of (8) with parameters as follows

Ty =

Hi=(Py—P)7 "L i=1,2, 7 (28)
Proof. Suppose (23)-(27) hold and the coefficient matrices
of the filter (8) are designed in the form of (28). Now
we will prove that there exist matrices @ > 0, S > 0,
X >0, Z > 0 and P, Y satisfying (12)-(14). Denote
P1 = [}Sij]gxg,' From (23) we have P12 = O, P32 =0

and P31 = P1T3 Then we obtain PlTES = E,P, > 0,
PIE, = E,P, > 0.

From (26)-(27), it is easy to prove that P; is nonsingular.
Without loss of generality, it is assumed that P; — P» is
nonsingular (Shengyuan et al., 2003). Denote P = TI,I1;

—1
where II; = [Pl I}, I, = {I P ] Then using

PO 0P —PF
theorem 1 in (Shengyuan et al., 2003), we obtain P =
[Jiz _6131—_13;2)] is nonsingular and satisfies (12).

Denote Q = [%l 8:25} S — [Sl 52} X — [Xl X2}

Z3

and post-multiplying (27) by diag(Pl_T7 1, Pl_T7 1, Pl_T7 1,
1,1, PfT,I, PfT,I, PfT,I,PfT,I) and its transpose, it
can be shown that the LMIs in (27) are equivalent to
the LMIs in (14). Similarly, it can be proved that the
matrix inequalities in (24)-(25) is equivalent to the matrix
inequality in (13). From theorem 1, we know that system
(8) is a robust Hoo-FDF of system (1). This completes the
proof.

Y = {Yl Yﬂ, Z = [Z*l 22}7 Z=' = PpTZP~!. Pre-

Remark 3. The introducing of the parameters €1, €3, €3
and the matrices X, Y, Z is used to make the matrix
inequalities in theorem 1 less conservative.

Remark 4. Tt is clear that the nonlinear terms in (24)-
(25) make that (24)-(25) are not conformable to LMIs.
However, by using the cone complementarity linearization
iterative algorithm proposed in (Ghaoui et al., 1997) by
minor modification, we can convert (24)-(25) to solving a
sequence of convex optimization problems subject to LMIs.

4. CONCLUSION

In this paper, fault estimation is adopted as the residual.
The robust residual generator design problem for singu-
lar time-delay nonlinear systems is converted to a H,
filtering problem. Sufficient conditions are given, which
guarantee the robust H, fault detection filter exists. And
by using the cone complementarity linearization iterative
algorithm, the fault detection filter design is converted
to solving a sequence of convex optimization problems
subject to LMIs. The premise variables of the residual
generator are chosen to be the estimated premise variables
of the plant so that the premise variables of the residual
generator are not demanded to be measurable.
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