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Abstract: One of the key problems in Model Predictive Control (MPC) is the inherent on-line
computational complexity, which restricts its application to slow dynamic systems. To address this issue,
multi-parametric programming technique is introduced in MPC (explicit MPC), where the optimization
effort is moved off-line. The optimal solution is given in an explicitly piecewise affine function defined
over a polyhedral subdivision of the set of feasible states. Instead of solving an optimization problem,
the on-line work is simplified to identify the region the current state belongs to and simply evaluate
the piecewise affine function. Hence, identifying of the member of the solution partition that contains
a given point (referred to as a point location problem) impacts on the time to implement the explicit
controller in real-time, which is one component of the complexity of explicit MPC. In this paper, two
simple algorithms for point location problems are proposed to efficiently implement of explicit MPC
solutions, which aim at reducing the number of polyhedral sets that are candidates to contain the state at
the next time instant.
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1. INTRODUCTION

Consider the following discrete-time constrained linear system
with bounded disturbances:

x(t +1) = Ax(t)+Bu(t)+w(t) (1)

u(t) ∈ U, x(t) ∈ X , ∀t ≥ 0, (2)

w(t) ∈ W, ∀t ≥ 0, (3)

where x(·),u(·) and w(·) are the state, control and disturbance
variables respectively and X ⊂ R

nx ,U ⊂ R
nu ,W ⊂ R

nw are the
corresponding constraints and disturbance set, each being a
non-empty convex polytope containing the origin in its interior.

Model predictive control (MPC) is one strategy that deals with
controller design for such system with physical constraints.
Over the last few decades, MPC strategy has received much
consideration since it is possible to handle constraints on input,
state and output signals during the design procedure of the con-
troller. However, its heavy on-line computational complexity is
a key factor that limits MPC (especially robust MPC) to slow
dynamic or small-scale systems. Recently, a lot of work that
aims at reducing the on-line computational complexity has been
reported. For example, Bemporad et al. (2002a,b) proposed an
efficient approach, where the optimization effort of MPC for
linear systems can be moved off-line. This approach is based
on multi-parametric programming, through which the optimal
solution is given in an explicitly piecewise affine function de-
fined over a polyhedral subdivision of the set of feasible states,
i.e.

u∗(t) = Lix(t)+gi, if x(t) ∈ Ri, ∀i ∈ I , (4)
� This work is supported by Norwegian University of Science and Technology
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where matrixes Li ∈ R
nu×nx and gi ∈ R

nu are associated with
a convex polyhedral set Ri in R

nx , the set of feasible states
P is a union of all these partitions, i.e. P = ∪i∈I Ri and
int(Ri)∩ int(R j) = /0 for all i 	= j, i, j ∈ I . Once this affine
function has been pre-calculated, the optimal solution can be
computed for a particular parameter by determining the region
that contains it.

The advantage of explicit MPC is that no time-consuming op-
timization is necessary and the control input can be computed
within a short time period. Multi-parametric programming sig-
nificantly decreases the cost of applying MPC to industrial sys-
tems and considerably simplifies the on-line implementation.
However, multi-parametric programming also suffers some se-
rious drawbacks, for example, the number of partitioning re-
gions grows exponentially with the size of the control problem
and may quickly reach a prohibitive number of elements, see
Grieder (2004). In order to apply multi-parametric program-
ming to cases where complex mathematical models or fast
response systems are used, its computational complexity should
be reduced.

As stated above, the on-line implementation of explicit MPC is
simplified to identify where the current state x(t) is. Once the
region is found, the affine optimal control law associated with
the region is evaluated and applied to the system. Identifying
which region a given state belongs to is one of the key com-
plexity issues of explicit MPC. Identification of the region that
contains the current state is similar to a point location problem.

Problem 1 ( Point location problem, see Spjøtvold et al. (2006)
) Given a polyhedral cover R := {R1,R2, . . . ,Rp} such that
for every pair (Ri,R j) ∈ R × R, i 	= j, we have int(Ri) ∩
int(R j) = /0. Given a point x∈R, find Ri ∈R such that x∈Ri.
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Some key contributions, for example, Tøndel et al. (2003);
Borrelli et al. (2001); Jones et al. (2006); Pannocchia et al.
(2007); Spjøtvold et al. (2006) have been proposed to efficiently
solve point location problems. In Tøndel et al. (2003), binary
search tree is constructed over the polyhedral partitions. The
auxiliary hyperplanes are used to subdivide the partition at
each tree level. In Borrelli et al. (2001), it is shown that the
region containing the point is associated to the piecewise affine
optimal function J∗(·) with the largest value. Thereby, instead
of identifying the region, each affine value J∗(·) corresponding
to each region is calculated for the current point and compared
to get the largest one. Recently, such a problem can be written
as a weighted nearest neighbor search (Jones et al. (2006))
that can be solved in time linear in nx, whereas this algorithm
considers only the case when the cost function of optimization
problems is linear. In Spjøtvold et al. (2006), authors proposed
to utilize reachability analysis to solve a reduced point location
problem instead of resolving the entire point location problem
at every time instant.

In this paper, two simple algorithms for point location prob-
lems are proposed to efficiently implement of explicit MPC
solutions. In the first algorithm, one suitable point contained in
each associated region is first chosen as a reference point. The
point location problem can be easily solved via comparison of
the distances between each chosen point and the current state.
In the second algorithm, modifications of reachability analysis
approach is presented, which aims at reducing the number of
polyhedral sets that are candidates to contain the state at the
next time instant and avoiding the heavy pre-processing time.
Both algorithms are introduced in detail in the next two sec-
tions.

Notation and Basic Definitions: For any matrix A, ‖A‖� refers
to the �-norm of A, which has the following properties: ‖A+
B‖� ≤ ‖A‖� + ‖B‖�; ‖AB‖� ≤ ‖A‖�‖B‖�. ‖x‖� refers to the �-
norm of vector x ∈ R

n. B�(ε) is the � norm-ball, i.e. B�(ε) =
{x ∈ R

n : ‖x‖� ≤ ε}. Suppose X ∈ R
n, then the interior of X is

int(X); |X | is its cardinality. Suppose X ,Y ⊂R
n, the Minkowski

sum is X ⊕Y = {z ∈ R
n : z = x+ y,x ∈ X ,y ∈Y}.

Definition 1(One-step reachable set) The one-step reachable set
Reach(Ω) of system (1)-(3) is the set of states to which system
(1)-(3) under controller (4) evolves at the next time step from
x ∈Ω, for all allowable disturbance w ∈W .

To characterize it, let

Reach(Ω) = {x+ : ∃x ∈Ω,x+ = Ax+Bu∗+w, ∀w ∈W}. (5)

2. COMPARISON OF DISTANCES

In this section a simple algorithm is proposed to solve a point
location problem via comparison of the distances between
points. In each region Ri, some point is chosen as a reference
point, which is shown as a dark circle in Fig. 1. The distance of
the current state (shown as a dark triangle in Fig. 1) and each
chosen point is computed. The values of distances may indicate
a location search direction. In virtue of this useful information,
the point location problem can be solved easily.

The off-line work is stated as follows: choose one suitable point
in each region Ri. Generally, the Chebychev center xi

c of Ri is
a good choice.

Given the current state x(t), the first step of the on-line work is
to compute the distance between the points (x(t),xi

c),∀i ∈ I ,
i.e.

di(t) = ‖x(t)− xi
c‖2, ∀i ∈ I .

Define D(t) = {di(t),∀i ∈I }. Next step is to sort the elements
of D(t) in ascending order and its corresponding index set is
defined by I(t) = { j1, j2, . . .}, where j1, j2, . . . ∈ I . To locate
the point x(t), first searching the region Ri from the index i = j1
(the distance between (x(t),x j1

c ) is smallest), check whether
x(t) ∈ R j1 . If not, repeat it from the index i = j2 and so on.
In summary, the on-line algorithm to identify x(t) is given as
below:

Algorithm 1 At time t, the on-line computation involved for
the point location problem is
(1) Compute di(t),∀i∈I , sort the set D(t) and obtain its index
set I(t);
(2) Set k = 1;
(3) Check whether x(t) ∈ R jk where jk ∈ I(t). If not, set k :=
k+1 and repeat Step (3).

Fig. 1. Illustration of the point location problem via comparison
distances. Chebychev centers are shown as dark circles;
Point x(t) is shown as a dark triangle; The distances
between x(t) and several Chebychev centers are shown by
dash-line.

In general, the distance between x and the Chebychev center of
the region where x stays is respectively small. It may be a useful
clue for solving the point location problem. Compared with the
linear search through the entire region P approach, Algorithm
1 seems more efficient. For example, in Fig. 1, the number
of partitioned regions is 17. By using Algorithm 1, x will be
successfully located at the second iteration (k = 2). However,
for the linear search approach, in some worst case, it possibly
takes 17 iterations to locate x.

The process starts the search from the shortest distance to
the longest one, which actually provides a direction for the
location search. It is reasonable to believe that few iterations
are needed to locate x by using Algorithm 1 in some cases.
The idea of Algorithm 1 is very simple and straightforward.
Unlike the recent results for efficiently solving point location
problems, its off-line work is much time-cheap. It can be
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used for a general class of explicit MPC problems and for
high dimensional models. However, it should be admitted that
Algorithm 1 still possibly takes long time to locate x in some
worst cases, for example, when the distance between x and the
Chebychev center of its associated region is large.

3. REACHABILITY ANALYSIS

Instead of searching through the entire set P at each sample
time, Spjøtvold et al. (2006) utilizes reachability analysis to
solve a reduced point location problem at every time instant.
In the algorithm, the reachable set Reach(Ri) needs to be
computed. From (5), such a set can be characterized as

Reach(Ri) = (A+BLi)Ri ⊕Bgi⊕W, ∀i ∈ I . (6)

Since equation (6) includes the Minkowski sum operation, the
characterization of Reach(Ri) becomes very difficult and time-
expensive, especially when nx is large. Hence, this work is
not applicable to complicated controller structures due to the
prohibitive pre-processing time. In this section, an alternative
algorithm is proposed, which also utilizes reachability analysis
to solve a reduced point location problem. Unlike the work in
Spjøtvold et al. (2006) to exactly compute Reach(Ri), a set
of states that be reached at the next time instant from x(t) is
estimated via employing the system dynamics, the explicit con-
trol law and some reference points. The proposed work avoids
the Minkowski sum operation and has less computational com-
plexity, therefore, it needs less pre-processing time and is easily
applicable.

The idea of the proposed algorithm is to estimate a set x(t +
1) reaches via utilizing some reference points. The members
of the partition intersecting this set are guaranteed to contain
x(t + 1), which are candidates to be searched in the next time
step. Hence, instead of solving the entire point location problem
at next step, a reduced point location problem associated with
these regions is solved.

If it is known that x(t) ∈ Ri, to estimate where x(t +1) goes to,
some reference point in Ri is needed in the proposed algorithm.
Suppose in each region Ri, some suitable point is chosen,
defined by xi (see dark circles in Fig. 2). Its nominal successive
state is x+

i = Axi + Bu, where u = Lixi + gi (for example, see
a white circle in Fig. 2). Since x(t) ∈ Ri, x(t + 1) = Ax(t) +
Bu∗(t) + w(t) where u∗(t) = Lix(t) + gi. Thus the difference
between the points x(t +1) and x+

i is, i.e.

x(t +1)−x+
i = Φiδ (t)+w(t), (7)

where Φi = A + BLi and δ (t) = x(t)− xi. If ‖δ (t)‖2 ≤ dmax,i
and the disturbance ‖w(t)‖2 ≤ w,∀t ≥ 0, then

‖x(t +1)−x+
i ‖2 ≤ ρ , (8)

where ρ = ‖Φi‖2dmax,i + w. Thereby, the distance between
(x(t + 1),x+

i ) is less than some upper bound ρ . Define the
convex set Ω(xi) = {x ∈ R

nx : ‖x− x+
i ‖2 ≤ ρ}. It is easy to

know that the state will reach the setΩ(xi) at the next time step.
Define a new index set N(xi) = {i∈I : Ri∩Ω(xi) 	= /0}. Then,
if x(t) ∈ Ri, referring to the given point xi, the point location
problem at the next time step reduces to a search through the
set N(xi), instead of searching the entire region P .

For example, in Fig. 2, the number of partitioned regions
is 27. For region R1 and point x1, the index set N(x1) =

{9,10,11,12}. It means that the next state x(t + 1) will en-
ter one of these four regions R9,R10,R11,R12 if x(t) ∈ R1.
Hence, at time t +1, instead of searching a total of 27 regions,
only 4 regions will just need to be searched.

Fig. 2. Illustration of the point location problem via reachability
analysis. Chosen points xi are shown as dark circles; Point
x(t) ∈ R1 is shown as a dark triangle; x+

1 is shown as a
white circle; The set Ω(x1) is shown as a shaded circle.

The key point of this algorithm is how to select appropriate
points xi such that setsΩ(xi) are not over-estimated. In general,
xi can be chosen as the Chebychev center of each region Ri.
Suppose each region Ri can be written as a set of linear inequal-
ities, i.e. Ri = {x ∈ R

nx : Mix ≤ bi}. The upper bound dmax,i is
obtained by solving the following optimization problem

max
x

(x−xi)T (x−xi) (9)

s.t. Mix ≤ bi.

Let the optimal solution is x∗. Then dmax,i = ‖x∗ − xi‖2. Such
a choice of dmax,i means that for all points in Ri, the distance
between it and xi is less than dmax,i. However, based on this
worst estimation of dmax,i, the size ofΩ(xi) may be large, which
directly implies that N(xi) may have many elements. There-
fore, instead of employing a single dmax,i, we use a sequence
of values {d j

max,i, j = 1, . . . ,n}, where n ≥ 1 is an integer,

d j
max,i < d j+1

max,i and dn
max,i = dmax,i to compute a corresponding

sequence of reachable sets {Ω j(xi), j = 1, . . . ,n} and index sets
{N j(xi), j = 1, . . . ,n}. For convenience, the value d j

max,i can be

chosen as d j
max,i = j

ndmax,i.

In summary, the off-line computation required and the online
algorithm are stated in Algorithm 2.1 and 2.2, respectively for
point location problems via utilizing reachability analysis.

Algorithm 2.1 Off-line computation:
(1) Select a reference point xi in each region Ri;
(2) Compute the value dmax,i for all i ∈ I via problem (9);
(3) Calculate the sequence of sets {Ω j(xi)} and its correspond-
ing index sets {N j(xi)}.
Algorithm 2.2 At time t, given the current state x(t) and known
that x(t) ∈ Ri, the on-line computation involved for the point
location problem is
(1) Compute ‖δ (t)‖2;
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(2) Choose the index j∗, where j∗ = min j j s.t. ‖δ (t)‖2 ≤
d j

max,i;
(3) Compute x(t +1) = Φix(t)+Bgi +w(t);
(4) Recall the index set N j∗(xi) and solve the point location
problem for N j∗(xi), that is, find Rk, where k ∈ N j∗(xi) such
that x(t +1) ∈ Rk.
Remark 1. Note that the smaller the value of the index j∗ is, the
fewer elements N j∗(xi) has.

Due to inappropriately selecting the point xi or the case that
one point xi is not enough for a large region Ri, the value of the
distance ‖δ (t)‖2 may be large, resulting in a set N(xi) having
many elements. Alternative algorithm is proposed as follows to
limit the number of elements of sets N(xi).

Unlike Algorithm 2, in Algorithm 3, instead of selecting one
point xi for each region Ri, several equidistantly placed points
are placed into the region Ri. The points are distributed in a way
such that each axis is first divided into a total of m points, and
only the points which are contained in Ri are taken. The points
are defined by xp

i (see dark circles in Fig. 3). The algorithm
for generating these points named grid is available in Matlab
(Multi-Parametric Toolbox, Kvasnica et al. (2005)).

Fig. 3. Illustration of griding a polytope. Chosen points xp
i are

shown as dark circles.

If x ∈ Ri, there always exists a point xp
i such that ‖x−xp

i ‖2 ≤
dmax,i, where dmax,i depends on the size of the grid, see Fig. 3.
It is necessary to note that the positive integer m determines the
size of the grid, in turn, determines the value of dmax,i. The off-
line work can start from a small value of m to compute the set
N(xp

i ). If the ratio of the number of elements of N(xp
i ), |N(xp

i )|,
to the number of total partitioned regions, |I |, is less than some
prescribed value ε , then stop; else, increase the value of m. By
doing so, no matter where x(t) is, the number of regions which
will be searched at the next step is bounded. It is less than ε|I |.
In summary, the off-line computation required and the online
algorithm are stated in Algorithm 3.1 and 3.2, respectively.

Algorithm 3.1 Off-line computation:
(1) Choose a positive integer m ≥ 1. Set j = m;
(2) Place several equidistantly placed points xp

i into Ri, which
are distributed such that each axis is divided into j points;
(3) Calculate the set Ω(xp

i ) and its corresponding index set
N(xp

i ) based on the value dmax,i;
(4) If |N(xp

i )|\|I | ≤ ε , then stop; else, set j = j+1, go to Step
(2).

Algorithm 3.2 At time t, given the current state x(t) and known
that x(t) ∈ Ri, the on-line computation involved for the point
location problem is
(1) Compute ‖δ p(t)‖2 for each p;
(2) Choose the index p∗, where p∗ = minp‖δ p(t)‖2;

(3) Compute x(t +1) = Φix(t)+Bgi +w(t);
(4) Recall the index set N(xp∗

i ) and solve the point location

problem for N(xp∗
i ), that is, find Rk, where k ∈ N(xp∗

i ) such
that x(t +1) ∈ Rk.

Remark 2. The smaller the prescribed value ε is, the fewer the
number of regions that will be searched at the next step is.
However, it is necessary to note that the reduction comes at the
cost of increased off-line work and storage space.

4. CONCLUSION

In this paper, two algorithms are presented in order to efficiently
solve the point location problems. Algorithm 1 is very simple
and in most cases it will have a good performance. Algorithm 2
and 3 aim at solving a reduced point location problem at every
time instant via estimation of the reachable sets. For Algorithm
3, the more m is, the fewer the number of regions that will be
searched is. However, this reduction actually comes at the cost
of increased off-line burden and required storage space.
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F. Borrelli, M. Baotić, A. Bemporad, and M. Morari. Efficient
on-line computation of constrained optimal control. Pro-
ceeding of 40th IEEE Conference of Decision and Control,
pages 1187–1192, 2001.

P. Grieder. Efficient Computation of Feedback Controllers for
Constrained Systems. PhD thesis, Swiss Federal Institute of
Technology Zurich, 2004.

C. N. Jones, P. Grieder, and S. V. Raković. A logarithmic-time
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