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Abstract: This paper addresses the problem of stabilization and output-synchronization for a
network of interconnected nonlinear agents, where each agent is assumed to be dissipative with
respect to a specified quadratic supply rate which may differ among the agents. Main results
concern the characterization and design of the information exchange structure for stabilization.
Applying a linear protocol here, the associated interconnection matrix is characterized based
on LMI’s, as well as on spectral properties. Additionally a synthesis based on LMI’s under
structural constraints is proposed. The results are validated in simulations.

1. INTRODUCTION

The strong recent interest in group synchronization/coor-
dination problems arises from a large number of differ-
ent phenomena in biological systems such as schooling
behavior of animals, behavior of crowds, synchronization
of neural oscillators in the brain, as well as from control
design problems, such as load balancing in large scale
communication networks and the coordination of multiple
robots or vehicles, see e.g. Fax and Murray [2004], Olfati-
Saber et al. [2007], Lee and Spong [2006], Ren and Beard
[2004] and references therein. In such a problem setting
multiple autonomously acting agents are considered. The
goal is to achieve a global behavior of the group in the
whole. Each agent, however, acts based only on the local
information acquired by sensing and/or by communica-
tion with neighbour agents. The general interest is in the
analysis and design of the interconnections between the
multiple agents and their local control to achieve a global
control goal. Many interesting results have been achieved
by applying graph theory to study the necessary intercon-
nection structure, e.g. in Fax and Murray [2004], Olfati-
Saber et al. [2007]. In most of these works the behavior
of each agent is assumed to follow a simple kinematic
model of the form ẋ = u. Only few works consider more
realistic dynamics of the agents. For example, flocking - the
synchronization of velocity - of robotic agents with inertia
is studied e.g. in Lee and Spong [2006], the formation of
vehicles in Fax and Murray [2004], Ren and Beard [2004].

In this paper, the agents are considered to have possibly
different dynamics. All of them are assumed to be dis-
sipative with respect to a quadratic supply rate which
may differ among the agents. For the derivation of sta-
bility and output-synchronization conditions no explicit
system model knowledge and no explicit construction of
a Lyapunov function is required, the knowledge of the
supply rate is sufficient. In this sense, it differs from the

approaches e.g. in Fax and Murray [2004], Lee and Spong
[2006], Ren and Beard [2004] where specific model knowl-
edge is used. Related to this work is Arcak [2007], Ihle
et al. [2007], and Chopra and Spong [2006], where passivity
- a special case of dissipativity - is applied as analysis
and synthesis tool. Main contribution of this paper is the
characterization of the information structure under the
assumption of a linear protocol to achieve stability and
output synchronization using LMI and spectral conditions.
Furthermore, we give an LMI to design the interconnec-
tion matrix under structural constraints. The results are
validated in a numerical simulation.

The remainder of this paper is organized as follows: After
presenting the problem setting in Section 2, the main result
in terms of an LMI analysis and synthesis approach is given
in Section 3. In Section 4 spectral conditions are derived
for a common bound on the supply rate, in Section 5
simulations to validate the results are provided.

2. PROBLEM SETTING

We consider a set of N interconnected locally controlled
agents. Each agent i has the dynamics

ẋi = fi(xi) + gi(xi)ui

yi = hi(xi),
(1)

with the input ui ∈ Ui ⊂ R
m, the state xi ∈ Xi ⊂ R

n,
the output yi ∈ Yi ⊂ R

p. The function fi(·) ∈ R
n is

assumed to be locally Lipschitz, gi(·) ∈ R
n×m, hi(·) ∈

R
p continuous and for convenience fi(0) = 0, hi(0) = 0.

The system is assumed to be reachable and zero state
detectable. Throughout the paper we assume each agent i
is (Qi, Si, Ri)-dissipative.
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2.1 (Q,S, R)-dissipative Agents

In this subsection mainly known results on dissipative sys-
tems are repeated for convenience. Therefore we consider
the system (1) with the index i dropped.

Define a supply rate w : R
m × R

p → R associated with the

system which is locally integrable
∫ t1

t0
w(u(t), y(t)) dt < ∞

for all t1 ≥ t0, and w(0, 0) = 0.

Definition 1. (Sepulchre et al. [1997]). The system (1) is
dissipative with respect to the supply rate w(u, y), if
there exists a positive definite function V (x) called storage
function, such that for all x ∈ X

V (x(T )) − V (x(0)) ≤
∫ T

0

w(u(t), y(t)) dt (2)

for all inputs u ∈ U and all finite T ≥ 0. If V is
differentiable then condition (2) can be replaced by

V̇ (x(t)) ≤ w(u(t), y(t)).

In this paper a quadratic supply rate is considered leading
to the notion of a (Q,S, R)-dissipative system.

Definition 2. (Willems [1972a]). A system is (Q,S, R) -
dissipative if it is dissipative with respect to the quadratic
supply rate 1

w(u, y) = yT Qy + 2yT Su + uT Ru, (3)

with R ∈ R
m×m, S ∈ R

p×m, Q ∈ R
p×p, constant matrices

and Q = QT , R = RT symmetric.

The class of (Q,S, R)-dissipative systems includes for ex-
ample passive systems, sector bounded systems. For a com-
prehensive treatment of dissipative systems refer to Sepul-
chre et al. [1997], Willems [1972a], Willems [1972b]. An-
other important result concerning the stablity of (Q,S, R)-
dissipative systems is presented in the following.

Proposition 1. (Hill and Moylan [1976]). The system (1)
is (Q,S, R)-dissipative if and only if there exists a positive
definite C1 function V (·), a real function l(·) and a matrix
W such that

LfV = (
∂V

∂x
)T f(x) = hT (x)Qh(x) − lT (x)l(x)

LgV = (
∂V

∂x
)T g(x) = 2hT (x)S − 2lT (x)W

R = WT W.

(4)

From now on we consider each agent i = 1, · · · , N
to be (Qi, Si, Ri)-dissipative with a radially unbounded
C1 positive definite storage function Vi. The agents are
assumed to be dissipative with respect to possibly different
supply rates wi(ui, yi) for the results of Section 3 and to
have a common bound w(ui, yi) on their supply rates in
Section 4. Observe that if an agent i is dissipative with
respect to a supply rate wi(ui, yi) then it is also dissipative
to any w(ui, yi) if w(ui, yi) ≤ wi(ui, yi) holds for for all
ui ∈ Ui, yi ∈ Yi and initial states. If all agents i = 1, · · · , N
with possibly different supply rates have such a bound, we
will refer to that as the common bound of supply rate.

For the simplicity of notation we consider each agent
to be a single-input-single-output 2 (SISO) system, i.e.

1 The time argument is dropped for convenient notation.
2 The results apply straightforwardly to the multi-input-multi-
output case by appropriate change of notation to Kronecker algebra.

uei

y1

yi

yN

ẋi = fi(xi) + gi(xi)ui

yi = hi(xi)

hiN

hi1

hii

yiui

Fig. 1. Individual agent’s control based on weighted out-
puts of other agents and local output feedback.

m = p = 1. Define the diagonal matrices Q = diag{Qi},
S = diag{Si}, and R = diag{Ri} all ∈ R

N×N . As the
system structure (1) does not contain any feedthrough
term its follows that R ≥ 0, and further we assume stable
subsystems resulting in Q ≤ 0.

2.2 Interconnection of N Agents

A linear protocol is considered in this work; the intercon-
nection is described by

ui = uei −
N

∑

j=1

hijyj , i = 1, · · · , N (5)

where ui is the input to subsystem i, yi is its out-
put, uei is an external input, and the hij are constant
scalar gains. Stacking all outputs yi into a single vec-
tor y = col(y1, · · · , yN ), similarily for u and ue, the in-
terconnection can be compactly rewritten as

u = ue − Hy, (6)

with H = {hij}. Note that the diagonal elements hii rep-
resent local feedback gains, the off-diagonal elements hij ,
i 6= j represent the coupling gains. If the coupling gain
hij = 0, then there is no connection from subsystem j to
subsystem i.

In the remainder of the paper - if not further specified -
we refer to a general interconnection matrix H without
imposing any constraint. In some cases we make the
following assumption

A1 The graph describing the agents’ interconnections is
strongly connected, and H is the weighted graph
Laplacian as defined in (A.1).

As a result of this assumption H then has a simple eigen-
value at zero, the one-vector 1T = [1, · · · , 1] is the asso-
ciated righthand eigenvector, i.e. H1 = 0. Further details
on the graph-theoretic background refer to Appendix A.

The goal in the following is to characterize the interconnec-
tion matrix H for which stability/output-synchronization
is achieved. While asymptotic stability implies the conver-
gence of the states to the origin, output-synchronization
requires the difference of the outputs of any pair of agents
to converge to zero as formally stated in the following.

Definition 3. (Chopra and Spong [2006]). Consider a sys-
tem of N interconnected agents as above. The agents are
said to output-synchronize if limt→∞ |yi(t)−yj(t)| = 0 for
all i, j = 1, · · ·N .
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3. LMI CHARACTERIZATION FOR THE GENERAL
CASE OF MULTIPLE SUPPLY RATES

In this section we will derive our main result concern-
ing the LMI characterization and also synthesis of the
interconnection matrix H for the network of agents with
different supply rates to be stable/output-synchronizing.

3.1 Interconnection Analysis

Theorem 1. If there exists a diagonal matrix D > 0 such
that the matrix

Q̂ = −HT DRH + DSH + HT ST D − DQ (7)

is positive definite, i.e. Q̂ > 0, then the network of N
interconnected (Qi, Si, Ri)-dissipative agents (1), (5) is

asymptotically stable. If Q̂ ≥ 0 is positive semidefinite
while assumption A1 is satisfied then the agents output-
synchronize in the sense of Definition 3.

Proof. Let the Lyapunov function for agent i denoted
by Vi(xi). The overall Lyapunov function V is choosen to

be the weighted sum over all Vi, hence V (x) =
∑N

i=1 diVi(xi)
with di > 0 and x denoting the overall state vector
containing all xi. Using (4) and (6) with ue ≡ 0 and setting
D = diag{di} gives

V̇ =

N
∑

i=1

diV̇i(xi)

= uT DRu + 2yT DSu + yT DQy − ‖
√

D(l(x) + Wu)‖2
2

= −yT Q̂y − ‖
√

D(l(x) − WHy)‖2
2

=
[

lT (x) hT (x)
]

[

−D WDH
HT DW DQ − 2DSH

] [

l(x)
h(x)

]

= zT (x)Ξz(x)

where l(x) = col(l1(x1), · · · , lN (xN )) is the stacked vector
consisting of the li(xi) and W = diag{Wi} is a diagonal

matrix. Obviously, if Q̂ > 0 then V̇ < 0 for all y 6= 0.
Zero state detectability ensures that x → 0 as t → ∞,
i.e. the system is asymptotically stable. If Q̂ ≥ 0 then
V̇ ≤ 0. Specifically, V̇ (x) ≡ 0 for all x ∈ ΩΞ with
ΩΞ = {x ∈ R

Nn | Ξz(x) = 0}. Consider now that
assumption A1 holds. Then there are two cases: a) If
at least one of the diagonal entries of Q is negative,
i.e. ∃i, i ∈ {1, · · · , N} so that Qi < 0 then z(x) = 0,
hence h(x) = 0. Output synchronization is achieved with
|yi| = |yj | = 0. b) If all diagonal entries of Q are zero,
the nullspace of Ξ is one-dimensional and spanned by
the vector zT (x) = [lT (x) hT (x)] = [0T 1T ]. The set
ΩΞ is characterized by the corresponding inverse function
z−1(·). The system converges to the largest invariant
set within ΩΞ (LaSalle invariance principle) and output-
synchronization is achieved.

Remark 1. The above theorem is an extension to the
result presented in Moylan and Hill [1978]. Here we use
a weighted overall Lyapunov function and additionally
consider the case of output-sychronization. Other related
works are Arcak [2007], Ihle et al. [2007], and Chopra and
Spong [2006] where passive agents are investigated.

Remark 2. Observe that the set of matrices H, i.e. the
information structure, satisfying (7) in Theorem 1 is given
by a matrix ellipsoidal set

(H − H0)
T RD(H − H0) ≤ R̄ (8)

with the radius R̄ = HT
0 RDH0 − QD, QD = QD, and

H0 = R−1S, RD = RD. The matrix ellipsoid is a compact
convex set. It is non-empty, i.e. a solution H satisfying (7)
exist, if and only if the radius R̄ ≥ 0 is positive semi-
definite, see e.g. Peaucelle et al. [2002], being equivalent
with requiring S2 −RQ ≥ 0. This is always true as Q ≤ 0
and R ≥ 0. Consequently, a non-trivial interconnection
matrix H satisfying Theorem 1 does always exist.

The above result can now be used to analyze the intercon-
nection for different types of dissipativity of the individual
agents. Exemplarily, the passivity case is presented here.

Corollary 1. The network of N interconnected passive
agents is asymptotically stable if the negative intercon-
nection matrix −H is strictly diagonally stable, i.e. there
exists a positive definite diagonal matrix D > 0 such that

−DH − HT D < 0.

If −DH − HT D ≤ 0 and assumption A1 holds, then the
agents output-synchronize.

Proof. Straightforward by applying Theorem 1 to passive
agents, i.e. setting Q = 0, S = 1

2I, and R = 0.

Remark 3. The case of passive agents is also consid-
ered by Chopra and Spong [2006] where balancedness
of the graph, i.e. H + HT ≥ 0 is required for output-
synchronization. This is equivalent to requiring diagonal
stability with D = I in Corollary 1. The following ex-
ample shows the benefit of using the weighted Lyapunov
approach which then leads to the above requirement of
diagonal stability.

Example 1. Consider

H =

[

1 −1
−10 10

]

; D =

[

10 0
0 1

]

and observe that the interconnection matrix H satis-
fies assumption A1. H is not balanced, but satisfies
−DH − HT D ≤ 0, i.e. −H is diagonally stable and the
agents output-synchronize.

For the stability/output-synchronization analysis problem
the condition in Theorem 1 straightforwardly translates
into an LMI feasibility problem. Consider the agents sup-
ply rate in Q,S, R and an interconnection matrix H given.
Observe that the matrix Q̂ (7) is linear in D. If the

LMI Q̂ > 0 admits a positive definite diagonal solu-
tion D then the interconnection matrix H asymptotically
stabilizes the system. If the interconnection matrix H
satisfies assumption A1, and further the LMI Q̂ ≥ 0 is
feasible, then the interconnected system achieves output-
synchronization.

3.2 Interconnection Synthesis

In the interconnection synthesis problem we jointly search
for a positive diagonal solution D and the interconnection
matrix H for given Q,S, R containing the parameters of
the possibly different agent supply rates.

Theorem 2. Consider a network of N interconnected
(Qi, Si, Ri)-dissipative agents. The interconnection ma-
trix H asymptotically stabilizes the overall system if there
exist a solution to the LMI

Y > 0

[

SX + XT S − QY XT R
1

2

R
1

2 X Y

]

> 0 (9)
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with Y diagonal. If H satisfies the second LMI non-strict
(≥) under the constraint A1 then the agents output-
synchronize in the sense of Definition 3. The interconnec-
tion matrix is given by H = XY −1.

Proof. Most arguments for the proof are similar to
the one for Theorem 1. Here we only show that the
above LMI condition implies the positive definiteness/
semi-definiteness of (7). Under the change of variables
X = HD−1, Y = D−1 and using the Schur complement
the statement is equivalent to the existence of a diag-
onal D > 0 such that −D−1HT DRHD−1 + SHD−1 +
D−1HT S − QD−1 ≥ 0 is satisfied, analogously for strict
inequality. By left- and right-multiplying D this matrix
inequality shows to be equivalent to (7) in Theorem 1.

Remark 4. Note that as Y is diagonal, the structure of the
interconnection matrix H = XY −1 can be pre-defined by
partially or fully setting the structure for the solution X.
If for example a certain sparse interconnection structure is
preferred certain interconnections between agents can be
inhibited by adding the equality constraint

xij = 0 for (i, j) /∈ E∗

to the LMI (9) where the set E∗ of all admissible edges
represents the admissible graph structure. With similar
arguments the requirements for H imposed by assump-
tion A1 in the second part of the Theorem 2 can be
realized by constraining the solution space for X. Current
research is on how advanced performance criteria can be
implemented in a similar fashion as for the graph Laplacian
in Boyd [2006].

4. SPECTRAL CHARACTERIZATION FOR
COMMON BOUND OF SUPPLY RATE

Spectral graph theory is an interesting tool and has been
applied to characterize information structures for output-
synchronization in earlier works, e.g. in Fax and Mur-
ray [2004]. In this section we investigate to which extent
it is possible to characterize the stabilizing information
structure by the spectrum σ(H) of the interconnection
matrix H under the given system assumptions. There-
fore we now consider (Qi, Si, Ri)-dissipative agents with
the common bound w(ui, yi) on the supply rate which
is characterized by (q, s, r), hence Q = qI, S = sI, and
R = rI. This assumption simplifies the stability/output-
synchronization condition (7) from Theorem 1 to

Q̂qsr = −rHT DH + s(DH + HT D) − qD > 0, (10)

for some diagonal D > 0 and Q̂qsr ≥ 0. Note that the
existence of a positive definite symmetric solution D
in (10) is equivalent to the spectrum of H belonging to an
algebraic domain D(p) as stated in Lemma 2. Accordingly,
if (10) admits a diagonal solution D then the spectrum of
the associated H also belongs a specific algebraic domain
which is described in the following. The opposite, however,
is not true.

In order to demonstrate that consider the set Mσ(M) of
all real matrices sharing the same spectrum σ(M). Then
for any two matrices A,B ∈ Mσ(M) there exists a non-

singular real matrix T such that A = TBT−1. Assume
that the matrix H satisfies the matrix inequality (10) for

some diagonal D > 0. Inserting H = TH̃T−1, hence

allowed regionIm{λi(H)}

Re{λi(H)}

√

s2

r2
− q

r

s

r

Fig. 2. Spectral location of the eigenvalues of the inter-
connection matrix H for output-synchronization of
network of (q, s, r)-dissipative agents.

H̃ ∈ Mσ(H), and left-, right-multiplying (10) with TT ,
T respectively gives the equivalent expression

−rH̃T D̃H̃ + s(D̃H̃ + H̃T D̃) − qD̃ > 0,

with D̃ = TT DT . Clearly, D > 0 implies D̃ > 0,
accordingly for Q̂qsr ≥ 0. It is obvious, however, that not
every non-singular transformation matrix T will render
D̃ diagonal which is required for Theorem 1 to hold.
The following lemma describes the appropriate class of
transformations.

Lemma 1. Let D > 0 be a diagonal matrix and consider
the set of matrices T (D) = {T |T = D−

1

2 UΘ} with
some orthogonal matrix UT = U−1 and some diagonal
matrix Θ = diag{θi}, θi 6= 0 for all i. If T ∈ T (D) then

D̃ = TT DT = Θ2 is diagonal.

As a result, if some matrix H satisfies (10) for some
diagonal D > 0 then not all co-sprectral matrices, i.e. from
the set Mσ(H), also satisfy that. Hence, the spectrum of
the interconnection matrix H alone does not represent a
sufficient condition for stability. If a matrix H admitting
the diagonal solution D > 0 to (10) is known, then
the set of co-spectral matrices also admitting a diagonal
solution is specified by H̃ = T−1HT with T ∈ T (D),

D̃ = TT DT > 0.

So far the class of matrices for a specific spectrum were
analyzed, now we are interested in the bounds of the spec-
trum σ(H) such that a solution to (10) exists. Therefore
consider the following proposition.

Proposition 2. For given scalars q, s, r and a matrix
H̄ ∈ R

N×N the following statements are equivalent

(i) The spectrum of H̄ belongs to the algebraic stability
domain σ(H̄) ⊂ D(p) with

D(p) = {z ∈ C|p(z̄, z) = rz̄z−s(z̄+z)+q < 0}. (11)

(ii) There exists a positive definite diagonal matrix D
and a orthogonal matrix UT = U−1 such that H =
UT H̄U satisfies (10).

Proof. (i)→(ii) According to Lemma 2 condition (i) im-
plies the existence of a positive definite solution of the
inequality −rH̄T XH̄ + s(XH̄ + H̄T X)− qX > 0. As X =
XT > 0 there exists a UT = U−1 orthogonal and D > 0
diagonal such that X = UDUT (singular value decom-
position of X). Left- and right-multiplying with UT and
U respectively does not change the inequality resulting in
−rUT H̄T UDUT H̄U +s(DUT H̄U +UT H̄T UD)− qD > 0
and with setting H = UT H̄U in (10). For (ii)→(i) insert
H = UT H̄U into (10) and left-, right-multiply by U , UT

which then states that for H̄ (10) has the positive definite
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Table 1. Shape and size of algebraic domain D(p) for H, λi ∈ C represent the eigenvalues of H

agent is (q, s, r) D(p)

passive (0, 1

2
, 0) open right halfplane

IFP (0, 1

2
, r > 0) disc centered at 1

2r
, radius 1

2r

sector-bounded [k1, k2] (−1, 1

2
(k1 + k2),−k1k2) disc centered at −

k1+k2

2k1k2
, radius k1−k2

2k1k2

L2-stable (−1, 0, γ2) disc centered at origin, radius γ−1

solution X = UDUT . This is equivalent to the spectrum
of H̄ belonging to the algebraic stability domain according
to Lemma 2.

Remark 5. Proposition 2 addresses the asymptotic sta-
bility case. In general, the Laplacian property (A.1) is
not invariant under the transformation T ∈ T (D). This
means that if assumption A1 is satisfied for H it does not
necessarily hold for H̃. In current research the extension
to output-synchronization is investigated.

The algebraic stability domain D(p) (11) is given by a
disc in the complex plane with the origin on the real axis

with the center at s
r

and radius
√

s2

r2 − q
r

for r 6= 0

as depicted in Fig. 2. For r = 0, e.g. in the case of
passive agents, the algebraic stability domain is given
by a halfplane, see (11). Table 1 gives more examples
for size and location of the algebraic stability domain
for different (q, s, r)-dissipative agent characteristics. Note
that a similar spectral interconnection characterization has
been proposed in Hara et al. [2007] for agents with known
and same linear time-invariant dynamics.

Remark 6. All the previous considerations apply generally
for the undirected graph as well as for the directed graph.
For the special case of an undirected graph, the spectrum
of the interconnection matrix H turns out to provide
an appropriate characterization of the information topol-
ogy to guarantee stability: If the interconnection matrix
H = HT , H ∈ Mσ(H) admits a solution of (10) for

D = αI, α > 0, then all symmetric matrices H∗ = HT
∗

,
H∗ ∈ Mσ(H) with the same spectrum also satisfy (10).

This can be verified by replacing H = U−1H∗U with
the orthogonal matrix U−1 = UT in (10), left-, right-
multiplying by U , UT and the fact that all symmetric
matrices of the same spectrum are orthogonally similar.
As a result inequality (10) rewrites in the same way with
H∗ instead of H, i.e. is satisfied for every symmetric matrix
H∗ ∈ Mσ(H).

Important result of this section is the characterization
of spectrum of the interconnection matrix H as well as
the finding, that in general the spectrum of the intercon-
nection matrix is not sufficient to guarantee asymptotic
stability/output-synchronization according to Theorem 1.
The dependence on the coordinate system is a known issue
for diagonal stabilizability in the sense of Corollary 1, see
also Logofet [2005]. Here we also demonstrate that for
the more general type Lyapunov inequalities (10). Note,
however, that for any given spectrum out of the algebraic
stability domain we can guarantee the existence of a in-
terconnection structure and even more derive the class
of co-spectral matrices that also satisfy the conditions of
Theorem 1.

5. APPLICATION TO
OUTPUT-SYNCHRONIZATION PROBLEMS

5.1 Rendezvous - Position Coordination of Mobile Agents

In the following example the position coordination of N
vehicles/robots with uncertain damping and inertia on a
plane is considered. Each agent is a MIMO-system which
satisfies the dynamics

Mz̈ + Bż = u
y = z

(12)

where z, ż ∈ R
2 is the position, velocity in the two-

dimensional Cartesian space, u ∈ R
2. The matrices M,B ∈

R
2×2 represent the uncertain positive definite inertia and

damping matrix, respectively. They are assumed to be
bounded by positive definite diagonal matrices M̄, B such
that M̄ ≥ M > 0 and B ≥ B > 0. The damping
matrix B = Bn + Kd contains the natural damping of
the agent and the local velocity feedback gain. Consider
V = żT MT B−1Mż + żT Mz + 1

2zT Bz as storage function.

Each agent is (Q,S, R)-dissipative with Q = 0, S 1
2I, and

R = B−1M̄B−1 as obvious from computing V̇ ≤ uT y +
uT B−1MB−1u ≤ uT y + uT B−1M̄B−1u. For simplicity
we assume that M̄ = m̄I2, B = bI2. The domain for the
eigenvalues of the interconnection matrix H in the complex

plane is then given by a disc of radius
b2

2m̄
centered at

b2

2m̄
on the real axis (11).

Example 2. For simulation we consider a network of
6 mass-damper agents (12) with a directed cyclic graph
as information structure as shown in Fig. 3. Assuming
that m̄ = m and b = b the agents are dissipative with
a common supply rate (q, s, r) = (0, 1

2 , m
b2

). The local
feedback gains and coupling gains are assumed to be all
equal αi = βi > 0. We expect the system to be output-

synchronizing for 0 < c ≤ b2

2m
. The position trajectories

for the parameters m = 1, b = 1, c = 1
2 shown in

Fig. 4(a) validate that. As discussed in earlier sections,
the conditions presented in this paper have a sufficient
character. They may come close, however, to necessity as
the next simulation result shows. Consider therefore an
overestimation of the damping parameter b and let the
true damping of the system be 20% smaller. As a result
the system becomes unstable for the same interconnection
matrix, see Fig.4(b).

4
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1

Fig. 3. Cyclic interconnection structure.
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Fig. 4. Example of robot position coordination for agents
with m = 1kg, c = 1

2 : (a) output-synchronization con-
ditions satisfied with b = 1Ns/m, and (b) conditions
not satisfied with b = 0.8 Ns/m
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Fig. 5. Output-synchronization of two pendulums with
(a) identical length l1 = l2 = 1m, synchronized
oscillation; (b) different length l1 = 2m, l2 = 1m,
all trajectories converge to zero.

5.2 Synchronization of Coupled Pendulums

We consider a similar example of coupled pendulums as
in Chopra and Spong [2006], where we here also investigate
the case for non-balanced graphs. Consider each pendulum
having the length li with the dynamics

q̈i +
g

li
sin qi = ui; yi = q̇i

which is passive (r = q = 0, s = 1
2 ) from ui to q̇i with

the positive definite storage function Vi = 1
2 q̇2

i + g
li

(1 −
cos qi). Considering two pendulums N = 2 and choosing

H =

[

0.1 −0.1
−1 1

]

assumption A1 is satisfied. According

to Theorem 1 the system output-synchronizes and all
trajectories converge to the largest invariant set where
q̇1 ≡ q̇2, i.e. where

g

l1
sin q1 ≡ g

l2
sin q2.
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Fig. 6. Unstable behavior of two coupled identical pen-
dulums with l1 = l2 = 1m; spectrum of H does not
satisfy the algebraic domain condition (11).

If the pendulums are identical l1 = l2 then the largest
invariant set is given by q1 ≡ q2 and thus the pendulums
synchronize as shown in Fig. 5(a). If the pendulums have
different lengths the largest invariant set is given by q̇i =
qi = 0, i.e. the all trajectories eventually converge to zero

as shown in Fig. 5(b). With the choice H =

[

0.9 −1
−1 0.9

]

the

spectrum does not satisfy the algebraic domain condition
of Proposition 2, (11) as one of the eigenvalues λ1 = −0.1,
λ2 = 1.9 has a negative real part. The coupled system is
indeed unstable as shown in Fig. 6.

From this example again we observe that the even though
“only” sufficient conditions are presented the gap to ne-
cessity might be small.

6. CONCLUSION

In this paper we consider the stabilization and output-
synchronization of the class of dissipative agents with a
quadratic supply rate. Main results concern the charac-
terization and design of the information exchange struc-
ture. Here a linear protocol is assumed and as a result
this structure can be represented by an interconnection
matrix. Using a weighted Lyapunov approach output-
synchronization conditions are derived in terms of LMI’s
and using the equivalence to algebraic domains also in
terms of spectral properties of the interconnection matrix.
The design problem is adressed by an LMI. The results
of this paper are successfully validated in simulations.
Current work adresses the consideration of agents with
dissipative uncertainties, the implementation of more so-
phisticated performance goals into the LMI synthesis and
the time delay problem.
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Appendix A. ALGEBRAIC GRAPH THEORY

Directed/undirected graphs are commonly used to model
the information exchange between the agents in a coopera-
tive team, see Godsil and Royle [2000] for a comprehensive
treatment of this matter.

A digraph (directed graph) consists of a pair G = (V, E)
where V = {1, 2, · · · , N} is a finite non-empty set of
vertices and E ⊆ V × V is the set of ordered pairs of
distinct vertices, called edges. The pairs of vertices in an
undirected graph are unordered. A directed path of length
l is a sequence of the form v0, · · · , vl of l+1 distinct vertices
such that for every i ∈ {0, · · · , l− 1}, (vi, vi+1) is an edge.

A directed graph is strongly connected if any two vertices
can be joined by a path. The adjacency matrix A = {aij}
of a weighted digraph is defined as aii = 0 and aij > 0 if
(i, j) ∈ E where i 6= j. The Laplacian matrix L = {lij} of
a weighted digraph is defined as

lij =







−aij if i 6= j
∑

k

aik otherwise . (A.1)

Note that there is only a connection from agent j to agent
i if lij 6= 0.

The following propositions represent fundamental knowl-
edge in algebraic graph theory but are taken over in the
specific wording here from Fax and Murray [2004].

Proposition 3. Zero is an eigenvalue of L, the associated
vector eigenvector is 1T = [1, · · · , 1].

Proposition 4. If G is strongly connected, the zero eigen-
value of L is simple.

Appendix B. GENERALIZED LYAPUNOV EQUATION
AND ALGEBRAIC STABILITY DOMAINS

Linear matrix equations/inequalities may equivalently be
expressed in terms of the a prescribed region of the
complex plane where the eigenvalues of the matrix are
lying in. Define therefore the domain D(p) in the complex
plane characterized by the Hermitian polynomial p : C ×
C → C as

D(p) = {z ∈ C : p(z̄, z) < 0}, (B.1)

where

p(z1, z2) =

l
∑

i=1

l
∑

j=1

cijz
i−1
1 zj−1

2 = lT (z1)Cl(z2), (B.2)

with C = {cij} ∈ Hl, i, j ∈ {1, · · · , l}, l(z) =
[1, z, z2, · · · , zl−1]T . For a given matrix A ∈ C

n×n and
Y ∈ Hn the matrix equation

l
∑

i=1

l
∑

j=1

cij(A
∗)i−1XAj−1 = −Y, (B.3)

is called the generalized Lyapunov equation with respect to
p(·, ·) where X ∈ Hn. The following lemma provides a con-
nection between the generalized Lyapunov equation (B.3)
and the domain D(p) (B.1).

Lemma 2. (Hinrichsen and Pritchard [2005]). Consider the
matrix A ∈ C

n×n and the domain D(p) given by (B.1).
Then the following statements are equivalent:

(i) σ(A) ⊂ D(p)
(ii) There exists a positive definite matrx Y ∈ Hn such

that the generalized Lyapunov equation (B.3) yields
a unique positive definite solution X ∈ Hn.

If in addition, σ(C) contains a single negative eigenvalue
then the following statement is equivalent to (i) and (ii)
above:

(iii) For any Y ∈ Hn, the generalized Lyapunov equa-
tion (B.3) yields a unique positive definite solution
X ∈ Hn.

In consequence, the problem of finding the spectral loca-
tion of a matrix can be re-cast as an LMI problem and
vice versa.
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