
Feedback Analysis of Radial Basis

Functions Neural Networks

via Small Gain Theorem ?

Ali, S. Saad Azhar ∗ Muhammad Shafiq ∗∗

Jamil M. Bakhashwain ∗∗∗ Fouad M. AL-Sunni ∗∗∗∗

∗ Electrical Engineering Department, Air University, E-9 Islamabad,
Pakistan, (email: saadali@mail.au.edu.pk).

∗∗ Department of Electronics Engineering, Ghulam Ishaq Khan
Institute, Topi, Pakistan, (email: mshafiq@giki.edu.pk).

∗∗∗ Electrical Engineering Department, King Fahd University of
Petroleum & Minerals, Dhahran 31261, Saudi Arabia, (email:

jamilb@kfupm.edu.sa).
∗∗∗∗ Systems Engineering Department, King Fahd University of
Petroleum & Minerals, Dhahran 31261, Saudi Arabia, (email:

alsunni@kfupm.edu.sa).

Abstract: Radial basis function neural networks are used in a variety of applications such as
pattern recognition, nonlinear identification, control, time series prediction, etc. In this paper,
feedback analysis of the learning algorithm of radial basis function neural networks is presented.
It studies the robustness of the learning algorithm in the presence of uncertainties that might
be due to noisy perturbations at the input or to modeling mismatch. The learning scheme is
first associated with a feedback structure and then the stability of that feedback structure is
analyzed via small gain theorem. The analysis suggests bounds on the learning rate in order to
guarantee that the learning algorithm will behave as robust nonlinear filters and optimal choices
for faster convergence speeds.

1. INTRODUCTION

Neural networks have been recently used widely in a va-
riety of areas such as pattern recognition, system identi-
fication, filtering, control, time series prediction, etc. Ra-
dial basis function neural networks (RBFNN) are single-
layered feedforward networks with universal approxima-
tion capabilities, in addition to more efficient learning
than the famous multi-layered feedforward neural net-
works (MFNN) Haykin [1999], Jun-Dong et al. [1998],
Finan et al. [1996], Fortuna et al. [2001].

RBFNN are generally trained using supervised learning.
During training, a recursive update procedure is used to
estimate the weights of the RBFNN that best fits the
given data Haykin [1999]. The recursive procedure often
requires to select a suitable adaptation gain called learning
rate. The learning rate should be within an optimum
range. It should neither be too large which would drive the
algorithm unstable, nor too small, that it slows down the
training. In general practice, trial-and-error experiences
are used to select a suitable learning rate for training
phase.

The general and simpler practice has been to choose a
small learning rate that obviously result in slower conver-
gence speeds. Especially, with multivariable systems with
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many weights and a large data, a small learning rate may
require substantial amount of time and machine power.

Therefore, it should be analyzed to find an optimal learn-
ing rate to speed up the convergence and yet keeping the
algorithm stable. In the robustness analysis of adaptive
schemes Sayed et al. [1996] and Rupp et al. [1995], the
authors have addressed the methods of selecting the learn-
ing rate 1) in order to guarantee a robust behavior in
the presence of noise and modeling uncertainties and 2)
in order to guarantee a faster convergence speeds.

The formulation in Sayed et al. [1996] and Rupp et al.
[1995] emphasizes an intrinsic feedback structure for most
adaptive algorithms and it relies on tools from system
theory, control and signal processing such as state-space
description, feedback analysis, small gain theorem, H∞

design and lossless systems. The feedback configuration
is provoked via energy arguments and is shown to consist
of two major blocks: a time-variant lossless (i.e., energy
preserving) feedforward path and a time-variant feedback
path.

We make use of the feedback structure to analyze robust-
ness of RBFNN and find optimal choices for learning rate.
In this paper, we present the learning algorithm for the
RBFNN, that involves a nonlinear functional in the update
equation due to the presence of the basis function (usu-
ally a gaussian function) and associate with the feedback
structure of Sayed et al. [1996] and Rupp et al. [1995] in
order to handle the presence of the nonlinearity. As an
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argument, we suggest the choice for the learning rate in
order to guarantee stability, faster convergence and robust
performance.

This paper is organized in five sections. In section 2 robust-
ness issues are discussed using a contractive mapping and
bounds for the learning rate are suggested. Section 3 asso-
ciates the learning algorithm with the feedback structure,
optimal choice for learning rate via small gain theorem
is presented in section 4, and the paper is concluded in
section 5.

1.1 Radial Basis Functions Neural Networks

RBFNN is a type of feedforward neural network. They are
used in a wide variety of contexts such as function approx-
imation, pattern recognition and time series prediction.
Networks of this type have the universal approximation
property Haykin [1999]. In these networks the learning
involves only one layer with lesser computations. A sin-
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Fig. 1. A MIMO RBF neural network.

gle input single output RBFNN is shown in Fig. 1. The
RBFNN consists of an input node u(t), a hidden layer
with no neurons and an output node y(t). Each of the
input node is connected to all the nodes or neurons in the
hidden layer through unity weights (direct connections).
While each of the hidden layer nodes is connected to the
output node through some weights, e.g. the ith output
node is connected with all the hidden layer nodes by
W (t) = [w1(t), . . . , wno

(t)]. Each neuron finds the dis-
tance, normally applying Euclidean norm, between the
input and its center and passes the resulting scalar through
a non-linearity. So the output of the ith hidden neuron
is given by φi(‖u(t) − ci‖), where ci is the center of the
ith hidden layer node, i = 1, 2, . . . , no, and φi(·) is the
nonlinear basis function. Normally this function is taken as
a Gaussian function of width β, that dictates the effective
range of input passing through the basis function. Nor-
mally, β should at least be equal to the spacing between
the neurons. The output ym(t) is a weighted sum of the
outputs of the hidden layer, given by

ym(t) = Φ(t)W (t), (1)

ym(t) =

no
∑

i=1

φi(‖u(t) − ci‖)wi(t),

where the basis functions and weight vector are defined as,

Φ(t) = [φ1(u(t)) φ2(u(t)) . . . φno
(u(t))], (2)

W (t) = [w1(t) w2(t) . . . wno
(t)]T . (3)

and the gaussian basis function is,

φi(u(t)) = exp
(

−
‖u(t) − Ci)‖

2

β2

)

(4)

Consider a collection of input vectors {u(t)} with the
corresponding desired output vectors {y(t)}. We also take
into account noisy perturbations v(t) in the desired signal.
These perturbations can be due to model mismatch or
to measurement noise. Assuming there exists an optimal
weight vector W ∗ such that

y(t) = Φ(t)W ∗ + v(t). (5)

The RBFNN is presented with the given input-output data
{u(t), y(t)}. The objective is to estimate the unknown
optimal weight W ∗. Now, starting with an initial guess
W0, the weights are updated recursively based on the LMS
principle as,

W (t + 1) = W (t) + α(t)e(t)ΦT (t) (6)

where α(t) is the learning and the error e(t) is defined as,

e(t) = y(t) − ym(t) + v(t)

e(t) = Φ(t)W ∗ − Φ(t)W (t) + v(t) (7)

Defining a priori and a posteriori error quantities as

ea(t) = Φ(t)W̃ (t) (8)

ep(t) = Φ(t)W̃ (t + 1) (9)

where W̃ (t) is the weight error vector symbolizing the
difference between the optimal weight and its estimate as
W̃ (t) = W ∗ − W (t). Therefore,

ea(t) = Φ(t)(W ∗ − W (t)),

= Φ(t)W ∗ − Φ(t),W (t)

= Φ(t)W ∗ − ym(t).

and the weight error update equation satisfies the following
recursion,

W̃ (t + 1) = W̃ (t) + α(t)e(t)ΦT (t) (10)

2. ROBUSTNESS

It is imperative to bring up that a robust algorithm has
consistent estimation errors with the disturbances in the
sense that “small” disturbances would lead to “small”
estimation errors, no matter what the disturbances are.
Generally, this is not the case for any adaptive algorithm.
The estimation errors can still be large even in the presence
of small disturbances Hasibi et al. [1996].

The robustness issue is dealt here in a purely deterministic
framework and without assuming prior knowledge of signal
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or noise statistics. This is especially useful in situations
where prior statistical information is missing. The robust
design would guarantee a desired level of robustness inde-
pendent of the noise statistics. In a broad sense, robustness
would imply that the ratio of an estimation error energy
to the noise or disturbance energy will be guaranteed to
be upper bounded by a positive constant

estimation error energy

disturbance energy
≤ 1 (11)

As a matter-of-fact the approach given by the ratio in
Eq. 11 is quiet desirable since it assures that the resulting
estimation error energy will be upper bounded by the dis-
turbance energy, regardless of the nature and statistics of
noise. In the following section, the robustness methodology
will be adopted to select the learning rate in order to
guarantee robust behavior.

2.1 Optimal Learning Rate for Robustness

In this continuation, we will develop a contractive mapping
from the tth instant to t + 1th instant of the recursion. A
linear map that transforms x to y, as y = T [x], is said to be
contractive mapping, if for all x we have ‖T [x]‖2 ≤ ‖x‖2.
This depicts that the output energy does not exceed the
input energy. The contractive mapping will relate the
energies in such a way that the ratio in Eq. 11 is satisfied.
More specifically, the Euclidean norm of the weight error
vector and the a priori estimation errors at the t + 1th

instant is compared with and the Euclidean norms of the
weight error vectors and disturbance error.

The disturbance error can be defined as,

ṽ(t) = e(t) − ea(t) (12)

Now consider the weight error recursion given by Eq. 10

W̃ (t + 1) = W̃ (t) − α(t)e(t)ΦT (t).

The squared norm in effect the energies, of the weight error
recursion equation can be computed as follows,

‖W̃ (t + 1)‖2 = ‖W̃ (t)‖2 − 2α(t)e(t)Φ(t)W̃ (t)

+ α(t)2e2(t)‖Φ(t)‖2,

= ‖W̃ (t)‖2 − 2α(t)Φ(t)W̃ (t)(ea(t) + ṽ(t))

+ α(t)2‖Φ(t)‖2(ea(t) + ṽ(t))2,

= ‖W̃ (t)‖2 − 2α(t)(e2

a(t) + ea(t)ṽ(t)) +

α(t)2‖Φ(t)‖2(e2

a(t) + 2ea(t)ṽ(t) + ṽ2(t)),

= ‖W̃ (t)‖2 − 2α(t)e2

a(t) − 2α(t)ea(t)ṽ(t) +

α(t)2‖Φ(t)‖2e2

a(t) + 2α(t)2‖Φ(t)‖2ea(t)ṽ(t)

+α(t)2‖Φ(t)‖2ṽ2(t).

Rearranging terms we get,

‖W̃ (t + 1)‖2 + 2α(t)e2

a(t) − α(t)2‖Φ(t)‖2e2

a(t) =

‖W̃ (t)‖2 − 2α(t)ea(t)ṽ(t) + 2α(t)2‖Φ(t)‖2ea(t)ṽ(t)

+α(t)2‖Φ(t)‖2ṽ2(t). (13)

Introducing a parameter µ(t) as

µ(t) =
1

‖Φ(t)‖2
(14)

Using µ(t) in Eq. 13, we get

‖W̃ (t + 1)‖2 + 2α(t)e2

a(t)−
α(t)2

µ(t)
e2

a(t) =

‖W̃ (t)‖2 − 2α(t)ea(t)ṽ(t) + 2
α(t)2

µ(t)
ea(t)ṽ(t) +

α(t)2

µ(t)
ṽ2(t).

If we set α(t) = µ(t), we come up to the following equality,
where the energy bounds are always satisfied as estimation
energy = disturbance energy.

‖W̃ (t + 1)‖2 + 2α(t)e2

a(t)− α(t)e2

a(t) =

‖W̃ (t)‖2 − 2α(t)ea(t)ṽ(t) + 2α(t)ea(t)ṽ(t) + α(t)ṽ2(t)

‖W̃ (t)‖2 + α(t)e2

a(t) = ‖W̃ (t)‖2 + α(t)ṽ2(t).

Therefore, we can conclude to the results for the energy
bounds depending upon the learning rate.

‖W̃ (t + 1)‖2 + α(t)e2

a(t)

‖W̃ (t)‖2 + α(t)ṽ2(t)

{

≤ 1 for 0 < α(t) < µ(t)
= 1 for α(t) = µ(t)
≥ 1 for α(t) > µ(t)

}

(15)

The first two inequalities in the statement of Eq. 15
ascertain that if the learning rate is chosen such that
α(t) ≤ µ(t), then the mapping from from the signals

{W̃ (t),
√

µ(t)ep(t)} to the signals {W̃ (t + 1),
√

µ(t)ea(t)}
is a contractive mapping. Therefore, a local energy bound
is deduced that highlights a robustness property of the
update recursion. The energy bound depict that no matter
what the value of the noise component ṽ(t) is, and no
matter how far the estimate W (t) is from the optimal

W ∗, the sum of energies ‖W̃ (t + 1)‖2 + α(t)e2

a(t) will
always be smaller than or equal to the sum of energies
‖W̃ (t)‖2 + α(t)ṽ2(t).

Remarks: Since this contractivity property holds for each
tth instant, it should also hold globally over any interval.
In fact, selecting µ(t) < γ(t) over the interval 0 ≤ t ≤ N ,
it follows that,

‖W̃N‖2 +

N
∑

t=0

α(t)e2

a(t) = ‖W̃0‖
2 +

N
∑

t=0

α(t)ṽ2(t).

3. FEEDBACK STRUCTURE

The bounds of the statement given by 15 can be illustrated
in an alternative structure that establish the feedback
structure. Initially, the recursive weight update equation
has to be written as a function of a priori error and
a posteriori error.

The a posteriori error s defined in 9 as,

ep(t) = Φ(t)W̃ (t + 1)

= Φ(t)[W̃ (t) − α(t)Φ(t)T e(t)]

= ea(t) − α(t)‖Φ(t)‖2e(t)

= ea(t) −
α(t)

µ(t)
e(t) (16)

µ(t)ep(t) = µ(t)ea(t) − α(t)e(t)

µ(t)
(

ea(t) − ep(t)
)

= α(t)e(t).
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Hence, the recursive weight update Eq. 6 can be written
as

W (t + 1) = W (t) + µ(t)
(

ea(t) − ep(t)
)

ΦT (t).

Similarly, the weight error recursive Eq. 10 can be refor-
mulated as,

W̃ (t) = W̃ (t) − µ(t)ΦT (t)
(

ea(t) − ep(t)
)

(17)

The squared norm of Eq. 17 leads to the same statement
as 15, except that the disturbance error ṽ(t) is replaced by
the negative of a posteriori error −ep(t) and the learning
rate is set to µ(t).

‖W̃ (t + 1)‖2 = ‖W̃ (t)‖2 − 2µ(t)Φ(t)W̃ (t)
(

ea(t) − ep(t)
)

+ µ(t)2‖Φ(t)‖2
(

ea(t) − ep(t)
)2

= ‖W̃ (t)‖2 − 2µ(t)ea(t)
(

ea(t) − ep(t)
)

+ µ(t)2
1

µ(t)
e2

a(t) − 2µ(t)2
1

µ(t)
ea(t)ep(t)

+ µ(t)2
1

µ(t)
e2

p(t)

= ‖W̃ (t)‖2 − 2µ(t)e2

a(t) + 2µ(t)ea(t)ep(t)

+ µ(t)e2

a(t) − 2µ(t)2ea(t)ep(t) + µ(t)2e2

p(t)

‖W̃ (t + 1)‖2 + µ(t)e2

a(t) = ‖W̃ (t)‖2 + µ(t)e2

p(t) (18)

‖W̃ (t + 1)‖2 + µ(t)e2

a(t)

‖W̃ (t)‖2 + µ(t)e2
p(t)

= 1. (19)

Hence, the energy ratio in Eq. 19 holds for all possible
choices of the learning rate. This implies that the mapping
T i from the signals {W̃ (t),

√

µ(t)ep(t)} to the signals

{W̃ (t + 1),
√

µ(t)ea(t)} is lossless.

Now if we further apply the mean-value theorem to the
output of the RBFNN Φ(t)W (t) , we can write

Φ(t)W ∗ − Φ(t)W (t) = Φ′(τ)W (t)ea(t) (20)

for some point τ along the segment connecting Φ(t)W ∗

and Φ(t)W (t). Therefore, combining Eq. 7 and Eq. 16,

ep(t) = ea(t) −
α(t)

µ(t)
e(t)

ep(t) = ea(t) −
α(t)

µ(t)

(

Φ(t)W ∗ − Φ(t)W (t) + v(t)
)

ep(t) = ea(t) −
α(t)

µ(t)

(

Φ′(τ)W ∗ea(t) + v(t)
)

ep(t) = [1 −
α(t)

µ(t)
Φ′(τ)W ∗]ea(t) −

α(t)

µ(t)
v(t)

−
√

µ(t)ep(t) =
α(t)

√

µ(t)
v(t) − [1 −

α(t)

µ(t)
Φ′(τ)W ∗]

√

µ(t)ea(t)

(21)

This relation shows that the overall mapping from the
original (weighted) disturbances

√

µ(t)v(t) to the result-

ing a priori (weighted) estimation errors
√

µ(t)ea(t) can
be expressed in terms of a feedback structure, as shown in
Fig. 2.

���
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γ

*( )
1 '( )
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t

α τ
γ

− Φ

1iT =

Fig. 2. A lossless mapping in a feedback structure for
RBFNN learning algorithm

The stability of such structures can be studied via tools
that are by now standard in system theory (e.g. the small
gain theorem). Conditions on the learning rate α(t) will be
derived in order to guarantee a robust training algorithm,
as well as faster convergence speeds.

This will be achieved by establishing conditions under
which the feedback configuration is l2 stable in the
sense that it should map a finite-energy input noise se-
quence (which include the noiseless case a special case)

{
√

µ(t)v(t)} to a finite-energy a priori error sequence

{
√

µ(t)ea(t)}

4. OPTIMAL LEARNING RATE VIA SMALL GAIN
THEOREM

In order to make use of the tools from the system theory,
such as the l2 stability and small gain theorem, define

γ(N) = max
0≤t≤N

α(t)

µ(t)
, (22)

∆(N) = max
0≤t≤N

|1 −
α(t)

µ(t)
Φ′(t)W ∗| . (23)

According to the definition in Eq. 23, ∆(N) is the maxi-
mum absolute gain of the feedback loop over the interval
0 ≤ t ≤ N .

The small gain theorem states that the l2 stability of a
feedback configuration such as the configuration in Fig. 2
as special case requires that the product of norms of
the feedforward and feedback maps be strictly strictly
bounded by one.

In our case, the norm of the feedforward map is equal to
one (since it is lossless) while the norm of the feedback
map is defined in Eq. 23 as ∆(N). Hence, the condition
∆(N) < 1 guarantees an overall contractive map.

Therefore, for ∆(N) < 1 to hold, we need to choose the
learning rate such that, for all t

0 < α(t)Φ′(τ)W ∗ < 2µ(t) =
2

‖u(t)‖2
(24)
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In Rupp et al. [1997], the authors have presented a number
of choices for learning rate. They based the selection of
learning rate on the availability of the derivative function
Φ′(τ)W ∗. For the case of RBFNN it is straight forward
to obtain the estimate of the derivative function using the
current basis function as,

Φ(τ)W (τ) = [φ1(τ) . . . φno
(τ)]W (τ),

= [exp(−
‖u(τ) − c1‖

2

β2
) . . .

exp(−
‖u(τ) − cno

‖2

β2
)]W (τ),

= [exp(−
‖c1 − u(τ)‖2

β2
) . . .

exp(−
‖cno

− u(τ)‖2

β2
)]W (τ),

Φ′(τ)W (τ) =−[φ1(τ)
∂

∂u(τ)

‖c1 − u(τ)‖2

β2
. . .

φno
(τ)

∂

∂u(τ)

‖cno
− u(τ)‖2

β2
]W (τ),

Φ′(τ)W (τ) =
2

β2
[(c1 − u(τ))φ1(τ) . . .

(cno
− u(τ))φno

(τ)]W (τ). (25)

Defining Φ(τ) as Φ = [(c1 − u(τ))φ1(τ) . . . (cno
−

u(τ))φno
(τ)], we get the derivative as,

Φ′(τ)W (τ) =
2

β2
Φ(τ)W (τ). (26)

Therefore, the derivative in Eq. 26 can be used to find the
optimal learning rate to speed up the convergence as,

α(t) < 2µ(t)Φ′(τ)W (τ), (27)

α(t) < 2µ(t)
β2

2Φ(τ)W (τ)
, (28)

α(t) < µ(t)
β2

Φ(τ)W (τ)
. (29)

Remarks: This optimal learning rate not only guarantees
the stability of the feedback structure, i.e. the stability of
the learning of RBFNN, but also ensures faster conver-
gence speeds.

5. CONCLUSIONS

In this paper a feedback analysis of the learning algorithm
of RBFNN is presented. The stability of the learning
algorithm is analyzed using the small gain theorem by as-
sociating the algorithm with a feedback structure. Choices
for suitable learning rates are suggested that guarantee a
robust behavior in the presence of noise. In order to speed
up the convergence, bounds for the optimal learning rate
are presented.
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