
Finite Abstractions of Discrete-time Linear Systems

and Its Application to Optimal Control

Yuichi Tazaki ∗ Jun-ichi Imura ∗∗

∗ Department of Mechanical and Environmental Informatics, Tokyo Institute
of Technology, Tokyo, Japan, (e-mail: tazaki@cyb.mei.titech.ac.jp)

∗∗ Department of Mechanical and Environmental Informatics, Tokyo Institute
of Technology, Tokyo, Japan, (e-mail: imura@mei.titech.ac.jp)

Abstract: Optimal control and reachability analysis of continuous-state systems often require com-
putational algorithms with high complexity. The use of finite abstractions of continuous-state systems
reduces such problems to path-planning problems on directed graphs with a finite number of nodes,
which can be computed efficiently. In this research, we propose a method to design an approximately
bisimilar finite abstraction of stabilizable discrete-time linear systems, considering the minimization
of the complexity of the resultant finite automaton. Moreover, we show that a suboptimal solution to
optimal control problems with a known error bound is obtained by simulating the optimal path of an
approximately bisimilar finite abstraction.

1. INTRODUCTION

Control problems and verification problems on complex sys-
tems require numerical methods, whose computational com-
plexity often grows rapidly as the state dimension and the
number of time steps increase. Instead of computing the exact
solutions to such problems with the original complex model,
one can think of creating a simpler model, that is much easier
to analyze and to control, while preserving the essential char-
acteristics of the original model. Such simplified models are
called an abstraction of the original model.

The notion of bisimulation is a powerful mathematical frame-
work for addressing systems abstraction. Bisimulation origi-
nated in the field of labeled transition systems [1]. The major
difference between labeled transition systems and dynamical
systems in control theory is that the latter may consist of both
continuous and discrete variables, while the former is purely
discrete. In the latter case, the original definition of bisimula-
tion, which requires precise coincidence of observations (mea-
surement signals), are often too restrictive. In [2] the notion of
bisimulation was extended to metric space and called approxi-
mate bisimulation. Approximate bisimulation requires the dis-
tance of measurement signals to be within a specified precision.
Based on this notion, abstraction problems of various classes of
dynamical systems were discussed [3][5].

Among various abstraction problems, the problem of deriving a
finite automaton that abstracts a given continuous-state system
is called finite abstraction problem. A finite-state system is
suitable for abstraction since many control problems and verifi-
cation problems can be solved by numerical algorithms whose
computational complexities are in polynomial order. In [4], a
procedure for constructing an approximately bisimilar finite ab-
straction of stable discrete-time linear systems was derived. In
[7] and [8], a design of approximately (bi-)similar finite abstrac-
tion of continuous-time nonlinear dynamical systems under so-
called incremental stability assumption were addressed.

In most of the past researches, the application of bisimilar
abstraction has been limited to safety verification problems.

Our problem of interest, on the other hand, is application to
optimal control problems. To date, this topic is not well ex-
plored, although some results are reported [9][10][11]. In this
paper, we discuss the finite abstraction problem of stabilizable
discrete-time linear systems, as well as its application to opti-
mal control problems. In general, it is quite difficult to obtain
the global optimal solution to optimal control problems with
non-convex constraints and cost functions, even if the state-
dynamics is linear. In the past researches, this problem was
tackled by the discretization of the state-space [12][13][14],
but the relation between the resolution of the discretization
and the performance of the approximate solution has not been
clarified. The result of this paper provides an upper-bound of
the performance of the approximate solution as a function of
the precision parameter of approximate bisimulation.

The rest of this paper is organized as follows: In Section 2,
we give a definition of approximate bisimulation for a class
of discrete-time dynamical systems. In Section 3, at first we
derive a sufficient condition for a class of finite automata to be
approximately bisimilar with stabilizable discrete-time linear
systems, with desired precision. Next, we propose a design
procedure of finite abstraction considering the minimization of
the number of states. In Section 4, we show that a subopti-
mal solution to the finite-horizon optimal control problem is
obtained by simulating the optimal trajectory of approximately
bisimilar abstraction of the original model. Section 6 concludes
this paper with some remarks for future works.

Notations: The symbol [v1;v2; ...;vN] denotes the vertical
concatenation of vectors or that of matrices, which is equivalent
to [vT

1 vT
2 . . . vT

N]T. Throughout the paper, the symbol ‖ ·
‖ denotes the 2-norm unless otherwise stated. Moreover, the

symbol ‖v‖M is defined as
√

vTMv .

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 10201 10.3182/20080706-5-KR-1001.1684

2. APPROXIMATE SIMULATIONS AND
BISIMULATIONS OF DISCRETE-TIME DYNAMICAL

SYSTEMS

In this section, we introduce the definition of approximate (bi-
)simulation on a class of discrete-time dynamical systems.

Definition 1. Discrete-time dynamical system
A discrete-time dynamical system is a 5-tuple 〈X,U, Y, f, h〉,
where X ⊂ R

n is the set of states, U ⊂ R
m is the set of

inputs, Y ⊂ R
l is the set of outputs, f : X × U 7→ X is the

state transition function, and h : X 7→ Y is the measurement
function. The state, input, and output of the system at time
t ∈ T = {0} ∪ N are expressed as xt ∈ X , ut ∈ U , and
yt ∈ Y , respectively. The state transition and the measurement
at time t are expressed as

xt+1 = f(xt,ut), (1)

yt = h(xt), (2)

respectively.

Throughout this paper, we use the symbol Σ〈X,U, Y, f, h〉 or
simply Σ to express a discrete-time system.

Let us introduce the notion of approximate simulation and
approximate bisimulation on the class of systems just defined.

Definition 2. Approximate simulation

Let Σ〈X,U, Y, f, h〉 and Σ̂〈X̂, U, Y, f̂ , ĥ〉 be discrete-time sys-
tems, and let ǫu and ǫy be positive constants. A binary relation

R ⊂ X × X̂ is called an (ǫu, ǫy)-approximate simulation
relation if and only if for every (x, x̂) ∈ R, the following holds.

‖h(x) − ĥ(x̂)‖ ≤ ǫy (3)

for any u ∈ U, there exists û ∈ U such that

‖u − û‖ ≤ ǫu and (f(x,u), f̂(x̂, û)) ∈ R
(4)

Moreover, if such an R exists, Σ̂ is said to be (ǫu, ǫy)-
approximately similar to Σ with respect to R.

Definition 3. Approximate bisimulation

Let Σ〈X,U, Y, f, h〉 and Σ̂〈X̂, U, Y, f̂ , ĥ〉 be discrete-time sys-
tems, and let ǫu and ǫy be positive constants. A binary relation

R ⊂ X × X̂ is called an (ǫu, ǫy)-approximate bisimulation

relation between Σ and Σ̂ if and only if R is an (ǫu, ǫy)-

approximate simulation relation from Σ to Σ̂ and its inverse re-
lation R−1 = {(x̂,x) | (x, x̂) ∈ R} is an (ǫu, ǫy)-approximate

simulation relation from Σ̂ to Σ. Moreover, if such an R exists,
Σ and Σ̂ are said to be (ǫu, ǫy)-approximately bisimilar with
respect to R.

The major difference between the above definitions and those
introduced in the literature is that our definitions require not
only measurements but also control inputs of both systems to
be close enough to each other. This extra condition is needed to
apply bisimilar abstractions to optimal control problems with
input-dependent criteria, such as input constraints, and input-
energy minimization.

3. FINITE ABSTRACTIONS OF DISCRETE-TIME
LINEAR SYSTEMS

3.1 Problem setting

In this section, we consider the problem of finding a finite
automaton that is approximately bisimilar with a given discrete-
time linear system. Discrete-time linear systems are denoted by

Fig. 1. system with state quantizer

ΣL〈X,U, Y,A,B,C〉, (5)

where the state transition and the measurement are expressed as
follows.

xt+1 = Axt + But (6)

yt = Cxt (7)

On the other hand, finite automata are expressed as

∆〈S,U, Y,U ,Y〉. (8)

The state set S = {1, 2, . . . , |S|} is a finite set of symbols,
and the state at time t is denoted by st. The symbol U =
{Uij} (i ∈ S, j ∈ S) is a collection of subsets in U , where,
for each i ∈ S, {Uij}j∈S forms a partition of U . The symbol
Y = {yi} (i ∈ S) is a finite set composed of points on Y .
The state transition and the measurement of ∆ are defined as
follows.

st = i ∧ ut ∈ Uij ⇒ st+1 = j (9)

st = i ⇒ yt = yi (10)

Clearly, the set Uij consists of control inputs that moves the
state from i to j. Since {Uij}j∈S is a partition on U , the state
transition is deterministic.

Roughly speaking, our purpose is to design, for a given plant
model ΣL, an approximately bisimilar finite automaton ∆. Note
that in order for the finite abstraction to be applicable to some
optimal control problems (or some verification problems), an
extra condition should be imposed to the approximate bisim-
ulation relation R; that is, for any possible initial state x0 of
ΣL, there should exist its approximately bisimilar pair s0 in the
states of ∆. Under the assumption that the initial state x0 is
chosen arbitrarily on X , this condition is written as

πX(R) = X (11)

where πX(·) denotes projection of a subset of X × S onto X .

Based on the above considerations, the problem of concern is
stated as follows.

Problem 1. Finite abstraction of a discrete-time linear system
For a given discrete-time linear system (5) and a pair of positive
constants ǫu, ǫy, find a finite automata (8) and a binary relation
R ⊂ X × S, where R is an (ǫu, ǫy)-approximate bisimulation
between ΣL and ∆ satisfying the condition (11).

From now on, we assume U = R
m. Now, let us mention that it

is quite unrealistic to regard all the parameters of ∆ (S, U , and
Y) as independent design parameters, meaning that we should
restrict our attention to smaller class of finite automata. For this
purpose, we focus on the following fact: state-quantization of
a continuous-state system results in a finite state system. Let us
consider a quantization function defined by

Q : X 7→ X
Q(x) = xi if x ∈ Si

(12)

where X = {x1,x2, . . . , xN} is a finite set of points on X
and S = {S1,S2 . . . ,SN} is a partition of X . Using Q, we
introduce the following new state equation.

xt+1 = Q(Axt + But) (13)

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

10202

(-)

(-)

(a) Q(ΣL) simulating ΣL (b) ΣL simulating Q(ΣL)

Fig. 2. Two systems simulating one another

Notice that, in this state equation, the state transition is closed
on X as long as the initial state is chosen from X . This leads us
to define a finite automaton, induced by state quantization of a
continuous-state system:

∆〈X , U, Y,U ,Y〉,
Uij = {u ∈ U |Q(Axi + Bu) = xj},
yi = Cxi.

(14)

We denote by Q(ΣL) the finite automaton obtained by state-
quantization of ΣL with Q. Note that, by state quantization,
the control input is also discretized (in the sense of partitioning
of the control input space) without introducing explicit control
input quantization. This characteristics differs from existing
researches (like [4][7]), where explicit input quantization or
originally discrete input systems are considered. In the rest of
this paper, we deal with the design problem of the quantization
function Q, whose resultant state-quantized system Q(ΣL) is
approximately bisimilar with ΣL.

Let us mention that the term “quantised system” is used in
[15], and a similar expression to (13) is used in [17][18]. The
essential difference is that, in their definitions, quantization
operation is a map from the state space to a finite set of symbols,
whereas in our definition it is a projection of the state space onto
its finite subset.

3.2 Condition for Approximate Bisimulation

Roughly speaking, if two systems are approximately bisimilar,
one system can be driven in such a way that its state tracks
the state of the other system under a certain error bound on
control inputs and measurements. This is illustrated in Fig. 2.
Fig. 2(a) shows Q(ΣL) tracking ΣL, and Fig. 2(b) shows the
opposite case, ΣL tracking Q(ΣL). Let us take a closer look
into Fig. 2(a). Here, an arbitrary control input ut is applied to
the system ΣL at each time t. On the other hand, the control
input applied to Q(ΣL) is given by ut + vt. The variable vt

is the difference between the control inputs applied to both
systems, and it plays a crucial role for Q(ΣL) to simulate ΣL.
Let us denote the state of ΣL by xt and that of Q(ΣL) by
x̂t, respectively. Then, the state transition of each system is
expressed as follows.

xt+1 = Axt + But (15)

x̂t+1 = Ax̂t + B(ut + vt) + dt (16)

Here, the variable dt is a quantization error signal given by

dt = Q(Ax̂t + B(ut + vt)) − (Ax̂t + B(ut + vt)). (17)

Taking the difference of the above state equations, we obtain
the following error system;

et+1 = Aet + Bvt + dt (18)

where et = x̂t − xt.

Now, let us define an invariant set of the error system (18) as a
set E ⊂ R

n satisfying the following conditions.

∀e ∈ E, ||Ce|| ≤ ǫy ∧
∃v s.t. (||v|| ≤ ǫu ∧ (∀d ∈ D, Ae + Bv + d ∈ E))

(19)

Here, the set D is defined as D =
⋃

x∈X(Q(x) − x). In the
case of Fig. 2(b), following the same line as above results in the
error system

et+1 = Aet − Bvt + dt. (20)

It is easy to verify that an invariant set of (18) is an invariant set
of (20) and vice versa. Here, the following lemma holds.

Lemma 1. Consider E ⊂ R
n and R ⊂ X × X related by

(x̂ − x) ∈ E ⇔ (x, x̂) ∈ R. (21)

If the set E is an invariant set (19) of the error system (18), then
the relation R is an (ǫu, ǫy)-approximate bisimulation relation
between ΣL and Q(ΣL).

Now, let us assume that the control input difference is given in
the following explicit form.

vt =

{

F (x̂t − xt) (when Q(ΣL) simulates ΣL)

F (xt − x̂t) (when ΣL simulates Q(ΣL))
(22)

Here, F is a matrix making (A + BF) =: AF asymptotically
stable. This makes the error system become a asymptotically
stable autonomous system with disturbances, which is written
as et+1 = AF et +dt. Moreover, there exists a positive definite
matrix M satisfying the following conditions.

M ≥ 1

(1 − λ)2ǫ2y
CTC, M ≥ 1

(1 − λ)2ǫ2u
FTF,

AT
F MAF ≤ λ2M

(23)

Here, λ is a constant satisfying 0 < λ < 1, The reader is
referred to [4] for the proof to a similar statement. Based on
the above arguments, the next theorem provides a sufficient
condition to approximate bisimulation between ΣL and Q(ΣL).

Theorem 1.
Let ΣL〈X,U, Y,A,B,C〉 be an (A,B) stabilizable discrete-
time linear system. Further, choose F , M and λ that satisfy
(23). Then, for a quantization function Q satisfying the condi-
tion

||x − Q(x)||M ≤ 1 ∀x ∈ X, (24)

the systems ΣL and Q(ΣL) are (ǫu, ǫy)-approximately bisimi-
lar with respect to the relation

R = {(x, x̂) ∈ X × X | ||x − x̂||M ≤ 1/(1 − λ)} (25)

and R satisfies the condition (11).

Proof) The following holds for the error system:

||et+1||M = ||AF et + dt||M
≤

√

eT
t AT

F MAF et + ||dt||M ≤ λ||et||M + ||dt||M .

Define the set E as shown below.

E = {e ∈ R
n | ||et||M ≤ 1/(1 − λ)} (26)

Then, by (23), for every element e ∈ E the conditions ||Ce|| ≤
ǫy and ||Fe|| ≤ ǫu hold, and since ||dt||M ≤ 1, E is an
invariant set (19) of the error system. Therefore it follows
from Lemma 1 that ΣL and Q(ΣL) are (ǫu, ǫy)-approximately
bisimilar with respect to the relation R given by (25). Finally,
the relation R satisfies (11) since (x, Q(x)) ∈ R for any x. 2

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

10203

Fig. 3. Implementation of quantizer

3.3 Design of Quantization Function

Theorem 1 in the previous subsection gives a sufficient con-
dition to approximate bisimulation, and in general, arbitrarily
many Q may satisfy this condition. In practice, in addition
to approximate bisimulation, there is a requirement that the
resultant finite automaton should consist of as small number of
states as possible. This is due to the fact that the computational
complexities of many numerical algorithms on finite automata
heavily depends on the number of states. This section discusses
a design procedure of the quantization function Q making the
number of finite states as small as possible. To begin with, we
derive the explicit expression of Q satisfying the condition (24).
The simplest way of doing this is giving Q by

Q(x) = Û−1[Ûx], Û = (
√

n/2)U (27)

where the matrix U is given by the decomposition of M , M =
UTU . The operator [·] maps each element of a vector to its
nearest integer. Here, one can see that the number of the states
of the finite automaton Q(ΣL) is approximately proportional

to the volume of the set ÛX = {Ûx |x ∈ X}. Moreover,

since the state set X is given, it is proportional to
∏

i σi(Û)

(σi(Û) is the ith singular value of Û) and equivalently, to

(
√

n/2)(n/2)
√

det(M). Therefore, by finding the positive defi-
nite matrix M that minimizes det(M) subject to the conditions
(23), one can design a suboptimal finite abstraction (subopti-
mality is due to the fact that (23) is a sufficient condition). This
problem is transformed into a tractable class of mathematical
programming problem by a procedure described below. First,
we show that the conditions (23) can be transformed into linear
matrix inequality (LMI) conditions as long as λ is fixed. First,
define

N = M−1, G = FM−1 (28)

and by multiplying each equation of (23) with N from both
sides, we obtain

λ2N − (AN + BG)TM(AN + BG) ≥ O,

N − (CN)T(CN)/((1 − λ)2ǫ2y) ≥ O,

N − GTG/((1 − λ)2ǫ2u) ≥ O.

Taking Schur complements, we obtain
[

λ2N (AN + BG)T

(AN + BG) N

]

≥ O,

[

N (CN)T

CN (1 − λ)2ǫ2yI

]

≥ O,

[

N GT

G (1 − λ)2ǫ2uI

]

≥ O,

(29)

which are LMI conditions of N and G. Therefore, for a fixed
λ, the optimization of F and M reduces to the following
determinant-maximization problem under LMI constraints.

maximize det(N) sub.to (29).

This problem can be solved by a numerical solver SDPT3 [16].
So far, the problem is dependent on the scalar parameter λ,
which also must be optimized. In order to obtain the optimal
value of λ, we perform a one-dimensional search in the inter-
val (0, 1), iteratively solving the corresponding determinant-
maximization problem, and find the value whose associated
det(M) is the smallest.

4. APPLICATION TO OPTIMAL CONTROL PROBLEM

In this section, we show how to construct a suboptimal solution
to a class of optimal control problem, taking advantage of an
approximately bisimilar abstraction of the original plant model.

4.1 Construction of suboptimal control

To begin with, let us define a finite horizon optimal control
problem on the discrete-time system Σ.

Problem 2. (Finite horizon optimal control problem). Suppose that
for the system Σ〈X,U, Y, f, h〉, the initial state x0 ∈ X and
the horizon length N are given. Then, find the control input
sequence ū = {u0,u1, . . . , uN−1} that minimizes the cost
function

J(ū) =

N−1
∑

t=0

φt(ut, yt) + φN (yN) (30)

while satisfying the constraints

ut ∈ Cu (t ∈ {0, 1, . . . , N − 1})
yt ∈ Cy (t ∈ {0, 1, . . . , N}) (31)

where {y0,y1, . . . , yN} is given by (1)(2).

We denote this problem by P〈Σ,x0, Cu, Cy, J〉. Further, we
assume that J(ū) is smooth. For later use, we define

Lu
t := max

u∈U, y∈Y

∣

∣

∣

∣

∣

∣

∣

∣

∂

∂u
φt(u,y)

∣

∣

∣

∣

∣

∣

∣

∣

(t = 0, 1, . . . , N − 1),

Ly
t := max

u∈U, y∈Y

∣

∣

∣

∣

∣

∣

∣

∣

∂

∂y
φt(u,y)

∣

∣

∣

∣

∣

∣

∣

∣

(t = 0, 1, . . . , N),

Lu :=
∑N−1

t=0 Lu
t , and Ly :=

∑N
t=0 Ly

t .

Our objective is to construct a suboptimal solution to the
problem

P := P〈Σ,x0, Cu, Cy, J〉. (32)

This can be done by the following procedure:

First, we design an approximately bisimilar abstraction

Σ̂〈X̂, U, Y, f̂ , ĥ〉 of the original plant model Σ, together with its
associated relation R. As mentioned before, the relation R must
satisfy (11). Next, we define a new optimal control problem on

Σ̂, defined as

P1 := P〈Σ̂, x̂0, int(Cu, ǫu), int(Cy, ǫy), J〉. (33)

Here, x̂0 is an element of X̂ that satisfies (x0, x̂0) ∈ R.
The condition (11) on R guarantees the existence of such x̂0.
Moreover, the symbol int(C, ǫ) denotes set operation defined
by

int(C, ǫ) := {v ∈ C | B(v, ǫ) ⊆ C}, (34)

which returns a subset of C obtained by shrinking C by the
amount ǫ. Here, B(v, ǫ) is a closed ball with the radius ǫ

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

10204

centered at v. We denote by ū∗

1 the optimal solution to P1. It
goes without saying that P1 should be easier to solve than the
original problem P .

As a final step, we generate a control input sequence of Σ that
simulates ū∗

1 starting from x0. Let us denote this by ũ∗

1. In the
case of ΣL and Q(ΣL) described in Section 3, the simulating
input is given by ut = ût+F (xt−x̂t), where ût is an element
of ū∗

1 corresponding to the control input at time t, and x̂t is the

state of Σ̂ driven by ū∗

1 from x̂0.

The next theorem provides a condition for ũ∗

1 to be a feasible
solution to P and an upper bound of the cost J(ũ∗

1). As a
preparation, we need to define yet one more optimal control
problem on Σ:

P2 := P〈Σ,x0, int(Cu, 2ǫu), int(Cy, 2ǫy), J〉. (35)

We denote by ū∗

2 the optimal solution to P2.

Theorem 2.
Suppose the two systems Σ〈X,U, Y, f, h〉 and Σ̂〈X̂, U, Y, f̂ , ĥ〉
are (ǫu, ǫy)-approximately bisimilar with respect to R ⊂ X ×
X̂ , and R satisfies (11). Moreover, consider the three optimal
control problems P , P1, and P2 defined by (32), (33), and (35),
respectively. Then the following statements hold:
i) If P2 is feasible, then P1 is feasible.
ii) If P1 is feasible, then P is feasible.
iii) The cost of simulating trajectory ũ∗

1 is upper-bounded by
the following inequality;

J(ũ∗

1) ≤ J(ū∗

2) + 2(Luǫu + Lyǫy). (36)

Proof) The statement i) and ii) are straightforward from the
definition of approximate bisimulation.

To prove the statement iii), define ũ∗

2 as a trajectory simulating

ū∗

2 on Σ̂ from x̂0. From approximate bisimilarity, ũ∗

1 is a
feasible solution to P and ũ∗

2 is a feasible solution to P1.
Moreover,

J(ũ∗

1) − J(ū∗

1) ≤ Luǫu + Lyǫy,

J(ũ∗

2) − J(ū∗

2) ≤ Luǫu + Lyǫy

hold. On the other hand, the optimality of ū∗

1 implies

J(ū∗

1) ≤ J(ũ∗

2).

Therefore (36) holds.

2

4.2 Computation of optimal control on finite abstraction

We briefly show that for a finite automaton, the solution to
the optimal control problem can be efficiently computed. Let
us consider a finite automaton Q(Σ) induced by the state
quantization of a discrete-time system Σ. We use the notation
for quantization function given in (12).

Our goal here is to solve the optimal control problem

P〈Q(Σ),x0 ∈ X , Cu, Cy, J〉.
Recall that although the state of Q(Σ) is discrete, the input is
still continuous. First, consider a “small” continuous optimiza-
tion problem as defined below.

Problem 3. 1-step Optimal Control Problem
For given i, j ∈ [1 : |X |] and t ∈ [0 : N],
minimize φt(h(xi,u)) subject to u ∈ Uij , u ∈ Cu.

The solution to this problem, if exists, moves the state from
xi to xj at time t in one step, with the minimal cost while

Fig. 4. Finite abstraction of sample system.

respecting the constraints. Let us denote the optimal solution

to this problem by u
ij
t and its corresponding cost by J ij

t .
The number of all possible combinations of (i, j, t), which
is N |X |2, could be considerably large but finite. If the state
transition relation is sparse, which is often the case, the actual
number of combinations could be much smaller. Therefore,
we shall compute Problem 3 for every combination of (i, j, t)

and store the result (feasibility, and if feasible, u
ij
t and J ij

t)
into a database. Using these expressions, the original problem
can be regarded as the problem finding a state sequence s̄ =
{s0, s1, . . . , sN} which satisfies the constraint

yst
∈ Cy (t = 0, 1, . . . , N) (37)

and minimizes the cost function

J(s̄) =

N−1
∑

t=0

J
st st+1

t + φN (ysN
). (38)

This problem is a path-planning problem over a directed graph
with finite number of nodes, and therefore it is solvable by
various efficient searching algorithms.

It should be noted that not every kind of control problem
is transformed into a tractable planning problem. One such
example is a problem with “liveness” constraints, in which the
system is required to visit every state infinitely often. Also,
extra treatment might be needed for infinite-horizon cases.

5. NUMERICAL EXAMPLES

This section shows simple examples. Consider a 2-state 1-input
discrete-time linear system ΣL with the following parameters:

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

10205

Fig. 5. Optimal trajectory on Q(ΣL) (solid), and simulated
trajectory on ΣL (dash).

X = [−1, 1] × [−1, 1], U = [−1, 1], Y = X

A =

[

0.88 −0.17
0.17 0.88

]

, B =

[

0
1

]

, C =

[

1 0
0 1

]

For this system, we designed an approximately bisimilar finite
abstraction of Q(ΣL) with ǫu = 0.3, ǫy = 0.3 using the method
described in the previous section. Fig. 4 shows the obtained
finite automaton Q(ΣL). In Fig. 4, Small circles represent the
measurement values (yis) corresponding to each of the states
of Q(ΣL), and lines connecting circles depicts possible state
transitions.

The next example demonstrates an application to finite-horizon
optimal control problem with non-convex constraints (Fig. 5).
The output-constraint set is given by a non-convex set Cy =
Y \D where

D = [−0.4, 0.4] × [0.3, 0.5] ∪ [−0.4, 0.0] × [−0.5,−0.2]

denotes the unsafe (entering-prohibited) region (drawn as gray
areas in the figure). The input constraint is given by

Cu = [−0.1, 0.1].

The cost function is simply set as

J(u, y) =

N−1
∑

t=0

[

u2
t + ||yt||22

]

+ ||yN ||22

where N = 25. In this experiment, the finite abstraction is
computed with the precisions ǫy = 0.1 and ǫu = 0.1. Three
different initial states: [−0.8;−0.5], [0.8; 0.8], and [0.8;−0.8]
are specified. The simulation result is shown in Fig. 5. In the
figure, solid lines represent the optimal paths computed on the
finite automaton, and dashed lines represent the trajectories
obtained by simulating the optimal paths (solid lines) on the
original system.

6. CONCLUSION

This paper discussed the finite abstraction problem of stabi-
lizable discrete-time linear systems, using the framework of

approximate bisimulation. The main idea is to express the finite
abstraction as a state-quantized form of the original continuous-
state system. This recasts approximate bisimulation into trajec-
tory tracking of two systems under disturbances due to quanti-
zation error.

REFERENCES

[1] R. Milner : Communication and Concurrency, Prentice-Hall, 1989.

[2] A. Girard and G.J. Pappas : Approximation metrics for discrete and

continuous systems, IEEE Transactions on Automatic Control, 52(5),

pp782-798, 2007.

[3] A. Girard and G.J. Pappas : Approximate bisimulations for constrained

linear systems, 44th IEEE Conference on Decision and Control and

European Control Conference, pp 4700-4705, Seville, Spain, December

2005.

[4] A. Girard : Approximately Bisimilar Finite Abstractions of Stable Linear

Systems, Hybrid Systems: Computation and Control, vol 4416 in LNCS,

pp 231-244, Springer, 2007.

[5] A.A. Julius, A. Girard and G.J. Pappas : Approximate bisimulation for

a class of stochastic hybrid systems, in the Proc. American Control

Conference, pp 4724-4729, Minneapolis, USA, 2006.

[6] A.A. Julius and G.J. Pappas: Approximate Equivalence and Approximate

Synchronization of Metric Transition Systems, in the Proc. 45th IEEE

Conf. Decision and Control 2006, San Diego, USA.

[7] P. Tabuada : Approximate Simulation Relations and Finite Abstractions of

Quantized Control Systems, Hybrid Systems: Computation and Control,

vol 4416 in LNCS, pp 529-542, Springer, 2007.

[8] G. Pola, A. Girard and P. Tabuada: Symbolic models for nonlinear

control systems using approximate bisimulation, 46th IEEE Conference

on Decision and Control, New Orleans, Lousiana, December 2007, to

appear.

[9] M.E. Broucke : A geometric approach to bisimulation and verification of

hybrid systems, Hybrid Systems: Computation and Control (HSCC99),

Lecture Notes in Computer Science 1569, Springer-Verlag, pp.61-75,

1999.

[10] M.E. Broucke, M.D. Di Benedetto, S. Di Gennaro, and A. Sangiovanni-

Vincentelli : Theory of optimal control using bisimulations, Hybrid

Systems: Computation and Control (HSCC00), Springer-Verlag, LNCS

1790, pp. 89-102, 2000.

[11] M.E. Broucke, M.D. Di Benedetto, S. Di Gennaro, and A. Sangiovanni-

Vincentelli : Optimal control using bisimulations: Implementation, Hy-

brid Systems: Computation and Control (HSCC01), Springer-Verlag,

LNCS 2034, pp. 175-188, 2001.

[12] H.L. Hagenaars, J. Imura and H. Nijmeijer : Approximate continuous-

time optimal control in obstacle avoidance by time/space discretization

of non-convex state constraints, Proc. of IEEE Conf. on Control Applica-

tions, pp.878-883, 2004.

[13] J. Imura and H. Matsushima : Simultaneous optimization of continuous

control inputs and discrete state waypoints, 9th International Workshop

on Hybrid Systems: Computation and Control (HSCC 2006), J.Hespanha

and A.Tiwari (Eds.) LNCS 3927 Springer-Verlag, pp.302-317, 2006.

[14] Y. Tazaki, J. Imura : Graph-based Model Predictive Control of a Planar

Bipedal Walker, 17th International Symposium on Mathematical Theory

of Networks and Systems, pp.128-133, Kyoto, Japan, 2006.

[15] J. Lunze, B. Nixdorf and J. Schroder : Deterministic Discrete-event Rep-

resentations of Linear Continuous-variable Systems, Automatica, Vol. 35,

pp. 395-406, 1999.

[16] K.C. Toh, M.J. Todd and R.H. Tutuncu: SDPT3 - a MAT-

LAB software for semidefinite-quadratic-linear programming,

http://www.math.nus.edu.sg/˜mattohkc/sdpt3.html

[17] K. Tsumura : Approximation of Discrete Time Linear Systems via Bit

Length of Memory, Proc. of the 17th International Symposium on Math-

ematical Theory of Networks and Systems, Kyoto, Japan, July 24-28,

2006.

[18] K. Tsumura : Stabilization of Linear Systems by Bit-Memory Controllers

under Constraints of Bit-Length, 45th IEEE Conference on Decision and

Control, pp5507-5512 , San Diego, CA, USA, December, 2006.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

10206

