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Abstract: Under some rank condition, a new version of bounded real lemma, which is expressed
in terms of an admissible solution of a generalized discrete-time algebraic Riccati equation
(GDARE) rather than inequality, is presented for linear discrete-time descriptor systems. When
a linear discrete-time descriptor system is admissible, with the H∞-norm of its transfer matrix
less than a prescribed positive number γ, a constructive procedure is also given to obtain an
admissible solution of the above-mentioned GDARE.

1. INTRODUCTION

For more than two decades, the analysis and design of
descriptor systems has attracted considerable attention.
It has been shown that the descriptor system model is a
more natural representation of dynamic systems and can
describe a larger class of systems than the conventional
state-space model; see for example, Dai [1989], Lewis
[1986], Luenberger [1977], Newcomb and Dziurla [1989],
and Verghese et al. [1981].

On the other hand, bounded realness has played an impor-
tant role in circuit and network synthesis Anderson [1973],
stability analysis, and control systems analysis and design
Lozano et al. [2000]. A well-known characterization of the
bounded real property in terms of state-space realization
is the so-called bounded real lemma; see Anderson [1973],
Petersen et al. [1991], Stoorvogel [1992], Yung and Yang
[1999], Zhou and Khargonekar [1988] and the references
therein. Although bounded real lemma has been developed
over the last two decades, most of the results were built
upon state-space model.

Recently, among many other things, a version of bounded
real lemma, expressed in terms of an admissible solution
of a certain generalized continuous-time algebraic Ric-
cati equation (GCARE), has been proposed for linear
continuous-time descriptor systems with application to
solving the H∞ control problem Wang et al. [1998]. In
Kawamoto et al. [1999], some properties of GCARE were
also studied. Most recently, among other things, a version
of bounded real lemma based on matrix inequality for
linear discrete-time descriptor systems has been addressed
in Hsiung and Lee [1999] and Xu and Yang [2000]; and
a version of bounded real lemma based on the conjuga-
tion has been proposed in Katayama [1996]. Moreover,

an LQG-type matrix equation for discrete-time descriptor
systems was considered in Nikoukhah et al. [1992].

Motivated by the work of Wang et al. [1998], the main
purpose of this paper is to derive a version of bounded
real lemma for linear discrete-time descriptor systems,
expressed in terms of an admissible solution of a certain
generalized discrete-time algebraic Riccati equation (here-
after abbreviated GDARE). Motivation for using GDARE
rather than matrix inequality stems from the fact that, in
the H∞ control problem for conventional state-space sys-
tems, the central controller obtained in Doyle et al. [1989],
which is constructed from the stabilizing solutions of two
celebrated algebraic Riccati equations (AREs) rather than
matrix inequalities, has the minimum entropy property
Glover and Mustafa [1989]. It is expected that this is also
true for the discrete-time descriptor systems case. From
this viewpoint, it is thus prefered to use GDARE to char-
acterize the bounded realness of discrete-time descriptor
systems.

This paper is organized as follows: In Section 2, we briefly
review some basic definitions and preliminary results con-
cerning descriptor systems. Section 3 is the main body of
the paper. Finally, in Section 4 we give some concluding
remarks.

2. ELEMENTS OF DESCRIPTOR SYSTEMS
THEORY

In this section, we summarize some basic definitions and
preliminary results concerning descriptor systems; see Dai
[1989], for example, for more details. Let A and E be n×n
constant real matrices. Assume that rankE = r ≤ n. The
(ordered) pair (E,A) is said to be regular if there exists
a scalar λ (may be real or complex) such that det (λE −
A) 6= 0. Clearly, if det E 6= 0, (E,A) is regular. A scalar
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λ is called a finite eigenvalue of (E,A) if det (λE−A) = 0.
Let q , deg det(λE − A). Then it is quite well known
that (E,A) has q finite dynamic modes, r − q noncausal
modes (called impulsive modes for continuous-time case)
and n−r nondynamic modes. Furthermore, if r = q, there
exist no noncausal modes and in this case the system is
said to be causal (impulse-free for continuous-time case).
(E,A) is called stable if all the finite eigenvalues of (E,A)
lie within the open unit disk. (E,A) is called admissible if
(E,A) is regular, causal and stable.

The following important fact is taken from Gantmacher
[1959].
Proposition 1. The pair (E,A) is regular if and only if
there exist invertible matrices W and V such that

Ē , WEV =
[

Iq 0
0 N

]
,

Ā , WAV =
[

A1 0
0 In−q

]
, (1)

where Ik is the k × k identity matrix; N is a nilpotent
matrix, that is, Np = 0 for some positive integer p. The
minimum positive integer p0 such that NP0 = 0 is called
the index of N . (Ē, Ā) is called the Weierstrass canonical
form of (E,A). �

In the Weierstrass canonical form, the eigenvalues of the
q× q matrix A1 coincide with the finite eigenvalues of the
pair (E,A). Thus, in terms of its Weierstrass canonical
form (1), (E,A) is stable if and only if A1 is stable, i.e.,
all the eigenvalues of A1 lie within the open unit disk.
Furthermore, (E,A) is causal if and only if the nilpotent
matrix N has index one, i.e., N = 0.

Now consider a discrete-time descriptor system described
by the following equations:

Ex(k + 1) = Ax(k) + Bu(k),
y(k) = Cx(k) + Du(k),

(2)

where x ∈ Rn is the state, u ∈ Rm and y ∈ Rp are
the input and output signals, respectively. A and E are
defined as above, B, C and D are constant real matrices
of compatible dimensions. Equation (2) has a unique
solution for any given initial condition Ex(0) and any
discrete forcing function u if and only if (E,A) is regular.
In what follows, it is assumed that (E,A) is regular.
Then, according to Proposition 1, a suitable coordinate
transformation always exists so that (2) can be put in the
following Weierstrass form:[

I 0
0 N

] [
x̂1(k + 1)
x̂2(k + 1)

]
=

[
A1 0
0 I

] [
x̂1(k)
x̂2(k)

]
+

[
B1

B2

]
u(k),

y(k) = [ C1 C2 ]
[

x̂1(k)
x̂2(k)

]
+ Du(k), (3)

where WB ,

[
B1

B2

]
, CV , [ C1 C2 ] . The concepts of

controllability and observability for descriptor systems are
needed in the subsequent development, and thus intro-
duced in the following. System (2), or briefly the triple

(E,A, B), is termed finite dynamics stabilizable and non-
causality controllable if there exists a constant real matrix
K such that the pair (E,A + BK) is admissible. Dually,
System (2) or the triple (E,A, C) is termed finite dynamics
detectable and noncausality observable if there exists a
constant real matrix L such that the pair (E,A + LC)
is admissible.
Remark 2. The term noncausality controllable (or observ-
able) is not a standard terminology for the discrete-time
descriptor systems. For continuous-time descriptor sys-
tems, it is called impulse controllable (observable). If the
continuous-time descriptor system do possess impulsive
modes, then its transfer function would be improper.
For discrete-time descriptor systems, an improper transfer
function implies that the system is noncausal. That is the
reason why we adopt the term noncausality.

The next result is a variation of Lyapunov stability theo-
rem for discrete-time descriptor systems given in Ishihara
and Terra [2003]. See also Syrmos et al. [1995], Hsiung and
Lee [1999], and Stykel [2002] for more relevant work.
Proposition 3. Consider (2) and the Lyapunov equation

AT XA− ET XE + CT C = 0. (4)
positive semidefinite. Suppose that (E,A) is regular. Sup-
pose also that (E,A, C) is finite dynamics detectable and
noncausality observable. Then, if there exists a symmetric
solution X ∈ Rn×n of (4) with ET XE ≥ 0, (E,A) is
admissible. Conversely, suppose that (E,A) is admissible.
Let W and V be n× n invertible matrices that transform
(E,A) into the Weierstrass form (1). Let V T CT CV be par-

titioned compatibly with (1) as V T CT CV =
[

Q1 QT
2

Q2 Q3

]
.

Suppose, in addition, that
KerA1 ⊂ KerQ2. (5)

Then there exists a symmetric matrix X ∈ Rn×n, with
ET XE ≥ 0, which satisfies (4). �

Proof. Sufficiency. See Ishihara and Terra [2003].
Necessity. Note that finding a symmetric real solution X
of (4), with ET XE ≥ 0, amounts to finding a symmetric
real solution X̄ , W−T XW−1, with ĒT X̄Ē ≥ 0, of the
equation

ĀT X̄Ā− ĒT X̄Ē + V T CT CV = 0. (6)

Writing X̄ compatibly as X̄ =
[

X1 XT
2

X2 X3

]
, with X1 and

X3 symmetric, (6) is equivalent to

AT
1 X1A1 −X1 + Q1 = 0,

AT
1 XT

2 + QT
2 = 0,

X3 + Q3 = 0.
(7)

Thus, X1 =
∑∞

i=0 (AT
1 )iQ1A

i
1 = XT

1 ≥ 0 since A1 is
stable and Q1 is positive semidefinite. This in turn implies
that ĒT X̄Ē ≥ 0. In addition, X3 = −Q3. Furthermore,
hypothesis (5) implies that (7) admits a solution X2. This
completes the proof. �

The following result is taken from Stoorvogel [1992], which
is a version of bounded real lemma for discrete-time state-
space systems.
Lemma 4. The following statements are equivalent:
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(1) The system

x(k + 1) = Ax(k) + Bu(k),

y(k) = Cx(k) + Du(k), x(0) = 0, (8)
is internally stable(i.e., A is stable) and ‖C(zI −
A)−1B + D‖∞ < γ.

(2) There exists a symmetric, positive semidefinite real
matrix P satisfying the following:
(a) N , γ2I −DT D −BT PB > 0,
(b) AT PA−P+CT C+(AT PB+CT D)N−1(BT PA+

DT C) = 0,
(c) A + BN−1(BT PA + DT C) is stable.

�

3. MAIN RESULTS

First, we consider one kind of fractional matrix equation,
namely the GDARE, which assumes the following form:

AT XA− ET XE + Q−
(AT XB + S)(BT XB + R)−1(BT XA + ST ) = 0 (9)

where A,E, and Q are given n × n real matrices, R is a
given m ×m real matrix, B and S are given n ×m real
matrices, and X is an n×n real matrix to be determined.
It is assumed that Q and R are symmetric. The matrix E
is, in general, noninvertible.
Definition 5. A real matrix X is said to be a solution of
(9) if BT XB + R is invertible and X satisfies (9). �

Thus, it is implicitly implied that the matrix BT XB + R
is invertible if X is a solution of (9).
Definition 6. A solution X of (9) is called admissible if the
pair (E,A−B(BT XB+R)−1(BT XA+ST )) is admissible.
�

The main result of this paper, namely bounded real lemma
for discrete-time descriptor systems, is summarized in the
following statements.
Theorem 7. (bounded real lemma) Consider System (2)
with Ex(0) = 0. Suppose that (E,A) is regular. Let
Tyu(z) , C(zE − A)−1B + D. Then, (E,A) is admissible
and ‖Tyu‖∞ < γ if the GDARE

AT XA− ET XE + CT C − (AT XB + CT D)

(BT XB + DT D − γ2I)−1(BT XA + DT C) = 0 (10)
has a symmetric, admissible solution X−, with ET X−E ≥
0 and BT X−B + DT D − γ2I < 0. Conversely, suppose
System (2) is admissible and ‖ Tyu ‖∞< γ. Suppose, in
addition, that the following assumption holds.

Assumption (A1): rank [ A B ] = rank
[

A B
C D

]
.

Then the GDARE (10) has a symmetric, admissible so-
lution X−, with ET X−E ≥ 0 and BT X−B + DT D −
γ2I < 0. �

Proof. Sufficiency. Set M , γ2I −DT D − BT X−B > 0
and K , M−1(BT X−A + DT C). Then the GDARE

(10) (with X = X−) can be written in the form of the
Lyapunov equation (4):

AT X−A− ET X−E +
[

C

M
1
2 K

]T [
C

M
1
2 K

]
= 0. (11)

Let L =
[

0 BM
−1
2

]
. Then the pair (E,A+L

[
C

M
1
2 K

]
) =

(E,A + BM−1(BT X−A + DT C)) is admissible. Thus the

triple (E,A,

[
C

M
1
2 K

]
) is finite dynamics detectable and

noncausality observable. Thus the pair (E,A) is admis-
sible by Proposition 3. Next, we show that ‖C(zE −
A)−1B + D‖∞ < γ. Define a function F (x(k)) ,
xT (k)ET X−Ex(k) ≥ 0. Let

H(x(k), u(k)) , F (x(k + 1))− F (x(k)) + ‖y(k)‖2

−γ2‖u(k)‖2

= xT (k + 1)ET X−Ex(k + 1)

−xT (k)ET X−Ex(k)

+‖Cx(k) + Du(k)‖2 − γ2‖u(k)‖2

= (Ax(k) + Bu(k))T X−(Ax(k)

+Bu(k))− xT (k)ET X−Ex(k)

+(Cx(k) + Du(k))T

(Cx(k) + Du(k))− γ2uT (k)u(k)

= xT (k)[AT X−A− ET X−E

+CT C + (AT X−B + CT D)

M−1(BT X−A + DT C)]x(k)

+(AT X−B + CT D)M−1

(BT X−A + DT C)]x(k)

−[(BT X−A+DT C)x(k)

−Mu(k)]T M−1[(BT X−A

+DT C)x(k)−Mu(k)]

=−[(BT X−A+DT C)x(k)

−Mu(k)]T M−1[(BT X−A + DT C)

x(k)−Mu(k)].

Since M > 0, it follows that for each nonnegative integers
k, we have

H(x(k), u(k)) ≤ 0. (12)
Hence summation of (12) from k = 0 to k = ∞ yields

F (x(∞))− F (x(0)) +
∞∑

k=0

(‖y(k)‖2 − γ2‖u(k)‖2) ≤ 0.

As a result,
∑∞

k=0(‖y(k)‖2 − γ2‖u(k)‖2) ≤ 0. Thus we
prove that ‖Tyu‖∞ ≤ γ. To complete the proof, we need
to show that the strict inequality holds. Since X− is
a solution of (10), the following equality holds for any
complex number z with |z| = 1:

(z−1ET −AT )X−(zE −A) + (z−1ET −AT )X−A

+AT X−(zE −A) = ET X−E −AT X−A

= CT C + (AT X−B + CT D)M−1(BT X−A + DT C).
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Now pre-multiply the above equality by BT (z−1ET −
AT )−1 and post-multiply by (zE −A)−1B to get

BT X−B + BT X−A(zE−A)−1B +

BT (z−1ET−AT )−1AT X−B

= BT (z−1ET −AT )−1CT C(zE −A)−1B

+BT (z−1ET −AT )−1(AT X−B + CT D)M−1

(BT X−A + DT C)(zE −A)−1B.

Then we have

γ2I − TT
yu(z−1)Tyu(z)

= γ2I−(C(z−1E −A)−1B + D)T

(C(zE −A)−1B + D)

= γ2I−DT D −BT (z−1ET −AT )−1

CT C(zE −A)−1B

−BT (z−1ET −AT )−1CT D

−DT C(zE −A)−1B

= γ2I−DT D+BT (z−1ET−AT )−1(AT X−B

+CT D)M−1(BT X−A + DT C)(zE −A)−1B

−BT X−B−BT X−A(zE−A)−1B −
BT (z−1ET−AT )−1AT X−B

−BT (z−1ET−AT )−1CT D−DT C(zE−A)−1B

= M + BT (z−1ET −AT )−1(AT X−B +

CT D)M−1(BT X−A + DT C)(zE −A)−1B

−(BT X−A+DT C)(zE−A)−1B

−BT (z−1ET−AT )−1(AT X−B + CT D)

= GT (z−1)G(z), (13)

where

G(z) , M
1
2 −M

−1
2 (BT X−A + DT C)

(zE −A)−1B. (14)

Suppose, by contradiction, that there exists a z0 with
|z0| = 1 such that ‖C(z0E − A)−1B + D‖∞ = γ. Then
(13) implies that there exists a nonzero vector v0 such
that G(z0)v0 = 0. Thus, we obtain detG(z0) = 0. Now,
by a standard result on determinants, we have det(I −
M−1(BT X−A + DT C)(z0E − A)−1B) = 0. This leads to
a contradiction, for the pair (E,A + BM−1(BT X−A +
DT C)) being admissible, which implies that det(z0E−A−
BM−1(BT X−A + DT C)) = det(z0E −A)det(I − (z0E −
A)−1BM−1(BT X−A + DT C)) = det(z0E − A)det(I −
M−1(BT X−A + DT C)(z0E − A)−1B) 6= 0. Hence it is
concluded that ‖C(zE −A)−1B + D‖∞ < γ.

Necessity. Since System (2) is admissible, there exist
invertible matrices W and V that transform System (2)
into the Weierstrass form (3), with A1 stable, N = 0,

WB =
[

B1

B2

]
, and CV = [ C1 C2 ] . Then, the transfer

matrix of System (2) is given by Tyu(z) = C(zE−A)−1B+
D = C1(zI−A1)−1B1 +D1, where D1 , D−C2B2. Since
A1 is stable and ‖ Tyu ‖∞< γ, it follows from Lemma 4

that there exists a matrix X0 = XT
0 ≥ 0 satisfying the

following:

(1) M0 , γ2I −DT
1 D1 −BT

1 X0B1 > 0,
(2) AT

1 X0A1 −X0 + CT
1 C1 + (AT

1 X0B1 + CT
1 D1)M−1

0

(BT
1 X0A1 + DT

1 C1) = 0,
(3) A1 + B1M

−1
0 (BT

1 X0A1 + DT
1 C1) is stable.

Note that Assumption (A1) is equivalent to the following:

rank [ WAV WB ] = rank
[

WAV WB
CV D

]
,

that is, rank
[

A1 0 B1

0 I B2

]
= rank

[
A1 0 B1

0 I B2

C1 C2 D

]
.

But rank
[

A1 0 B1

0 I B2

]
= rank(

[
A1 0 B1

0 I 0

][
I 0 0
0 I B2

0 0 I

]
)

= rank
[

A1 0 B1

0 I 0

]
, and rank

[
A1 0 B1

0 I B2

C1 C2 D

]

= rank(

[
I 0 0
0 I 0
0 C2 I

] [
A1 0 B1

0 I 0
C1 0 D1

]
[

I 0 0
0 I B2

0 0 I

]
) = rank

[
A1 0 B1

0 I 0
C1 0 D1

]
, we have

rank [ A1 B1 ] = rank
[

A1 B1

C1 D1

]
. (15)

Thus, there exists a matrix X1 satisfying
XT

1 [A1 B1] = −CT
2 [C1 D1]. (16)

Let X− , WT

[
X0 X1

XT
1 −CT

2 C2

]
W = (X−)T . With (16) in

mind, it is straightforward to show that BT X−B+DT D−

γ2I = −M0 < 0, that ET X−E = V −T

[
X0 0
0 0

]
V −1 ≥ 0,

and that X− satisfies the following:

AT X−A− ET X−E + CT C − (AT X−B + CT D)

(BT X−B + DT D − γ2I)−1(BT X−A + DT C)

= V −T

[
Γ AT

1 X1 + CT
1 C2

XT
1 A1 + CT

2 C1 0

]
V −1

=
[

0 0
0 0

]
,

where Γ , AT
1 X0A1 − X0 + CT

1 C1 + (AT
1 X0B1 +

CT
1 D1)M−1

0 (BT
1 X0A1 + DT

1 C1). Furthermore, it is also
easy to verify that the pair

(WEV,WAV −WB(BT X−B + DT D − γ2I)−1

(BT X−A + DT C)V )

= (
[

I 0
0 0

]
,

[
A1 + B1M

−1
0 (BT

1 X0A1 + DT
1 C1)0

B2M
−1
0 (BT

1 X0A1 + DT
1 C1) I

]
)

which is admissible since A1 + B1M
−1
0 (BT

1 X0A1 + DT
1 C1)

is stable. Accordingly, X− is a symmetric, admissible
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solution of the GDARE (10). This completes the proof.
�

Remark 8. Note that the necessity proof of Theorem 7
provides a method to construct an admissible solution
of the GDARE (10) when System (2) is admissible with
‖Tyu‖∞ < γ.
Remark 9. In the above proof, it has been seen that
Assumption (A1) is equivalent to the condition (15), which
is in turn equivalent to the following condition:

Ker[A1 B1] ⊂ Ker[C1 D1].
In fact, in view of (16), Assumption (A1) can be replaced
by a weaker condition as follows:

Assumption (A2):Ker[A1 B1] ⊂ Ker[CT
2 C1 CT

2 D1].

It is easy to see that in the case of E = I, that is, System
(2) reduces to a state-space system (8), Theorem 7, with
Assumption (A1) replaced by Assumption (A2), coincides
with Lemma 4. Accordingly, Theorem 7, with Assumption
(A1) replaced by Assumption (A2), can be regarded as
an extension of the bounded real lemma in Lemma 4 for
discrete-time state-space systems to the case of discrete-
time descriptor systems.

4. CONCLUSIONS

Under some rank condition, a new version of bounded real
lemma for linear discrete-time descriptor systems has been
proposed. Rather than matrix inequality, the condition
obtained are expressed in terms of an admissible solution
of a certain GDARE. A method has also been given to
construct an admissible solution of the above-mentioned
GDARE when a linear discrete-time descriptor system is
admissible with the H∞-norm of its transfer matrix less
than a prescribed positive number γ. The main result
given here can be regarded as an extension of bounded
real lemma for discrete-time state-space systems case to
discrete-time descriptor systems case. The application of
the result of this paper to the H∞ control problem for
discrete-time descriptor systems is left as our future work.
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