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Abstract: This paper shows that the controllable and unobservable subspaces of the H∞
central controller for a linear continuous-time system can be characterized by the image and
kernel spaces of two matrices ZL and W L, where ZL and W L are positive semidefinite solutions
of two pertinent Lyapunov equations whose coefficients involve X∞ and Z∞, the stabilizing
solutions of two celebrated algebraic Riccati equations used in solving the H∞ control problem.
Furthermore, under this characterization, it is shown that the unobservable subspace of the
central controller contains the intersection of KerX∞ and the unobservable subspace of the
plant. In addition, it is also shown that the central controller’s controllable subspace is a subspace
of the sum of ImZ∞ and the plant’s controllable subspace. A numerical example is also given
for illustration. In terms of geometric language, all the results and proofs given are clear and
simple.

1. INTRODUCTION

The very first step in control system analysis and design
is to construct a mathematical model of the plant to
be controlled. To make the control problem mathemat-
ically tractable, the model of the true plant is usually
oversimplified, thus incurring inaccuracy in the process of
modelling. Much of modern control theory addresses prob-
lems involving uncertainty. Although the celebrated H2

optimal control theory or its stochastic counterpart linear
quadratic Gaussian (LQG) optimal control theory provides
a powerful tool for optimizing performance [Anderson and
Moore, 1971, Kawkernaak and Sivan, 1972] there is no
guaranteed robustness for LQG-controllers [Doyle, 1978].
In contrast, H∞ (sub)optimal control theory is intended
for explicitly taking robustness issue into account; this
is because the H∞-norm specifies a level of disturbance
attenuation[Francis, 1987] from the fact that theH∞-norm
is the induced norm from RH2 to RH2, and implies a
prespecified level of stability robustness provided by the
small gain theorem [Zames, 1966a,b].

One of the most important breakthroughs in H∞ control
theory was the derivation of state-space solutions, in terms
of the solutions to two algebraic Riccati equations (AREs),
to the standard linear H∞ output feedback control prob-
lem [Doyle et al., 1989]. A parametrization of all H∞
(sub)optimal output feedback controllers was also given in
Doyle et al. [1989]. The full-order controllers thus obtained
in Doyle et al. [1989] have a state dimension not less than
that of the generalized plant.

Geometric control theory arose in the late 1960’s. A central
role in this theory was played by the geometric properties
of the coefficient matrices appearing in system equations.
In particular, the notions of controllable and observable
subspaces have played an important role. These notions

also turned out to be essential in understanding and classi-
fying the fine structure of the system under consideration.
Many problems were studied in a geometric framework
[Silverman, 1976, Willems, 1981, Wonham and Morse,
1970]. It was proved that the kernel of any symmetric
solution of an H2 ARE is an A-invariant subspace con-
tained in KerC, hence it is contained in the unobservable
subspace of (C,A), see, for example, Saberi et al [1995].
The connection between the solution set of the ARE and
the set of n-dimensional invariant subspaces of the cor-
responding Hamiltonian matrix was also investigated in
Saberi et al [1995]. In Weiland and Willems [1989], the
authors solved, in terms of the geometric concepts of linear
system theory, the almost disturbance decoupling problem
with internal stability. The solution gave necessary and
sufficient conditions for the existence of a dynamic output
feedback controller such that in the closed-loop system the
disturbances were quenched, say in the H∞-sense, up to
any degree of accuracy while maintaining a stable system
matrix.

Most recently, Marro et. al. [2002] have given a solution
to the cheap and singular linear quadratic (LQ) problem.
Their approach does not require the solution of any ARE,
or linear matrix inequality(LMI), but rather it use the
basic tools of the geometric theory. Marro and Zattoni
also introduced a new characterization of the invariant
subspaces of the Hamiltonian systems, aimed to derive
a non-recursive solution to the finite-horizon LQ control
problem for stabilizable continuous-time systems [Marro
and Zattoni, 2005, Zattoni, 2004].

In Yung [2000], the author constructed a reduced-order
H∞ controller via a basis of the image space of W∞, where
W∞ is the stabilizing solution to an ARE in W developed
in Petersen et. al. [1991]. In fact, as we will show later,
this reduced-order controller is exactly the observable
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Fig. 1. Standard Block Diagram

realization of the H∞ central controller. Motivated by this
result, we will show in this paper that the controllable
and unobservable subspaces of the H∞ central controller
can be characterized in terms of the image and kernel
spaces of two matrices ZL and W L, where ZL and
W L are positive semidefinite solutions of two certain
Lyapunov equations. The coefficients of the two Lyapunov
equations involve X∞ and Z∞, which are the stabilizing
solutions of two celebrated AREs used to solve the H∞
control problem. Furthermore, under this characterization,
it is shown that the unobservable subspace of the H∞
central controller contains the intersection of KerX∞ and
the unobservable subspace of the plant, and the central
controller’s controllable subspace is a subspace of the
sum of ImZL and the plant’s controllable subspace. A
numerical example is also given for illustration.

2. PRELIMINARIES

2.1 Geometric Theory

Consider a linear time-invariant system described by{
ẋ = Ax + Bu,
y = Cx,

(1)

where x ∈ Rn is the state, u ∈ Rl is the control input, and
y ∈ Rq is the output. A, B and C are constant matrices
with compatible dimensions. Let B 4

= ImB and C(A,B)
4
=

B+AB+ · · ·+An−1B. The subspace C(A,B) is called the
controllable subspace of the pair (A,B), which contains
all the states reachable from x(0) and is the minimal A-
invariant subspace containing B. Dually, the unobservable

subspace of the pair (C,A) isN (C,A)
4
=

n⋂
i=1

Ker(CAi−1),

which is the maximal A-invariant subspace contained in
KerC. System (1) is controllable if and only if C(A,B) =
Rn, and is observable if and only if N (C,A) = {0}.
From the definition, we have (N (C,A))⊥ = C(AT ,CT ).

σ(A)
4
= {λk|k = 1, 2, · · · ρ} stands for the spectrum of A

with corresponding algebraic eigenspaces Nk. See Callier
and Desoer [1991], for example, for more details.

2.2 H∞ Optimal Control Problem

We now turn our attention to the H∞ control problem.
Consider the standard feedback configuration shown in
Figure 1. Let the plant Σ be described by the dynamic
equations:

Σ :

{
ẋ = Ax + B1w + B2u,
z = C1x + D12u,
y = C2x + D21w,

(2)

where for each t, x ∈ IRn is the state, u ∈ IRl is the
control input, w ∈ IRm represents a set of exogenous
inputs which includes disturbances to be rejected and/or
reference commands to be tracked, z ∈ IRp is the unknown
output to be controlled, and y ∈ IRq is the measured
output. A,B1,B2,C1,C2,D12, and D21 are constant
matrices with compatible dimensions. The goal of H∞
control problem is finding a proper controller ΣR such that
the resulting closed-loop system is internally stable and the
H∞ norm of Tzw is less than γ, where Tzw represents the
closed transfer matrix from w to z.

The following proposition follows immediately from the
result of Doyle et al. [1989]. See also Zhou and Dolye [1997].

Proposition 1. Consider system (2) and assume the follow-
ing hypotheses hold:

(H1) {A,B2} is stabilizable, E1
4
= DT

12D12 is nonsingu-

lar, and
[

A− jωI B2

C1 D12

]
has full column rank for all

ω ∈ IR.
(H2) {A,C2} is detectable, E2

4
= D21D

T
21 is nonsingu-

lar, and
[

A− jωI B1

C2 D21

]
has full row rank for all ω ∈ IR.

Then the following statements are equivalent:
(1) There exists an internally stabilizing controller such
that ‖ Tzw ‖< γ.
(2)(a) the ARE

(A−B2E
−1
1 DT

12C1)T X + X(A−B2E
−1
1 DT

12C1)

+X(
1
γ2

B1B
T
1−B2E

−1
1 BT

2 )X+CT
1 (I−D12E

−1
1 DT

12)C1

= 0 (3)
has a stabilizing solution X∞ ≥ 0,
(b) the ARE

(Ã−B1D
T
21E

−1
2 C̃2)Z + Z(Ã−B1D

T
21E

−1
2 C̃2)T

+Z(
1
γ2

F T
∞E1F∞ − C̃

T

2 E−1
2 C̃2)Z + B̃1B̃

T

1

= 0 (4)
has a stabilizing solution Z∞ ≥ 0, where

Ã
4
= A +

1
γ2

B1B
T
1 X∞,

B̃1
4
= B1(I −DT

21E
−1
2 D21),

C̃2
4
= C2 +

1
γ2

D21B
T
1 X∞,

and

F∞
4
= −E−1

1 (BT
2 X∞ + DT

12C1).

Moreover, when these conditions are satisfied, one such
controller (namely the central controller) is given by

˙̂x = Â0x̂ + B̂0y,

u = Ĉ0x̂, (5)
where
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Â0 = Ã + B2Ĉ0 − B̂0C̃2,

B̂0 = (Z∞C̃
T

2 + B1D
T
21)E

−1
2 ,

Ĉ0 = F∞.

3. MAIN RESULTS

3.1 Characterization for the Controllable and Unobservable
Subspaces of the H∞ Central Controller

Suppose that the conditions (2a) and (2b) of Proposition
1 are satisfied. Then it follows from Petersen et. al. [1991]
that the ARE

AT
0 W + WA0 +

1
γ2

WB0B
T
0 W + CT

0 C0 = 0 (6)

has also a stabilizing solution W∞ ≥ 0, where A0
4
=

Â0 − B2F∞ = Ã − B̂0C̃2, B0
4
= B1 − B̂0D21 and

C0
4
= E

1
2
1 F∞. Also, the matrix Ã−B̂0C̃2 has been proved

to be stable by bounded real lemma in Petersen et. al.
[1991]. The matrix Ã + B2Ĉ0 = (A −B2E

−1
1 DT

12C1) +
( 1

γ2 B1B
T
1 − B2E

−1
1 BT

2 )X∞ is stable because X∞ is a
stabilizing solution to the ARE (3). Since Ã + B2Ĉ0

and Ã − B̂0C̃2 are stable, it follows immediately from
Lyapunov stability theory that the following two Lyaounov
equations

Lya(W ) = (Ã− B̂0C̃2)T W + W (Ã− B̂0C̃2)

+Ĉ
T

0 Ĉ0 = 0, (7)

Lya(Z) = (Ã + B2Ĉ0)Z + Z(Ã + B2Ĉ0)T

+B̂0B̂
T

0 = 0, (8)

have unique positive semidefinite solutions, W L and ZL,
respectively. Then we have the following.

Theorem 2. KerW L is the maximal Â0−invariant sub-
space contained in KerĈ0; that is, KerW L = N (Ĉ0, Â0).

Proof. It is well-known that KerW L ⊂ KerĈ0 and
W L(Ã − B̂0C̃2)v = 0 for any v ∈ KerW L. Thus,
W LÂ0v = W L(Ã + B2Ĉ0 − B̂0C̃2)v = 0. This
proves that KerW L is an Â0−invariant subspace con-
tained in KerĈ0. Since N (Ĉ0, Â0) is the maximal
Â0−invariant subspace contained in KerĈ0, we get
KerW L ⊂ N (Ĉ0, Â0). On the other hand, suppose v ∈
N (Ĉ0, Â0). Then, by definition, we have Ĉ0Â

i

0v = 0 for
all nonnegative integers i. This implies Ĉ0v = 0 and

Ĉ0(Ã + B2Ĉ0 − B̂0C̃2)iv = 0 (9)

for all integers i. Then Ĉ0(Ã − B̂0C̃2)iv = 0 for all
nonnegative integers i. This can be shown by induction
as follows. When i = 0, Ĉ0v = 0. Suppose Ĉ0(Ã −
B̂0C̃2)jv = 0 for some positive integer j. Then

Ĉ0(Ã− B̂0C̃2)j+1v

= Ĉ0(Ã− B̂0C̃2)j(Ã− B̂0C̃2)v

= Ĉ0(Ã− B̂0C̃2)j(Ã + B2Ĉ0 − B̂0C̃2)v

= Ĉ0(Ã− B̂0C̃2)j−1(Ã− B̂0C̃2)

(Ã + B2Ĉ0 − B̂0C̃2)v

= Ĉ0(Ã− B̂0C̃2)j−1(Ã + B2Ĉ0 − B̂0C̃2)

(Ã + B2Ĉ0 − B̂0C̃2)v (by equation (9))

= Ĉ0(Ã− B̂0C̃2)j−1(Ã + B2Ĉ0 − B̂0C̃2)2v
Repeating the arguments finally reaches the condition that
Ĉ0(Ã− B̂0C̃2)j+1v = Ĉ0(Ã + B2Ĉ0 − B̂0C̃2)j+1v = 0.
Thus, v ∈ N (Ĉ0, Ã−B̂0C̃2). This shows that N (Ĉ0, Ã+
B2Ĉ0−B̂0C̃2) ⊂ N (Ĉ0, Ã−B̂0C̃2). It is well-known that
N (Ĉ0, Ã − B̂0C̃2) ⊂ KerW L. This completes the proof.
Q.E.D.

Corollary 3. The reduced-order H∞ controller given in
Yung [2000] is the observable realization of the central
controller (5).

Proof. It is well-known that KerW∞ and KerW L are
both the maximal (Ã − B̂0C̃2)−invariant subspace in
KerĈ0, we have KerW∞ = KerW L. So the reduced-order
controller

ξ̇ = V T Â0V ξ + V T B̂0y,

u = Ĉ0V ξ,

where V is the basis matrix of KerW∞, given in Yung
[2000] is the observable realization ofH∞ central controller
(5). This completes the proof. Q.E.D.

With a dual argument, we also have the following lemma.

Lemma 4. KerZL is the maximal Â
T

0 -invariant subspace
contained in KerB̂

T

0 .

The next theory is a dual result of Theorem (2).

Theorem 5. ImZL is the smallest Â0-invariant subspace
containing ImB̂0; that is, ImZL = C(Â0, B̂0).

Proof. First, we prove ImZL is Â0-invariant. Let y ∈
ImZL, and let z ∈ KerZL. Then Â

T

0 z ∈ KerZL. Thus,

(Â0y)T z = yT Â
T

0 z = 0. (10)

This implies

Â0y ∈ ImZL.

Hence, we conclude that ImZL is Â0-invariant. Next,
suppose that S is any Â0-invariant subspace containing
ImĈ0. Then we have S⊥ ⊂ KerĈ

T

0 . If w ∈ S⊥, then
wT u = 0 for all u ∈ S. Thus we have wT Â0u = 0 since S
is Â0-invariant. This implies (Â

T

0 w)T u = 0. Hence S⊥ is
Â

T

0 -invariant contained in KerZL, and thus contained in
KerĈ

T

0 . By Lemma 4, we thus have S⊥ ⊂KerZL, which
in turn implies that ImZL is the minimal A2-invariant
subspace containing ImĈ0. Q.E.D.
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In view of the results given above, an obvious way to
obtain a minimal realization of H∞ central controller is
summarized in the following statement, which is a direct
application of the celebrate Kalman decomposition. See,
for example, Basile and Marro [1969].
Corollary 6. Let [Q1] be a basis matrix for ImZL

⋂
KerW L.

Suppose [Q1 Q2] is a basis matrix for ImZL, and let
[Q1 Q3] be a basis matrix for KerW L. Finally we ex-
tend to a basis matrix [Q1 Q2 Q3 Q4] for IRn, and let
Q = [Q1 Q2 Q3 Q4]. Also, let Q−1 = [RT

1 RT
2 RT

3 RT
4 ]T .

Then the dynamic equation

Kr :
{ ˙̂xr = R2Â0Q2x̂r + R2B̂0y,

u = Ĉ0Q2x̂r,
(11)

is a minimal realization of the H∞ central controller given
in (5).

3.2 The Geometric Connection between Plant Σ and H∞
Central Controller ΣR

In the previous subsection, Theorems 2 and 5 show that
the controllable and unobservable subspaces of the H∞
central controller can be characterized in terms of the
image and kernel spaces of two matrices ZL and W L.
Although the results mentioned above seem to be nat-
ural, as we will show later, they have very important
implications. Before presenting the main results of this
subsection, we give some geometric motivation. First, let

C =
[

C1

C2

]
, and B = [ B1 B2 ]. From the definition, it is

easy to see that N (C,A) = N (C1,A)
⋂
N (C2,A). And

N (AT ,BT ) = N (AT ,BT
1 )

⋂
N (AT ,BT

2 ). Suppose that
v ∈ KerX∞

⋂
KerC is any eigenvector of (Ã − B̂0C̃2).

Then it can be easily observed that v generates a one-
dimensional A-invariant subspace S of the unobservable
subspace of the plant Σ, that is , S ⊂ N (C,A). It is easy
to see from (7) that KerW L is the maximal (Ã− B̂0C̃2)-
invariant subspace contained in KerF∞. In view of the
structure of the matrix F∞, S must also be a subspace of
KerW L. A natural question arises: Is N (C,A)

⋂
KerX∞

composed of one-dimensional subspaces like S contained
in KerW L? The answer is affirmative. To prove our main
theorem in this section, we need the following proposition
taken from Callier and Desoer [1991]. See also Zhou and
Dolye [1997]

Proposition 7. Consider the two AREs (3)(4) and their
stabilizing solutions X∞ and Z∞. Then KerX∞ is
an (A − B2E

−1
1 DT

12C1)−invariant subspace contained
in Ker(CT

1 (I − D12E
−1
1 DT

12)C1)
1
2 , and KerZ∞ is an

(Ã − B1D
T
21E

−1
2 C̃2)T−invariant subspace contained in

KerB̃
T

1 .

From Proposition 7, we have the following lemma.

Lemma 8. The spaceN (C,A)
⋂

KerX∞ is an A−invariant
subspace contained in KerC.

Proof. Obviously,N (C,A) is also an (A−B2E
−1
1 DT

12C1)−
invariant subspace. This implies that N (C,A)

⋂
KerX∞

is (A−B2E
−1
1 DT

12C1)−invariant. Since N (C,A)
⋂

KerX∞ ∈ KerC1, N (C,A)
⋂

KerX∞ is A−invariant.
Q.E.D.

We are now in the position to state our main theorem in
this subsection.

Theorem 9. The intersection of KerX∞ and the unob-
servable subspace of the plant Σ is a subspace of the
unobservable subspace of the H∞ central controller ΣR.
That is, N (C,A)

⋂
KerX∞ ⊂ N (Ĉ0, Â0).

Proof. Let v ∈ N (C,A)
⋂

KerX∞. Then we have v ∈
KerX∞

⋂
N (C2,A). This implies that v ∈ KerF∞.

From Lemma 8, we know that N (C,A)
⋂

KerX∞ is
A−invariant. Thus, we have F∞Aiv = 0 for all nonneg-
ative integer i. Since v ∈ N (C2,A), it can be proven by
induction that F∞(Ã− B̂0C̃2)iv = 0 for all nonnegative
integer i. This implies that v ∈ N (F∞, Ã− B̂0C̃2). Since
KerW L = N (F∞, Ã− B̂0C̃2) = N (Ĉ0, Ã− B̂0C̃2), this
completes the proof by Theorem 2. Q.E.D.

Remark 10. In view of the proof in Theorem 9, it is obvi-
ous that N (C,A)

⋂
KerX∞ is not equal to N (Ĉ0, Â0) in

general.

A dual result of Theorem 9 follows immediately.

Theorem 11. The controllable subspace of the H∞ central
controllers is contained in the sum of ImZ∞ and the
controllable subspace of the plant. That is, C(Â0, B̂0) ⊂
C(A,B) + ImZ∞.

Proof. With similar arguments, we have N (BT ,AT ) ⊂
N (B̂

T

0 , Â
T

0 ). Taking orthogonal complement yields
C(Â0, B̂0) ⊂ C(A,B). This completes the proof. Q.E.D.

Now, regard A and Â0 as linear maps from Rn to Rn. If
I is an A−invariant subspace, let A|I represent the linear
map restricted on the space I. With this notation, we have
the following theorem.

Theorem 12. The spectrum of A restricted to N (C,A)⋂
KerX∞ is contained in the spectrum of Â0 re-

stricted to N (Ĉ0, Â0); that is, σ(A|N (C,A)
⋂

KerX∞
) ⊂

σ(Â0|N (Ĉ0,Â0)
)

Proof. Let λ ∈ σ(A|N (C,A)
⋂

KerX∞
). This implies that

there exists a vector v ∈ N (C,A)
⋂

KerX∞ such that
Av = λv. Since v ∈ KerX∞

⋂
KerC2, we have v ∈

KerC̃2. By Theorem 9, we have v ∈ KerĈ0. Hence (Ã +
B2Ĉ0 + B̂0C̃2)v = λv. This completes the proof. Q.E.D.

Remark 13. Theorem 9 and 12 indicate that part of the
unobservable dynamics of the plant in N (C,A)

⋂
KerX∞

are completely copied in the unobservable dynamics of
the H∞ central controller. They also imply the fact
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that if the plant has r̂ unobservable modes in space
N (C,A)

⋂
KerX∞, then the H∞ central controller has

at least r̂ unobservable modes. Thus, the order of the H∞
central controller could be reduced to n− r̂ at least.

With dual arguments, we have the following result.

Theorem 14. The spectrum of AT restricted toN (BT ,AT )⋂
KerZ∞ is contained in the spectrum of Â

T

0 restricted
to N (B̂

T

0 , Â
T

0 )

Remark 15. If γ approaches to infinity, equation (3) and
(4) become H2 AREs and H∞ central controller (5)
reduces to the optimal H2 controller for the plant Σ. Thus
N (C,A) ∈ KerX∞ and N (BT ,AT ) ∈ KerZ∞. This
implies that the unobservable subspace of the plant Σ is a
subspace of the unobservable subspace of the controller
(5) and the controllable subspace of the controller (5)
is contained in the controllable subspace of the plant
Σ when γ approaches to infinity. These coincide with
the results in our previous work [Wu and Yung, 2007]
on geometric characterization of the unobservable and
controllable subspaces for the H2 optimal controller.

4. NUMERICAL EXAMPLE

In this section, we give an example for illustration. Con-
sider the plant (2) with

A =


1 0 0 0 1.5
−2 −1 0 0 −1.5
−4 0 −1 0 −3
0 0 0 −1 0
0 0 0 0 −2

 , B1 =


0 0
1 0
0 0
0 0
0 0

 ,

B2 = [ 1 0 −2 0 0 ]T , C1 =
[

1 1 0 0 0
0 0 0 0 0

]
,

C2 = [ 1 0 0 0 0.5 ] , D12 = DT
21 =

[
0
1

]
.

Take γ = 1. It is easy to check that the plant satisfies
Hypotheses (H1) and (H2) in Proposition 1. By Theorem
2, we can calculate the numbers of unobservable and
uncontrollable modes in the H∞ central controller by
computing W L and ZL. It can be shown numerically that

X∞ =


0.6472 0.0494 0 0 0.2989
0.0494 0.4099 0 0 −0.1802

0 0 0 0 0
0 0 0 0 0

0.2989 −0.1802 0 0 0.2395

 ,

Z∞ =


4.0771 −4.9480 −8.1542 0 0
−4.9480 6.8515 9.8961 0 0
−8.1542 9.8961 16.3085 0 0

0 0 0 0 0
0 0 0 0 0

 ,

Â0 =


−3.7243 −0.0494 0 0 −0.8347
2.9975 −0.5901 0 0 0.7938
5.4486 0.0989 −1 0 1.6749

0 0 0 −1 0
0 0 0 0 −2

 ,

Ĉ0 = [−0.6472 −0.0494 0 0 −0.2989 ] ,

B̂
T

0 = [ 4.0771 −4.9480 −8.1542 0 0 ] .
Thus the H∞ controller given in (5) reads:

ΣR :
{

ξ̇ = Â0ξ + B̂0y,

u = Ĉ0ξ.

Solving (7) and (8) gets ZL and W L as

ZL =


−13.5685 71.2885 27.1371 0 0
71.2885 −214.8932 −142.5769 0 0
27.1371 −142.5769 −54.2742 0 0

0 0 0 0 0
0 0 0 0 0

 ,

W L =


0.0782 0.0104 0 0 0.0339
0.0104 0.0021 0 0 0.0042

0 0 0 0 0
0 0 0 0 0

0.0339 0.0042 0 0 0.0149

 .

Thus, rankZL = 2, nullityW L = 3. The H∞ central con-
troller thus has 2 controllable modes and 3 unobservable
modes. A minimal realization of the H∞ central controller
thus has order two given by

˙̂xr(t) =
[

0.5901 1.341
−0.1105 −3.7243

]
x̂r(t) +

[
4.948
−9.117

]
y(t),

u(t) = [ 0.04943 0.2894 ] x̂r(t).
It can be shown numerically that N (C,A)

⋂
KerX∞ =

span{


0.4082
−0.4082

0
0

−0.8165

 ,


0
0
0
1
0

 ,


0
0
1
0
0

}. A direct computation

shows that N (C,A)
⋂

KerX∞ is A−invariant. It is also
noted that the three unobservable modes in N (C,A)

⋂
KerX∞ are -1, -1, -2, and the three unobservable modes
in the H∞ central controller are also -1, -1, -2. It is thus
verified that the unobservable dynamics of the plant in
N (C,A)

⋂
KerX∞ are completely copied in the unob-

servable dynamics of the H∞ central controller.

5. CONCLUSION

In this paper, we have shown that the controllable and un-
observable subspaces of the H∞ central controllers can be
described by the image and kernel spaces of two matrices
ZL and W L, where ZL and W L are positive semidefinite
solutions of two Lyapunov equations. Furthermore, under
this characterization, it has been shown that the unobserv-
able subspace of the H∞ central controller contains the
the intersection of KerX∞ and the unobservable subspace
of the plant, and the H∞ central controller’s controllable
subspace is a subspace of the sum of ImZ∞ and the plant’s
controllable subspace. A numerical example has also been
given for illustration.
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