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Abstract:
Because of the use of scattering based communication channels, passivity based telemanipulation
systems can be subject to a steady state position error between master and slave robots. In this
paper, we consider the case in which the passive master and slave sides communicate through
a packet switched communication channel (e.g. Internet) and we provide a modification of the
slave impedance controller for compensating the steady state position error arising in free motion
because of packets loss.

1. INTRODUCTION

A bilateral telemanipulation system can be seen as a vir-
tual mechanical coupling between two robots. The motion
of the local robot, the master, has to influence that of the
remote robot, the slave. On the other hand, the forces
applied to the slave because of the interaction with a
remote environment have to be propagated through the
coupling to the master. This coupling is made up by
the robots controllers and by the communication channel
through which master and slave sides are interconnected.
Ensuring the passivity of the overall telemanipulation sys-
tem is sufficient for ensuring a stable behavior both in
case of free motion and in case of contact with any passive
environment. Passive impedance control has been used for
ensuring the stability of the interactive behavior (see e.g.
Lee and Li (2003); Itoh et al. (2000)) and the scattering
framework (Anderson and Spong (1989); Niemeyer and
Slotine (1991)) has been widely exploited for passivat-
ing the communication channel dynamics. In Stramigioli
et al. (2002); Secchi et al. (2007), the port-Hamiltonian
framework has been exploited for modeling and control-
ling passivity based bilateral telemanipulation systems.
Master and slave are controlled through intrinsically pas-
sive port-Hamiltonian regulators which allow to shape the
energetic behavior of the robots and to achieve desired
dynamic properties at master and slave sides. Local and
remote sides are interconnected through a scattering based
communication channel that allows a lossless exchange of
energy. The advantage of the port-Hamiltonian framework
is that it allows to explicitly model the energetic structure
of the systems and, therefore, it allows to keep track of
the energy flows in the telemanipulation system. This can
be very useful for the design of passive controllers. For a
recent survey on bilateral teleoperation see Hokayem and
Spong (2006).

When using scattering based communication channels,
local and remote sides exchange only velocity and force
information and this can cause the rise of a position error
between master and slave robots as reported in Niemeyer
(2004); Chopra et al. (2003); Lee and Spong (2005). Sev-
eral works addressed the problem of position tracking in
telemanipulation. In Chopra et al. (2003) an outer position
loop is added to decrease the position error between master
and slave; in Lee and Spong (2005) a novel control scheme
for position regulation achieved passifying the control and
the communication block is proposed. This problem has
been recently tackled within the port-Hamiltonian frame-
work. In Secchi et al. (2006), part of the energy dissipated
by the port-Hamiltonian controller at the slave side has
been stored and the interconnection structure of the con-
troller has been modified in order to exploit the stored
energy for compensating the steady state position error
arising during contact tasks. In Stramigioli et al. (2005);
Secchi et al. (2007) discrete scattering is used to build a
control scheme for telemanipulation of port-Hamiltonian
systems over a packet switched communication network
(e.g. Internet). A strategy for passively dealing with the
phenomena of packets loss has been proposed. Loosely
speaking when an expected packet is not received, it is re-
placed by a null packets. Using this strategy, when a packet
is lost, its corresponding energy content is dissipated. In
this way, in free motion, some of the energy that has to
be delivered to the slave side in order to move the slave
robot accordingly with the master is lost and, therefore,
at steady state, the position of the slave can be different
from that of the master.

In this paper, we consider port-Hamiltonian based bilat-
eral teleoperators as a quite general representation of pas-
sivity based bilateral telemanipulation systems. The port-
Hamiltonian framework allows to model both linear and
nonlinear passivity based telemanipulation systems. The
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goal of this work is to modify, in the same spirit as Secchi
et al. (2006), the controller at the slave side for passively
compensating the steady state position error due to the
packets loss. Firstly we modify the controller, generalizing
Secchi et al. (2006), in order to store ALL the energy that
is dissipated by the controller and the amount of energy
dissipated by the communication channel because of pack-
ets loss. Secondly, we modify the interconnection structure
of the controller in order to use the energy that has been
stored for passively compensating the steady state position
error. Finally we put together the results obtained in this
paper with those presented in Secchi et al. (2006) in order
to obtain a controller that allows to passively compensate
the steady state position errors that can arise both during
contact tasks and in free motion.

2. BACKGROUND

Loosely speaking, a port-Hamiltonian system is made up
of a set of energy processing elements (energy storing,
energy dissipating and sources of energy) that exchange
energy through a set of energy paths which form a power
preserving interconnection along which energy is neither
stored or dissipated but simply transferred. More formally,
port-Hamiltonian systems are defined on the state mani-
fold of energy variables X and they are characterized by an
Hamiltonian energy function H : X �→ R, expressing the
stored energy, and by a Dirac structure D, representing the
internal energetic interconnections. The system is endowed
with a so-called power port that is represented by a pair
of dual power variables (e, f) ∈ V ∗ × V called effort and
flow respectively. This port is used to exchange energy
with the system; the power supplied through a port is
equal to eT f . Using coordinates, in their simplest form,
port-Hamiltonian systems are represented by the following
equations⎧⎪⎨

⎪⎩
ẋ(t) = (J(x) − R(x))

∂H

∂x
+ g(x)u(t)

y(t) = gT (x)
∂H

∂x

(1)

where x ∈ R
n is the coordinate vector of the energy

variables J(x) is a skew-symmetric matrix representing
the Dirac structure, R(x) is a positive semidefinite matrix
representing the dissipation of the system, H is the Hamil-
tonian function. The input-output pair (u(t), y(t)) forms
the power port through which the system can exchange
energy with the rest of the world. The system can either
have an impedance causality or an admittance causality.
In the first case u(t) is a flow and y(t) is an effort while
in the second case u(t) is an effort and y(t) is a flow. The
following power balance hold:

yT (t)u(t) = Ḣ(t) +
∂T H

∂x
R(x)

∂H

∂x
(2)

meaning that the energy provided through the port is
either stored or dissipated and that a port-Hamiltonian
system is a passive system. A very broad class of physical
systems, both linear and non linear, can be modeled within
the port-Hamiltonian framework which can therefore be
used to model telemanipulation systems endowed with
nonlinear robots. For further information, see for example
Secchi et al. (2007).

The port-Hamiltonian based bilateral telemanipulation
scheme is represented in Fig. 1 in a bond-graph notation.
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Fig. 1. The Port-Hamiltonian based Telemanipulation
Scheme.

Both master and slave robots can be modeled as port-
Hamiltonian systems. The slave is interconnected in a
power preserving way to a port-Hamiltonian controller
which acts as an intrinsically passive impedance controller.
Master and slave sides exchange power through a trans-
mission line that is characterized, in general, by a non
negligible transmission delay. Each power port by means of
which master and slave sides exchange power through the
communication channel is characterized by an effort e(t)
and by a flow f(t) and it can be equivalently represented
by an incoming power wave s+(t) and an outgoing power
wave s−(t) defined as⎧⎪⎨

⎪⎩
s+(t) =

1√
2
N−1(e(t) + Zf(t))

s−(t) =
1√
2
N−1(e(t) − Zf(t))

(3)

where Z = NN > 0 is the symmetric positive definite
impedance of the scattering transformation. The power
flowing into the channel is given by eT (t)f(t) and it
can be represented in terms of scattering variables as
the difference between the incoming and the outgoing
power flows, namely eT (t)f(t) = 1

2‖s+(t)‖2 − 1
2‖s−(t)‖2.

In order to get a passive exchange of energy independently
of any constant communication delay, the power ports
connected to the transmission line are decomposed into a
pair of scattering variables which are transmitted along the
channel. Using this strategy, the communication channel
is a lossless system and the power wave outgoing from
the master side becomes the incoming power wave at the
slave side and viceversa. Scattering variables can also be
encoded into packets and transmitted through a packet
switched transmission line while keeping on guaranteeing
the losslessness of the communication channel. This kind of
networks is unreliable and it can happen that some packets
can be lost during the communication. In Stramigioli et al.
(2005) a strategy for dealing with the loss of packets
while preserving a passive behavior of the communication
channel has been proposed: when a packet is not received
either at the master or at the slave side, it is replaced
with a null packet. Using this strategy, the loss of a packet
corresponds to some energy dissipation and, therefore, the
communication channel becomes a strictly passive system.
The advantage of this strategy is that the communication
channel keeps on being passive and that therefore no
destabilizing effect is associated with packets loss. On
the other hand, the energy associated to a lost packet is
dissipated and never delivered. During free motion, this
implies that the slave doesn’t receive enough energy for
reaching the same position of the master and, therefore, a
steady state position error arises.
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Since a port-Hamiltonian based bilateral telemanipulator
is made up of passive subsystems interconnected in a power
preserving way, the overall system is intrinsically passive
and, therefore, characterized by a stable behavior. For
further details see Stramigioli et al. (2005); Secchi et al.
(2007).

3. STORAGE OF THE ENERGY DISSIPATED BY
THE IMPENDANCE CONTROLLER

The port-Hamiltonian impedance controller can be inter-
preted as a virtual physical system which usually contains
an elastic term and some dissipative elements whose role
is to impose a desired compliance and to dampen the
interactive behavior of the slave. In this section we will
show how it is possible to modify the slave controller for
storing all the energy that it dissipates (and not only
a part of it as proposed in Secchi et al. (2006)) and,
furthermore, we will propose a communication strategy
that allows also to store the energy that is dissipated by
the packets loss phenomenon. This energy will then be
used for compensating the position errors arising either in
free motion or during contact tasks, as it will be explained
in Sec. 4. The port-Hamiltonian impedance controller has
usually an impedance causality and it can be modeled as⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ẋ(t) = (J(x) − R(x))

∂H

∂x
+ g(x)

(
fs(t)
f1(t)

)
(

es(t)
e1(t)

)
= gT (x)

∂H

∂x

(4)

where (es, fs) and (e1, f1) are the power ports through
which the controller interacts with the communication
channel and with the slave respectively.

In order to store the energy dissipated, it is necessary
to endow the controller with an extra energy storing
element that we call, as in Secchi et al. (2006), tank. A
physical state has to be associated to this energy storage
and, therefore, it is necessary to augment that state of
the controller with an extra-energy variable that we call
xt ∈ R. Furthermore, an energy function Ht : R �→ R has
to be associated to the tank and its role is to describe the
amount of energy that is stored in correspondence of a
given configuration of the tank xt. The augmented model
of the controller together with the tank where the energy
dissipated is stored is given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) = (J(x) − R(x))
∂H

∂x
+ g(x)

(
fs(t)
f1(t)

)

ẋt(t) =
1

∂Ht

∂xt

∂T H

∂x
R(x)

∂H

∂x

(
es(t)
e1(t)

)
= gT (x)

∂H

∂x

(5)

The energy stored in the tank is given by∫ t

0

Ḣt(τ)dτ =
∫ t

0

∂Ht

∂xt
ẋt(τ)dτ =

∫ t

0

∂T H

∂x
R(x(τ))

∂H

∂x
dτ

(6)
Namely, all the energy dissipated by the controller dynam-
ics is stored in the tank. It is straightforward to see that

augmented controller described in Eq.(5) is still passive
with a storage function Htot(x, xt) = H(x) + Ht(xt). In
Eq.(5), we can see a singularity in case ∂Ht

∂xt
= 0. The

Hamiltonian function of the tank Ht has to be lower
bounded in order to preserve the passivity of the controller
but, apart of this condition, it can be freely chosen. A
possible choice is Ht(xt) = 1

2kx2
t . In this way ∂Ht

∂xt
= 0 only

when xt = 0, namely when there is no energy stored in the
tank. If we initialize the state of the tank with xt(0) > 0,
namely if we put some initial energy into the tank, we have
that ∂Ht

∂xt
(0) > 0. Using Eq.(5) and recalling that R(x) is

positive semidefinite, we can see that xt always increases
and that ∂Ht

∂xt
will always be different form zero.

This implementation of the tank generalizes that proposed
in Secchi et al. (2006) since all the dissipated by the
controller is stored and the dimension of the state of
the controller is augmented just by one. As reported in
Sec. 2, when using the strategy proposed in Stramigioli
et al. (2005), each time that a packet is lost in the com-
munication, its energy content is dissipated. When using
scattering variables, the communication channel becomes
equivalent to a distributed mass spring system Niemeyer
(2004) interconnecting the port-Hamiltonian master and
slave sides. Thus, packets loss causes energy dissipation
in this virtual distributed mechanical systems. As done
for the controller we want to store the energy dissipated
by the communication channel into the tank. The energy
dissipated in the communication between master and slave
sides and viceversa is given by the difference between
the energy transmitted and the energy received, namely
respectively by

Δms(t) =
∫ t−T

0

1
2‖s−m(τ)‖2dτ −

∫ t

0

1
2‖s+

s (τ)‖2dτ

Δsm(t) =
∫ t−T

0

1
2‖s−s (τ)‖2dτ −

∫ t

0

1
2‖s+

m(τ)‖2dτ

(7)

where T denotes the communication delay and the indexes
m and s stand for master and slave respectively. In case
there is no packets loss, s+

m(t) = s−s (t − T ) and s+
s (t) =

s−m(t − T ) and, therefore, no energy is dissipated. In case
of packets loss, some incoming packets are set to zero
and the difference between the energy transmitted and
the energy received is greater that zero and, therefore, a
certain amount of energy has been dissipated. In order to
be able to compute Eq.(7), it is necessary to embed in each
transmitted packet both the value of the scattering wave
s−i (t) and the amount of energy that has been sent through
the channel,

∫ t

0
1
2‖s−i (τ)‖2dτ , where i = m, s. Thus each

packet P will have two fields v and e and
P.v = s−i

P.e =
∫ t

0

1
2‖s−i (τ)‖2dτ

(8)

At each side both the amount of energy transmitted
through the channel and the amount of energy received
from the channel are computed using local buffers. Let
us consider the communication between master and slave.
Each time that a packet P is received, the amount
of received energy

∫ t

0
1
2‖s+

s (τ)‖2dτ is updated using
P.v, the amount of energy transmitted by the master∫ t−T

0
1
2‖s+

s (τ)‖2dτ is read using P.e and Δms is computed
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using Eq.(7). When a packet is not received, it is replaced
with a packet where the v field is set to zero, accordingly to
Stramigioli et al. (2005), and the e field is set at the same
value of the corresponding field of the previously received
packet. In this way Δms remains unchanged. When the
next packet Q is received, the amount of energy received
is updated using Q.v and Δms is computed using Q.e.
We have that Δms now increases since Q.e contains also
the energy of the packets lost in the communication that
have been replaced with null packets and that, therefore,
haven’t been considered in the computation of the energy
received. The value of Δms changes only in correspon-
dence of some packets lost in the communication between
master and slave. An analogous procedure at the master
side allows to compute Δsm(t), namely the value of the
energy dissipated in the communication between slave and
master. Since the tank is embedded in the slave controller,
it is necessary to communicate Δsm to the slave side. We
can do this by adding a field, which we call d, to the packets
transmitted from the master to the slave side and we set
P.d = Δms. Thus, at the slave side, we can compute

ΔTOT = Δms(t) + Δsm(t − T ) (9)
which represents all the energy that has been dissipated in
the communication channel. Thus, we can store an amount
of energy equal to ΔTOT (t) in the tank. This can be done
using the following tank dynamics

ẋt(t) =
1

∂Ht

∂xt

∂T H

∂x
R(x)

∂H

∂x
+ λfL (10)

where

λ =

⎧⎪⎪⎨
⎪⎪⎩

1 if
∫ t

0

fL(τ)
∂Ht

∂xt
dτ < ΔTOT (t)

0 if
∫ t

0

fL(τ)
∂Ht

∂xt
dτ = ΔTOT (t)

(11)

Using Eq.(10) we have that

Ḣt(t) =
∂T H

∂x
R(x)

∂H

∂x
+ λ

∂Ht

∂xt
fL (12)

Choosing fL > 0 and Ht such that ∂Ht

∂xt
> 0 during the

evolution of xt and using Eq.(11) we have that the second
term of Eq.(12) injects energy into the tank as long as
λ > 0, namely as long as a total amount of energy equal
to Δ has been stored into the tank.

4. POSITION ERRORS COMPENSATION

As already said, there are two possible steady state errors
arising from the scattering based communication channel.
The first one takes place during interaction tasks and it
is due to the way in which the force feedback is passively
transmitted to the user. The second one takes place during
free motion and it is due to the loss of packets, namely to
the fact that some of the required energy for performing
a motion is not delivered. Both these kinds of position
errors can be passively compensated by using the energy
that is stored in the tank. The compensation of the steady
state position error arising during contact tasks has been
addressed in Secchi et al. (2006). The main idea is to
model the rest length of one of the elastic elements that is
present in the impedance controller as a state variable.
It is then possible to create a controllable irreversible
interconnection that allows to use some energy that is

stored in the tank for passively changing the value of the
rest length for introducing an offset that compensates the
steady state position error.

In the same spirit, let us for example consider an elastic ele-
ment that interconnects the slave robot with the scattering
based communication channel (the results proposed in the
paper can be easily extended also when considering other
elastic elements connected to the slave). Let xe denote its
state (which is part of the state of the controller) and let
us model its rest length as an energy variable xl ∈ R

l,
augmenting again the state of the controller; finally let
He(xe−xl) be the Hamiltonian function associated to this
element. The model of this element can be described as⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋe(t) = f(t) = fs(t) − f1(t)
ẋl(t) = fl(t)

e(t) =
∂He

∂xe

el(t) =
∂He

∂xl

(13)

where (e(t), f(t)) and (el(t), fl(t)) are the power ports
through which the element exchange energy with the
rest of the system. The effort e(t) depends on the value
of xl and is the one which is applied to the systems
interconnected by the elastic element. Notice that it is
possible to affect the value of xl through fl and that
∂He

∂xe
= −∂He

∂xl
. A variation of xl affects the relative position

of the systems interconnected by the elastic element.In
case steady state position error arises in free motion, it is
necessary to be careful in the error compensation process.
In fact, if we changed the rest length of the elastic element
for taking the slave to its correct steady state position,
we would also apply a force to the distributed mass-spring
system represented by the communication channel and this
would have the effect of moving the master. This latter
effect is undesired since we would like to change the slave
position without requiring any correcting action of the user
on the master and without transmitting to the master side
any force due to the length variation. Another possible
strategy would be to leave xl unchanged and to use the
energy of the tank for applying an effort to the slave
causing its motion. However, this would be unsuccessful
since, because of the coupling between master and slave
sides, a force applied to the slave would also cause an
undesired motion of the master. The idea proposed in
this paper is a mix of this two strategies: we create a
controllable irreversible energy interconnection to drive
some energy from the tank to the slave in order to move the
slave and, while the slave is moving for reaching the master
position, we change the rest length of the elastic element
to compensate the force that would be transmitted to the
master side because of the motion of the slave. First of all,
let us build the interconnection that allows to transfer the
energy from the tank to the slave. Let (ets, fts) ∈ R × R

and (esc, fsc) ∈ R
m × R

m the two power ports that are
used for interconnecting the tank and the slave robot, the
first one being referred to the tank and the second one to
the slave. Let the interconnection between these two ports
be given by: ⎧⎨

⎩
esc = Bets

fts = −BT fsc

(14)

where
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B = Eetsfsc E = diag(ε1, . . . εm) (15)
and E is a design parameter. Using Eq.(14) we have that

eT
scfsc = etsB

T fsc = −etsfts (16)
which means that the energy injected into the slave is equal
to that extracted from the tank; thus Eq.(14) allows to
transfer energy from the tank to the controller. Further-
more, we have that

eT
scfsc = e2

ts(Efsc)T fsc (17)
thus, if we choose εi > 0 for i = 1, . . . , m we inject energy
into the slave and if we choose εi < 0 for i = 1, . . . , m
we extract energy from the slave putting it back into the
tank. Finally, setting E = 0, we disable any energy transfer
between the tank and the slave. Thus a proper choice of
E allows to control the energy flows between the slave and
the tank. The magnitude of the gains εi can be used to
boost the energy transfer: the bigger are the magnitudes
the faster is the energy transfer between the tank and the
slave. By Eq.(14), we have that

esc = Ee2
tsfsc (18)

Suppose that the master position qm is embedded in the
packet that is sent from master to slave side. If at steady
state we have that the slave configuration qs(t) is different
from qm(t − T ), it means that some energy has not been
delivered to the slave side. If qsi(t) < qmi(t−T ), it means
that we have to apply to the slave a positive effort which
takes qsi(t) to the correct position. This effort can be
applied through the port (esc, fsc) using the energy stored
in the tank. In order to decide whether to extract or to
inject energy from/into the tank, we need to check the sign
of the ith component of fsc. If fsci > 0 then we have to
set εi > 0 else, we have to set εi < 0. A similar reasoning
holds in case qsi(t) < qmi(t − T ) and an effort with the
ith component negative has to be applied. By repeating
these steps for all the components of qs(t) it is possible
to determine E such that it allows to transfer from the
tank an amount of energy that allows to take the slave at
the master configuration, compensating the steady state
position error. The sign of the elements εi determines the
direction of the energy transfer while their value acts as a
gain which boosts the energy transfer. The greater are the
values of the gains, the faster is the energy transfers and,
consequently, the transient of the compensation process.
Thus, properly tuning of the energy transfer between the
tank and the length port, it is possible to achieve any
desired transient behavior in the rest length variation. As
explained above, the motion of the slave as an effect of
the application of the effort esc hasn’t to affect the master
position. At steady state, the effort applied by the elastic
element described in Eq.(13) is e = 0. Thus both the effort
applied by the element to the slave and to the scattering
channel is zero. We would like to preserve this situation
also during the compensation phase, namely when the
slave starts extracting energy from the tank for changing
its position. Suppose, for simplicity, that He has just a
global minimum and that argminHe = 0. The results
proposed in the following can be easily extended to more
general cases. Thus, at steady state, x − xl = 0. Using
Eq.(13) we have that

x(t) =
∫ t

0

fs(τ)dτ −
∫ t

0

f1(τ)dτ = q̃m(t) − qs(t) (19)

At steady state we have that

q̃m(t) − qs(t) − xl(t) = 0 (20)
If we can guarantee that Eq.(20) keeps on holding during
the compensation process, we have that the effort trans-
mitted by the elastic element to the master keeps on being
zero and that, therefore, the motion of the slave doesn’t
affect that of the master. During the compensation process
q̇s(t) = fs(t) �= 0 and, trivially, if we set

ẋl = −δfs(t) (21)
where

δ =
{

1 E �= 0
0 E = 0 (22)

it can be immediately seen that Eq.(20) keeps on holding
during the compensation phase and that, therefore, no
effort is sent to the master side and the compensation
process is transparent to the user.

When changing xl, we have that e = ∂He

∂xe
= −∂He

∂xl
= el =

0. Thus we have that eT
l fl = 0 and, therefore, no energy

is required for the length variation process.

5. THE OVERALL CONTROLLER

Summarizing the results obtained in the previous sections
and the result proposed in Secchi et al. (2006), we obtain
the following controller:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = [J(x) − R(x)]
∂H

∂x
+ g(x)

(
fs

f1

)

ẋt(t) =
1

∂Ht

∂xt

∂T H

∂x
R(x)

∂H

∂x
+ A

∂H

∂xl
+ BT f1(t) + λfL

ẋl = −AT ∂Ht

∂xt
− δf1(t)(

es

e1

)
= gT (x)

∂H

∂x
+

( 0

B
∂Ht

∂xt

)

(23)
The dynamics of the original set of state variables x
remains that of the port-Hamiltonian impedance controller
initially designed for the telemanipulation system. Thus
the user, when the compensation processes are disabled,
feels exactly the desired impedance. The state variables xt

and xl represent the tank and the rest length dynamics
respectively. The coupling modeled by matrix A allows to
exploit the energy of the tank for changing xl in order
to compensate the position errors arising during contact
tasks Secchi et al. (2006). We can easily prove the following
Proposition 1. Using the controller proposed in Eq.(23)
in the port-Hamiltonian based telemanipulation scheme
reported in Sec. 2, leads to a passive telemanipulation
system.

Proof. The total energy of the controller is given by
HTOT = H(x, xl) + Ht(xt). Using Eq.(23) and exploiting
the skew-symmetry of J(x), we have that

ḢTOT =
∂T H

∂x
g(x)

(
fs

f1

)
− δ

∂T H

∂xl
f1 +

∂T Ht

∂xt
BT f1+

+ λ
∂T Ht

∂xt
fL (24)

Consider the second term. If δ �= 0, it means that the
slave is moving for compensating the steady state position
error and, therefore, as reported in Sec. 4, we have that
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Fig. 2. Master(solid) and Slave (dashed) Positions
∂H
∂xl

= 0. Thus, this term is always equal to zero. Using the
last equation of Eq.(23) we get

ḢTOT = eT
s fs + eT

1 f1 + λ
∂Ht

∂xt
fL (25)

By construction, the last term is always greater or equal to
zero and this implies that the controller produces energy
and that, therefore, it is not passive. Nevertheless, as
reported in Sec. 3, the amount of energy produced by
the controller is exactly equal to that dissipated by the
communication channel and, therefore, the system made
up of the controller and of the communication channel is
lossless and, therefore, passive. Thus, the coupling between
master and slave is passive. Furthermore, since the lossless
system given by the controller and by the communication
channel is interconnected to two passive systems, the
robots, in a power preserving way and since the power
preserving interconnections of passive systems yields a
passive system Secchi et al. (2007), we have that the overall
telemanipulation system is passive. �

6. SIMULATIONS

We consider a simple one degree of freedom telema-
nipulator where master and slave are simple masses of
0.5 Kg. The slave is interconnected to a port-Hamiltonian
impedance controller and local and remote sides are joined
through a scattering based communication channel charac-
terized by an impedance Z = 1 and by a transmission de-
lay T = 0.5 s in both senses of communication. The port-
Hamiltonian controller is a simple PD, physically equiva-
lent to the parallel of a spring with stiffness K = 10 N/m
and a damper with dissipation coefficient b = 1 Nsec/m
used to match the impedance of the communication chan-
nel. The tank is an energy storing element with Ht = 1

2x2
t

and it is initialized with xt(0) = 1 in order to avoid the
singularity problems mentioned in Sec. 3. We have simu-
lated the behavior. In the simulation, the user is applying
an force pulse at the master and, in the communication
between master and slave, the sequence of packets that has
to be received at the slave side in t ∈ [1, 2] is is lost and
replaced with a sequence of null packet accordingly with
Stramigioli et al. (2005). The results of the simulation have
been reported in Fig. 2. We can notice from Fig. 2(a) that
the telemanipulation system remains stable despite of the
loss of information in the communication since the overall
system keeps on being passive. Nevertheless, the fact that
some of the energy that should have been delivered to the
slave is dissipated causes a significant steady state position
error. In Fig. 2(b) the positions of master and slave are
reported in case the compensation algorithm reported in
Sec. 4 has been implemented. We can see that when the
slave reaches the steady state position and a significant

difference between the slave and and the master position
is detected, part of the energy of the tank is used for
moving the slave towards the correct configuration and,
at the same time, the rest length of the spring in the PD
controller is changed as explained in Sec. 4 to avoid that
the corrective motion of the slave affects also the master.
In fact, we can see that the steady state position of the
master remains unchanged after the compensation phase.
Thus, at the end, both master and slave positions are equal
to the value set by the user.

7. CONCLUSIONS AND FUTURE WORK

In this paper we have proposed an control strategy for
passively compensating the steady state position error
arising in free motion when some packets are lost in
the communication between master and slave sides.In
the future, we aim at exploiting the control structure
proposed in Sec. 5 for implementing corrective actions to
improve the transparency of the telemanipulation system
also during the motion of the slave.
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