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Abstract: Model uncertainty is an important factor hindering reliability of any model-
based failure detection and identification (FDI) method. Use of joint torque sensing reduces
significantly the complexity of robot modeling by excluding hardly-identifiable link dynamics
from overall manipulator dynamics. Application of such model in the proposed FDI filter
increases reliability of fault monitoring against modeling uncertainty. The proposed filter is
based on a smooth velocity observer of degree 2n where n stands for the number of manipulator
joints. No velocity measurement and assumption on smoothness of faults are used in the fault
detection process.

1. INTRODUCTION

With increasing degree of complexity and number of com-
ponents used in control systems, accurate monitoring of
system malfunctioning has become more and more vital
in modern control system technology. A classic approach
to accommodate system failure is to operate redundant
devices in parallel. However, high cost of maintenance
together with limitations imposed by weight and volume,
make the redundancy approach undesirable in many appli-
cations such as space systems or nano technologies. As a re-
sult, in the last decade design of reliable failure monitoring
and accommodation techniques by using minimum number
of spare components has received considerable attention.

An important class of failure detection techniques consists
of using a model for the monitored system. Failure in
normal operation of a system is typically represented either
by abnormal deviation of system parameters from their
nominal values or by external disturbance signals called
as faults. In the former case standard parameter identi-
fication techniques, under sufficient excitation needed for
parameter convergence, can ensure localization of failed
components. In the latter case, observer based methods
aim at generating some residual signals such that each
residual is sensitive to a group of faults. Logical combi-
nation of residuals can ultimately lead to localization of
faults.

A great number of model based techniques for fault detec-
tion deal with linear systems, Frank [1990]. For input affine
nonlinear systems, geometric methods of Persis and Isidori
[2001] and Hammouri et al. [1999] have extended results of
Massoumnia [1986] and developed necessary and sufficient
conditions for delectability of fault signals together with
presenting a procedure for constructing residual genera-
tors. To this end, Mattone and De-Luca [2006] have used
a geometric approach for a relaxed formulation of fault de-

tection problem for robotic manipulators where the focus
is mainly on isolation of a set of faults instead of a single
fault. Leuschen et al. [2005] have extended linear analytical
redundancy to nonlinear input affine systems with appli-
cation in robot fault detection. In Filaretov et al. [1999] an
observer based fault diagnosis system for flexible robots,
and based on the algebra of functions, has been developed.
Another observer based fault detector for manipulators by
using full state measurements was proposed by Schneider
and Frank [1996] where model uncertainty was handled by
fuzzy residual evaluation.

Also, in a probabilistic framework, Verma and Simmonsb
[2006] have used a Monte-Carlo approximation method
for estimation of robot states and ultimately monitoring
the faults. In Dixon et al. [2000] a prediction-error-based
approach for fault detection in manipulators in presence
of parametric uncertainty has been proposed where the
residual signal was considered as the estimation error in
filtered input torque. In McIntyre et al. [2005] a nonsmooth
nonlinear observer was used for identification of fault
signals in a robotic system by using exact knowledge of
upperbounds for amplitudes of fault signals and their first
and second derivatives.

A major difficulty in model based techniques for general
nonlinear systems and in particular robotic systems, is the
presence of model uncertainty that can significantly ham-
per the accuracy and reliability of detection and isolation
process. In case of robotic manipulators model accuracy
depends reciprocally on manipulator degrees of freedom.
This phenomenon is mainly due to the uncertainty in
links and actuator mass and inertia parameters. Recently
Kosuge et al. [1990], Hashimoto et al. [1993], Aghili and
Namvar [2006] have shown that the use of joint torque
sensors can significantly reduce the complexity of robot
modeling and control by relaxing the need to model link
dynamics. In particular, it was shown by Aghili and Nam-
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var [2006] that joint torque sensing results in a reduced
number of dynamic parameters in an adaptive motion
control problem. Moreover, the controlled robot is capable
of rejecting perfectly the external force disturbances.

In this paper we use particular model of a robot manip-
ulator resulted from using joint torque sensors to detect
and localize a class of additive fault signals. The resulting
model has the property that it consists only of dynamical
parameters of motor rotors and excludes hardly identifi-
able parameters related to robot links. This property has
a significant impact on reliability of the resulting fault
detection process.

Another important property concerns the lower triangular
structure of manipulator dynamical equation that gives
the ability of localizing faults by using a single 2nth order
smooth observer.

Finally, the detection process does not require measure-
ment of joint velocities which are usually obtained through
some ad hoc numerical differentiations. Therefore, in terms
of the total number of used sensors, the proposed method
employs 2n sensors being n encoders and n joint torque
sensors. This number is similar to the majority of standard
fault detection methods for robotic manipulators.

The proposed method relies only on a priori knowledge
of an upperbound for joint velocity but does not require
known bounds for derivatives of fault signals.

2. MANIPULATOR MODEL USING JOINT TORQUE
SENSORS

Equations of motion of a rigid manipulator can be written
by

M(q)q̈ + C(q, q̇)q̇ + g(q) = τm + f (1)

where M(q) > 0 stands for inertia matrix and C(q, q̇)q̇
represents centrifuge and coriolis forces. Also, g(q) is the
vector of gravitational force and τm is motor torque.
Additive fault signal is denoted by f and represents a
variety of faults in motors. We consider the following
assumptions (see Aghili and Namvar [2006]):

• Manipulator is serial and electrically driven,
• Center of mass of all rotors coincide with their rota-

tion axis,
• Rotor inertias about the x-and y-axes are identical,
• Principal axes of all rotor inertias are assumed to be

parallel to their own joint axes,
• Deformation of the joints are negligible,

Let decompose the inertia matrix by

M(q) = ML(q) + JT (q) + T (q)T J (2)

where J = diag{Ji} contains polar inertia of rotors and
ML(q) represents link inertia matrix. Also, T (q) is a lower
triangular full rank matrix given by

T (q) =













1 0 0 · · · 0
z2.z1 1 0 · · · 0
z3.z1 z3.z2 1 · · · 0

...
...

...
...

...
zn.z1 zn.z2 zn.z3 · · · 1













(3)

According to Denavit-Hartenberg convention (see Spong
et al. [2006]), zk ∈ R3 is a unit vector attached to rotor
k and along with its rotation axis and expressed in fixed
frame (see Fig. 1).

Since the rotation of joint k has no effect on orientations
of z1, ..., zk, it is implied that zk is only a function of
q1, ..., qk−1. Therefore, each Tij , for i > j, is a function of
q1, ..., qi−1. It can be shown that if there exist at least n−2
pairs of adjacent parallel joint axes, then T is independent
of q making (5) a LTI system.

Now defining the joint torque signal by

τJ := (ML + TT J)q̈ + (C − JṪ )q̇ + g (4)

manipulator dynamics (1) can be rewritten as

J
d

dt
(T (q)q̇) = τm − τJ + f (5)

As shown in Aghili and Namvar [2006], [τJ ]i is the torque
sensed at the intersection of link i with joint i. By
computing the acceleration q̈ from (1) and replacing in
(5), joint torque vector can be expressed by

τJ = τm + f + JTM−1(−Cq̇ − g + τm + f) (6)

which shows that τJ is a function of manipulator states
and external forces. From a theoretical point of view, this
fact ensures that measurement of joint torque constitutes
a causal and feasible operation.

Equation (5) has two important properties. First, the effect
of link dynamics is lumped and represented by τJ and
as a result by measuring joint torques there remains no
need for modeling link dynamics. Second, lower triangular
structure of T together with particular dependence of its
elements to q are key properties to be used in Section 4
for localization of faults.

Another property of T (q) is that its derivative with respect

to time, Ṫ (q, q̇), is linear with respect to q̇, i.e.

Ṫ (x, y + z) = Ṫ (x, y) + Ṫ (x, z) (7)

As a result, Ṫ (x, y) is linearly bounded with respect to y

‖Ṫ (x, y)‖ ≤ c‖y‖ (8)

Moreover,

Ṫ (x, y)z = Ṫ (x, z)y (9)

3. VELOCITY OBSERVER

In this section we develop an exponentially convergent
velocity observer for (5). Consider the following observer






JT (q)ẇ − JṪ (q, v)v + JTkw + JTk2q = τm − τJ

˙̂q = Lq̃ + v

(10)

where

v := w + kq (11)

and 0 < L = diag(Li), k > 0 ∈ R are two given
constant gains . Note that [ w q̂ ] constitute the states of
the observer and q, τJ and τm are given inputs.
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Theorem 1. Consider the observer (10) together with ma-
nipulator dynamics (5). Assume that f ≡ 0 and joint

velocity is bounded. Then, q̃ and ˙̃q converge to zero ex-
ponentially where q̃ := q − q̂.

Proof. Defining the composite error

s := ˙̃q + Lq̃ (12)

it can be verified that s = q̇ − v. Observer (10) can be
equivalently written by

JT (q)(ẇ + kw + k2q) + Ṫ (q, v)v = τm − τJ

However, we have

ẇ + kw + k2q = ẇ + k(w + kq)

= ẇ + kv

= v̇ − kq̇ + kv

= v̇ − ks (13)

Hence (10) is equivalent to

JT (q)v̇ + Ṫ (q, v)v = τm − τJ (14)

Now subtracting (14) from (5) yields

JT (q)ṡ + JṪ (q, q̇)q̇ − JṪ (q, v)v + JTKs = f (15)

Using property (7) and (9), equation (15) can be equiva-
lently written by

JT ṡ + JṪ (q, q̇)s + JṪ (q, v)s + JTKs = f (16)

Define the Lyapunov function

V =
1

2
sT TT JTs (17)

Left multiplying (16) by TT and differentiating V with
respect to time along the resulting error dynamics yields

V̇ = −ksT (TT JT )s − sT TT JṪ (q, s)v + sT TT f (18)

Using the fact that v = s − q̇ and property (8) yields

V̇ ≤ −kλ(TT JT )‖s‖2 + c‖s‖2(‖q̇‖ + ‖s‖) + sT TT f (19)

where λ denotes minimum eigenvalue. As a result when
f ≡ 0, and under the assumption ‖q̇‖ ≤ α, we obtain

V̇ ≤ −β‖s‖2 (20)

provided that ‖s‖ is sufficiently small in a sense that

‖s‖ ≤ (β + kλ(TT JT ))c−1 − α (21)

Therefore, when f ≡ 0, the error dynamics (15) is locally
exponentially stable and s converges to zero, exponentially.
It is observed that by increasing k it is possible to widen
the domain of attraction and as a result the the error
dynamics is semi-globally exponentially stable. 2

4. FAULT DIAGNOSIS

The observer (10) is an asymptotic detector for the system
(5). In order to investigate the ability of the observer for

localization of faults, we expand (16) and recall the depen-
dency of Tij to q1, ..., qi and lower triangular structure of
T . The first equation in (16) reads

J1ṡ1 + J1ks1 = f1 (22)

which together with (12) yields

¨̃q1 + (k + L1) ˙̃q1 + kL1q̃ = J−1
1 f1 (23)

Clearly, q̃1 uniquely detects and isolates f1. To investigate
isolation of other faults, we rewrite equation (15) by

ṡ = Y s + Zf (24)

where Y = [yij ] and Z = [zij ] are lower triangular matrices
defined by

Y :=−T−1Ṫ (q, 2q̇ − s) − kI (25)

Z := (JT )−1 (26)

The ith component of ṡ can then be expressed by

ṡi = −ksi −
i−1
∑

j=1

yijsj +
i

∑

j=1

zijfj , i = 1, .., n

It is clearly seen that si is affected only by f1, f2, ..., fi so
that when s(0) = 0, si(t) will remain identically zero if
any of faults fi+1, ..., fn occur. Now, assuming that faults
do not occur simultaneously, the signature vector can be
constructed by

ri = hi.

i−1
∏

j=1

h̄j (27)

where

hi =

{

1 if |si| ≥ ℓi

0 otherwise
(28)

and h̄j := NOT(hj). Moreover, ℓi is the chosen threshold
level for the ith signature signal. In case of zero initial
condition (s(0) = 0) the threshold level ℓj can be set close
to zero to account only for the effect of measurement noise.

In practice, if s(0) is not zero, the effect of nonzero initial
condition on s decays exponentially. By virtue of (17) and
(20), it can be inferred that in absence of fault signals,

|si| ≤ ‖s‖ ≤ (
λ̄

λ
)

1

2 ‖s(0)‖e− β

λ̄
t (29)

where λ̄ (λ) denote an upperbound (lowerbound) for the
maximum (minimum) eigenvalue of TT JT . Therefore, the
threshold level in this case would be the time varying term
in the RHS of inequality (29).

4.1 Unmeasured velocity

If velocity is not measured, then instead of (27), the
signature signal is generated by using (12). As a result

(24) can be expressed in terms of ¨̃q and similarly it can be

argued that ¨̃qi is affected only by f1, ..., fi. The signature
signal is then given by (27) where h is now defined by

hi =

{

1 if |q̃i| ≥ ℓi

0 otherwise
(30)

In this case, the threshold level is obtained by combining
(29) and (12) as
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q̃i(t) = q̃i(0)e−Lit +

t
∫

0

si(τ)e−Li(t−τ)dτ

≤ q̃i(0)e−Lit +

t
∫

0

|si(τ)|e−Li(t−τ)dτ

≤ q̃i(0)e−Lit +

t
∫

0

(
λ̄

λ
)

1

2 ‖s(0)‖e−γτe−Li(t−τ)

≤ (
λ̄

λ
)

1

2 ‖ ˙̃q(0)‖ 1

Li − γ
(e−γt − e−Lit)

(31)

where γ := 2β

λ̄
. In the last inequality it is assumed that

joint angle measurement is exact or q̃(0) = 0. Note that

‖ ˙̃q(0)‖ is still unknown but knowing that ‖q̇‖ ≤ α, clearly,
˙̂q(0) can be chosen such that ‖ ˙̂q(0)‖ ≤ α. Hence, ‖ ˙̃q(0)‖ ≤
2α and consequently threshold level can be set to

ℓi = (
λ̄

λ
)

1

2

2α

Li − γ
(e−γt − e−Lit) (32)

For the threshold level chosen as above we have ℓi(0) = 0,
ℓi(∞) = 0 and

max
t≥0

ℓi(t) = (
λ̄

λ
)

1

2

2α

γ
(
Li

γ
)

−Li
Li−γ (33)

Therefore, by choosing Li large, the threshold level can be
effectively minimized and consequently sensitivity of fault
detection is increased.

4.2 Effect of torque sensor noise

Assume that torque sensor measurement is contaminated
by additive noise n(t) such that in using torque measure-
ment, τJ in the observer (10) the term −n(t) adds up to
the first equation in (10). We assume that n(t) is bounded
as

‖n‖ ≤ cn (34)

In this case, the RHS of error dynamics (15) and (16)
changes into f + n and consequently under condition (21)
and in absence of faults, (20) transforms into

V̇ ≤ −β‖s‖2 + sT TT n (35)

In view of (34), V̇ is bounded by

V̇ ≤ −2β

λ̄
V + cn(

2

λ
)

1

2 ‖T‖V 1

2 (36)

which is in form of a Bernoulli differential inequality. By
the change of variable W = V

1

2 , (36) is transformed into
a first order differential inequality

Ẇ ≤ −β

λ̄
W + cn(

1

2λ
)

1

2 ‖T‖ (37)

Therefore,

W (t) ≤ W (0)e−γt +
cnλ̄

β
√

2λ
‖T‖(1 − e−γt) (38)

Fig. 1. 3DOF spherical wrist configuration

where γ = β

λ̄
. Now, in light of (17) it can be inferred that

‖s‖ ≤ (
λ̄

λ
)

1

2 ‖s(0)‖e−γt + cn(
λ̄

βλ
)‖T‖(1 − e−γt) (39)

By a similar procedure used in deriving (31) and assuming

that q̃(0) = 0 and ‖ ˙̃q(0)‖ ≤ α, we obtain

‖q̃i‖ ≤ (
λ̄

λ
)

1

2

2α

Li − γ
(e−γt − e−Lit) + N(t) (40)

where

N(t) =
A

Li

(1 − e−Lit) − A

Li − γ
(e−γt − e−Lit)

and A = cnλ̄
βλ

‖T‖. It can be verified that N(t) is a non-

negative and non-decreasing function of time. As a result,
comparing (40) with (32) indicates an increase of threshold
level due to torque sensor noise.

5. EXAMPLE

We consider a 3-DOF spherical wrist configuration con-
sisting three electric motors shown in Fig. (1). For this
system

T =

[

1 0 0
0 1 0

cos(q2) 0 1

]

and Ji = 10−3kgm2. It is assumed that manipulator
is under motion control such that in absence of faults,
‖q̇‖ ≤ 0.1rad/s. Observer (10) has been implemented with
L = 10I and k = 10 assuming that torque measurement
is contaminated by some additive noise n(t). Figures 2-4
demonstrate the response of residuals (q̃i) and signature
signals (ri) to step-form faults entered at t = 2s and with
amplitude of 10−2Nm. Threshold level is chosen as the
RHS of (40). As seen from the figures this choice has
made the signature signals insensitive to non-zero initial
conditions and torque sensor noise.

6. CONCLUSION

Application of joint torque sensing permits detection and
localization of additive faults by a single 2n’th order
smooth observer and without a need for bank of observers.
Computationally, the resulting observer tends to be less
complex than standard observers based on full manipu-
lator dynamics. No assumption was made on smoothness
of faults. It is expected that the use of globally conver-
gent observers will further improve the reliability of fault
detection.
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