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Abstract: This paper considers the finite-time consensus problem for a multi-agent system
with second-order individual dynamics. Local (non-smooth) time-invariant consensus protocols
in different forms are constructed for each double-integrator agent dynamics in a quite unified
way with help of Lyapunov function, graph theory, and homogeneity with dilation. Finite-time
consensus can be obtained theoretically via the proposed non-smooth but continuous forms of
distributed coordination controllers. Also, numerical analysis is given for illustration.

1. INTRODUCTION

Recent years have witnessed a large and growing literature
concerned with the coordination of a group of mobile
autonomous agents, partly due to a broad application
of multi-agent systems including flocking and formation
(e.g., Egerstedt et al. (2001); Reynolds (1987); Lin et al.
(2005); Tanner et al. (2003); Olfati-Saber (2006); Hong
et al. (2006a)). Distributed control analysis and design
have been widely used and developed very fast in multi-
agent systems. In some applications, a team of agents are
required to agree upon certain quantities of interest, which
is often called consensus or agreement problem (Cortés
(2006); Hong et al. (2007); Ren et al. (2005)). To achieve
the aim, suitable neighbor-based rules are usually adopted
to interconnect the considered agents. Many results have
been obtained with local rules applied to each agent in
a considered multi-agent system. These neighbor rules for
each agent are based on the average of its own information
and that of its neighbors.

On the other hand, various finite-time stabilizing control
laws have been proposed using continuous state feedback
and output feedback controllers Bhat et al. (1998, 2000);
Hong et al. (2001). Moreover, the finite-time control de-
sign has been extended to nth order systems with both
parametric and dynamic uncertainties Hong et al. (2006),
though the finite-time design is generally more difficult
than that of asymptotically stabilizing control for the lack
of effective analysis tools. Non-smooth finite-time control
synthesis can improve the system behaviors in some as-
pects like high-speed, control accuracy, and disturbance-
rejection. Thus, it is not surprising that finite-time control
ideas have been applied to multi-agent systems with first-
order agent dynamics using gradient flow and Lyapunov
function Cortés (2006); Xiao et al. (2007).

In this paper, we will propose finite-time consensus pro-
tocols for multi-agent systems with each individual with
second-order dynamics. In fact, the consensus analysis of
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second-order agent dynamics is more difficult than that
of first-order dynamics, but it becomes a hot topic in
multi-agent control (such as Olfati-Saber (2006); Hong
et al. (2007); Tanner et al. (2003)) because many practi-
cal individual systems, especially mechanical systems, are
of second-order dynamics. Using Lyapunov-based method
and homogeneous properties, we design finite-time dis-
tributed control for multi-agent systems. To be specific,
we assume each continuous-time agent with dynamics in
the form of ẍi(t) = ui(t), t ≥ 0, or equivalently

{
ẋi = vi

v̇i = ui, i ∈ In = {1, 2, ..., n}
(1)

with initial conditions xi(0) = xi0, vi(0) = vi0, where
xi(t) ∈ Rm denotes the position, vi(t) ∈ Rm the velocity,
and ui(t) ∈ Rm the control input. Our objective of
this paper is to seek a continuous distributed consensus
protocol ui involving information transmission of xi and
vi between agents so that finite-time consensus is achieved.

The paper is organized as follows. First, problem for-
mulation and preliminary results are given in Section 2.
Then we focus on the finite-time design for a multi-agent
network of second-order agent dynamics in Section 3 and
Section 4, where finite-time consensus protocols are con-
structed to make the multi-agent system achieve consensus
in finite time. Following that, an illustrative example is
given. Finally, the paper is ended by concluding remarks.

2. PROBLEM FORMULATION

This paper is to deal with the finite-time consensus of
multi-agent system (1) via time-invariant neighbor-based
feedback laws (called consensus protocols) using the infor-
mation from its neighbors.

To deal with multi-agent consensus, graph theory usually
provides a big help. The information consensus problem
appears frequently in coordination of multi-agent systems
and involves finding a dynamic algorithm that enables
a group of agents in a network to agree upon certain
quantities of interest with undirected or directed informa-
tion flow. In this paper, undirected graphs are employed
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to represent a multi-agent network in the study of its
consensus problem based on its graph topologies (or infor-
mation flow). Specifically, an undirected graph G consists
of a (finite nonempty) set of nodes (representing agents),
denoted by V = {π1, ..., πn} and the set of unordered pairs
called edges, denoted by E ⊆ V × V. If (πi, πj) ∈ E , then
πi is said to be a neighbor of πj and the set of all neighbor
vertices of vertex πj is denoted by Nj = {i|(πi, πj) ∈ E}.
The weighted adjacency matrix A = (aij)n×n ∈ Rn×n of a
weighted undirected graph is defined on the following form:
aij = aji,∀i 6= j, since (πj , πi) ∈ E implies (πi, πj) ∈ E .
The weight between πi and πj , aij , is a positive constant,
(which is set equal to 1 for simplicity in this paper) for
all (πj , πi) ∈ E or j ∈ Ni, and aij = 0 if there is no
edge between πi and πj (aii = 0 since self loops are not
allowed in a simple graph). The undirected graph is called
connected if there is a path between any two vertices of
the graph.

Finite-time stability of some equilibria of nonlinear sys-
tems has been studied in the literature (for example, Bhat
et al. (2000); Haimo (1986); Hong et al. (2001, 2006)). Here
we study a related problem for multi-agent systems, the
global finite-time consensus.

Consider a multi-agent system in the form of (1) with de-
noting Xi = (xT

i , vT
i )T ∈ R2m. Without loss of generality

in the consensus analysis, we take m = 1 in the sequel.

Suppose that, with a given consensus protocol ui of
the closed-loop system (1), for any initial condition
Xi(0) ∈ U , where U is a neighborhood of the set {Xi =
Xj , ∀i, j}, there is a settling time T ∈ [0,∞), such that
its solution Xi(t; 0, Xi(0)) of system (1) is defined and
Xi(t; 0, Xi(0)) ∈ U/{0} for t ∈ [0, T ), and satisfies

lim
t→T

|Xi(t; 0, Xi(0)) − Xj(t; 0, Xj(0))| = 0,

and

Xi(t; 0, Xi(0)) = Xj(t; 0, Xj(0)), ∀t ≥ T.

Then we say local finite-time consensus is achieved. Here
T is called the settling time. When U = R2n, then the
(global) finite-time consensus is achieved.

Obviously, finite-time consensus is closely related to finite-
time stability. The main difference between the two prob-
lems is that finite-time consensus is to make the considered
multi-agent system converge to an invariant manifold (de-
scribed by {Xi = Xj , ∀i, j} or equivalently, {xi = xj , vi =
vj , ∀i, j}. As we know, finite-time stability naturally re-
sults in non-smoothness, and so is finite-time consensus.
In the study of non-smooth dynamics, some conventional
results for stability analysis cannot be applied directly.
For example, the celebrated LaSalle Invariance Principle
was given first for smooth systems. In non-smooth cases,
different extension versions of this principle have been
given. Here we use a version of the non-smooth LaSalle
Invariance Principle given in Rouche et al. (1977).

Lemma 1. Let x(t) be a solution of ẋ = f(x), x(0) =
x0 ∈ Rk, where f : U → Rk is continuous with U
an open subset of Rk, and let V : U → R be a locally
Lipschitz function such that D+V (x(t)) ≤ 0, where D+

denotes the upper Dini derivative (referring to Rouche
et al. (1977)). Then, with denoting the positive limit set
as Λ+(x0), Λ+(x0) ∩ U is contained in the union of all
solutions that remain in S = {x ∈ U : D+V (x) = 0}.

Note that Lemma 1 does not need the uniqueness of the
solution to the considered (non-smooth) system.

Next, let us introduce the homogeneity with dilation
(see Rosier (1992) for details) for finite-time convergence
analysis.

A function V (x) of x ∈ Rk is homogeneous of degree σ ≥ 0
with dilation coefficients (r1, ..., rk), if

V (ǫr1x1, ..., ǫ
rkxk) = ǫσV (x), ǫ > 0.

If r1 = ... = rk = 1, then the dilation is called trivial.

Consider k-dimensional system

ẋ = f(x), x = (x1, ..., xk)T ∈ Rk (2)

A (continuous) vector field f(x) = (f1(x), ..., fk(x))T is
homogeneous of degree σ ∈ R with dilation (r1, ..., rk), if

fi(ǫ
r1x1, ..., ǫ

rkxk) = ǫσ+rifi(x), i = 1, ..., k, ǫ > 0.

Definition 1. System (2) is called homogeneous if its vec-
tor field is homogeneous. Moreover,

ẋ = f(x) + f̂(x), f̂(0) = 0, x ∈ Rk (3)

is called locally homogeneous if f is homogeneous of degree

σ ∈ R with dilation (r1, ..., rk) and f̂ is a continuous vector
field satisfying

lim
ǫ→0

f̂i(ǫ
r1x1, ..., ǫ

rkxk)

ǫσ+ri
= 0, ∀x 6= 0, i = 1, ..., k. (4)

Sometimes, system (2) is called the leading homogeneous
system of system (3).

For convenience, in the sequel, set

sig(y)α = |y|αsgn(y), α > 0

where sgn(·) denotes the sign function and |y| denotes
the absolute value of real number y as Haimo (1986) did.
Clearly,

d

d y
|y|α+1 = (α + 1)sig(y)α

and
d

d y
sig(y)α+1 = (α + 1)|y|α α > 0

Several lemmas are given for the finite-time analysis in the
following.

The following lemma has been known (see Bhat et al.
(1998, 2000); Hong (2002)).

Lemma 2. Suppose system (2) is homogeneous of degree
σ with dilation (r1, ..., rk), f is continuous and x = 0 is its
asymptotically stable equilibrium. If homogeneity degree
σ < 0, the equilibrium of system (2) is finite-time stable.
Moreover, if (4) holds, then the equilibrium of system (3)
is locally finite-time stable.

In multi-agent systems design, for agent i, ui only depends
on its own variables (i.e., xi and vi) and the relative
difference between its own variables and other of its
neighbors (i.e., xi − xj and vi − vj for some j ∈ Ni)

Set zi = xi − xi+1, wi = vi − vi+1, i = 1, ..., n − 1. Then
the system (1) can be expressed in 2(n−1) equations with
variables zi, wi (i = 1, ..., n − 1), that is,

{
żi = wi

ẇi = ui − ui+1, i = 1, ..., n − 1.
(5)
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In what follows, the considered consensus problem of
system (1) can be viewed somehow as the stability problem
of system (5).

The next lemma is quite obvious, and the proof is omitted
here.

Lemma 3. Suppose that, for some given protocol ui(x, v), i =
1, ..., n, system (1) with (x1, ..., xn, v1, ..., vn) is homo-
geneous of degree σ with dilation (r1, ..., r1

︸ ︷︷ ︸

n

, r2, ..., r2
︸ ︷︷ ︸

n

).

Then, with the same protocol, system (5) with variables
(z1, ..., zn−1, w1, ..., wn−1) is also homogeneous of homo-
geneity degree σ with dilation (r1, ..., r1

︸ ︷︷ ︸

n−1

, r2, ..., r2
︸ ︷︷ ︸

n−1

).

3. FINITE-TIME CONSENSUS

In this section, we consider the finite-time consensus
problem for multi-agent system (1).

Here is our main result.

Theorem 1. Suppose that the undirected graph G with A
of system (1) is connected. Then the globally finite-time
stable is achieved under the distributed consensus protocol
given in the following form:

ui =
n∑

j=1

aij [ψ1(sig(xj − xi)
α1) + ψ2(sig(vj − vi)

α2)], (6)

with

0 < α1 < 1, α2 =
2α1

1 + α1

(7)

where ψ1 and ψ2 are continuous odd functions with
yψi(y) > 0 (∀y 6= 0 ∈ R) and ψi(y) = ciy + o(y) (around
y = 0) for some positive numbers ci (i = 1, 2).

Proof. Take a Lyapunov function

V =
n∑

i=1

n∑

j=1

∫ xi−xj

0

aijψ1(sig(s)α1)ds +
1

2

n∑

i=1

v2
i , (8)

which is positive definite with respect to xi − xj (∀i 6= j)
and vi (∀i ∈ In).

Note that sig(xi − xj)
α is an odd function. Consider the

derivative of V along the trajectories of the closed-loop
system, and then we have

V̇ =

n∑

i=1

viv̇i +

n∑

i=1

n∑

j=1

aijψ1(sig(xi − xj)
α1)vi

=
n∑

i=1

vi

n∑

j=1

aij [ψ1(sig(xj − xi)
α1) + ψ2(sig(vj − vi)

α2)]

+
n∑

i=1

n∑

j=1

aijψ1(sig(xi − xj)
α1)vi

=
n∑

i=1

n∑

j=1

viaijψ2(sig(vj − vi)
α2)

=
1

2

n∑

i=1

n∑

j=1

[(aij + aij)viψ2(sig(vj − vi)
α2)]

=
1

2

n∑

i=1

n∑

j=1

(vi − vj)aijψ2(sig(vj − vi)
α2) ≤ 0.

since (vi − vj)sig(vj − vi)
α2 = |vi − vj |

1+α2 .

Then we employ LaSalle invariance principle (Lemma
1). Since the constructed Lyapunov function is smooth,
Dini derivative becomes the regular derivative. Denote the
invariant set S = {(x1, v1, ...., xn, vn)| V̇ = 0}. Note that

when the undirected graph is connected, V̇ ≡ 0 implies
that vi ≡ vj = v̄, ∀j 6= i, which in turn implies that
ui = uj , ∀j 6= i. Because vi ≡ vj , ∀j 6= i, it follows from
(6) that

ui =
n∑

j=1

aijψ1(sig(xj − xi)
α1), i ∈ In.

Moreover,
∑n

i=1
ui = 0 because aij = aji, which implies

ui ≡ 0, i ∈ In, which in turn implies that
n∑

j=1

aijψ1(sig(xi − xj)
α1) ≡ 0.

Then we obtain
n∑

i=1

xi

n∑

j=1

aijψ1(sig(xi − xj)
α1) = 0.

Then we have

1

2

n∑

i=1

n∑

j=1

aij(xi − xj)ψ1(sig(xi − xj)
α1) = 0.

Since undirected graph of A is connected, we have xj =
xi, ∀j 6= i. (The proof is similar to Theorem 1 of Olfati-
Saber et al. (2004)). Thus, we obtain vi = vj ≡ v̄, xi =
xj = v̄t + x̄, ∀j 6= i, where v̄ and x̄ are some constants.
Thus, according to Lemma 1, xi − xj → 0, vi − vj →
0, ∀i, j ∈ In as t → ∞.

According to the assumptions given to odd functions ψ1

and ψ2 (that is, ψi(y) = ciy + o(y) (i = 1, 2)), we can
rewrite the protocol (6) as ui = u0

i + ûi with

u0
i =

n∑

j=1

aij [c1sig(xj − xi)
α1 + c2sig(vj − vi)

α2 ]

ûi =
n∑

j=1

[o(sig(xj − xi)
α1) + o(sig(vj − vi)

α2)].

With u0
i (by setting ûi ≡ 0), it is easy to find that

system (1) with variables (x1, ..., xn, v1, ..., vn) is homo-
geneous of degree σ = α1 − 1 < 0 with dilation
(2, ..., 2
︸ ︷︷ ︸

n

, 1 + α1, ..., 1 + α1
︸ ︷︷ ︸

n

). Therefore, system (1) is lo-

cally homogeneous of degree σ with the same dilation
under the protocol u0

i + ûi (that is, protocol (6). By
Lemma 3, it is not hard to see that system (5) with
variables (z1, ..., zn−1, w1, ..., wn−1) is also locally homo-
geneous of the same homogeneity degree with dilation
(2, ..., 2
︸ ︷︷ ︸

n−1

, 1 + α1, ..., 1 + α1
︸ ︷︷ ︸

n−1

).

Consider a modified Lyapunov function

V0 =
n∑

i=1

n∑

j=1

∫ xi−xj

0

aijψ1(sig(s)α1)ds +
1

2

n∑

i=1

(vi − v̄)2.

Considering the derivative of V0 and following almost the
same arguments as above, we can show the Lyapunov
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stability of the invariant manifold {xi = xj , vi = vj , ∀i, j}
for system (1), which implies the Lyapunov stability of
the origin of system (5). Thus, the origin of system (5) is
globally asymptotically stable.

To show finite-time convergence, let us focus on system
(5). From the above discussion, system (5) is (globally)
asymptotically stable and also locally homogeneous with
degree σ < 0. From Lemma 2, system (5) is locally finite-
time stable.

Note that, if the equilibrium of a nonlinear system is
globally asymptotically stable and locally finite-time con-
vergent, then it is globally finite-time stable. The reason
is that globally asymptotical stability implies finite-time
convergence to any given bounded neighborhood of the
equilibrium. Based on this observation, system (5) is glob-
ally finite-time stable. In other words, for system (1), we
have xi − xj → 0, vi − vj → 0, ∀i, j = 1, ..., n in finite
time. Thus, the conclusion follows.

Remark 1. If α1 = 1, then the finite-time consensus
becomes the asymptotical consensus (from the proof of
Theorem 1) and (6) becomes a conventional consensus
protocol. Moreover, with protocol (6), the steady-state
velocity of all the agents will be v̄ =

∑n

i=1
vi(0)/n since

∑n

i=1
v̇i(t) ≡ 0, and the collective motion in the steady

state will be xi(t) =
∑n

i=1
vi(0)t/n +

∑n

i=1
xi(0)/n.

Note that ψi (i = 1, 2) are very general functions. In
fact, we can take some special forms of ψi (i = 1, 2). For
example, we will take a simple form of consensus protocol
as follows:

ui =
n∑

j=1

aij [sig(xj − xi)
α1 + sig(vj − vi)

α2 ]. (9)

Moreover, (6) is not necessary to be bounded. In other
words, if we choose ψi(·) as bounded functions, then we
have consensus protocols in saturation forms, for example,

ui =
n∑

j=1

aij [tanh(sig(xj − xi)
α1) + tanh(sig(vj − vi)

α2)],

or

ui =
n∑

j=1

aij [sat(sig(xj−xi)
α1)+sat(sig(vj−vi)

α2)], (10)

where sat(·) denotes the well-known (non-smooth) satura-
tion function. Thus, finite-time consensus can be achieved
by bounded protocols.

Remark 2. In some cases (for example, flocking or ren-
dezvous), we may also need to make vi = 0 (1, ..., n) in
finite time. Still suppose that the undirected graph G with
A of system (1) is connected. Then the globally finite-time
stable is achieved under the distributed consensus protocol
as follows:

ui =
n∑

j=1

aijψ1(sig(xj − xi)
α1) − ψ2(sig(vi)

α2) (11)

with (7), that is, 0 < α1 < 1, α2 = 2α1

1+α1

, where ψ1

and ψ2 are continuous odd functions with yψi(y) > 0
(∀y 6= 0 ∈ R) and ψi(y) = ciy + o(y) for some positive
number ci (i = 1, 2). The proof is similar to Theorem 1.
Still consider the Lyapunov function (8). Differentiating V
along the trajectories of the closed-loop system is given by

V̇ =
n∑

i=1

n∑

j=1

aijψ1(sig(xj − xi)
α1)vi +

n∑

i=1

viv̇i

=
n∑

i=1

n∑

j=1

aijψ1(sig(xj − xi)
α1)vi

+
n∑

i=1

vi





n∑

j=1

aijψ1(sig(xj − xi)
α1) − ψ2(sig(vi)

α2)





=−
n∑

i=1

viaijψ2(sig(vi)
α2) ≤ 0,

which straightforwardly implies the Lyapunov stability of
the origin of system

żi = vi − vi+1 v̇i = ui, i ∈ In = {1, 2, ..., n} (12)

Note that V̇ ≡ 0 implies that v1 = ... = vn = 0, and then
ui =

∑n

j=1
aijψ1(sig(xj −xi)

α1) ≡ 0. Then, system (12) is

globally finite-time stable. In other words, for system (1),
xi − xj → 0, vi → 0, ∀i, j = 1, ..., n in a finite time.

The main difference between Theorem 1 and Remark 2
is whether or not vi = 0, ∀i. With protocol (11), the
velocities of all the agents will be zero in finite time and
the steady-state position will be xi = x̄ =

∑n

i=1
xi(0)/n.

It is not hard to see that once we can get a protocol to
make finite-time multi-agent consensus like (6), we will
easy get a protocol like (11) to make finite-time consensus
along with with vi (i = 1, ..., n) vanishing in finite time.
Therefore, in what follows, we only consider the finite-time
consensus protocols without requiring vanishing velocities.

In fact, there are many other finite-time consensus proto-
cols, which can be viewed as a generalized form of (6). For
example, we take

ui =
n∑

j=1

aij [ψ1(sig(xj − xi)
α1)

+ψ2(sig(vj − vi)
α2 |xj − xi|

α3)] (13)

with

0 < αi < 1, (i = 1, 2, 3) 2(α1 − α3) = (1 + α1)α2

where ψ1 and ψ2 are continuous odd functions with
yψi(y) > 0 (∀y 6= 0 ∈ R) and ψi(y) = ciy + o(y) for some
positive number ci (i = 1, 2). The following the same proof
idea of Theorem 1, we have

Corollary 1. Suppose that the undirected graph G with A
of system (1) is connected. Then the globally finite-time
consensus can be achieved under the distributed consensus
protocol (13).

The proof is almost the same as given in Theorem 1.
Consider Lyapunov function (8) and find that

V̇ =
1

2

n∑

i=1

(vi − vj)aijψ2(sig(vj − vi)
α2 |xj − xi|

α3) ≤ 0.

Still employ Lemma 1 and obtain that system (5) is
globally asymptotically stable. Then it is easy to see the
global consensus of system (1) can be achieved in finite
time. The detailed proof is omitted here.
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4. STEADY-STATE VELOCITY

Clearly, with the protocols given in the last section (in-
cluding protocols (6) and (13)), the steady-state velocity
of all the agents will still be v̄ =

∑n

i=1
vi(0)/n since

∑n

i=1
v̇i(t) ≡ 0, and the collective motion in the steady

state will be xi(t) =
∑n

i=1
vi(0)t/n +

∑n

i=1
xi(0)/n.

However, in some cases, we do not want v̄ =
∑n

i=1
vi(0)/n.

Thus, in this section, we present a new protocol with
different steady-state velocities.

To make the steady-state velocity maybe different from
v̄ =

∑n

i=1
vi(0)/n, a protocol can be taken in the following

form:

ui =

n∑

j=1

aij [ψ1(sig(xj − xi)
α1) + vr

i ψ2(sig(vj − vi)
α2)],

(14)
where 0 < r, r = p

q
, (p, q) = 1, and p and q are odd

integers such that

0 < α1 < 1, α2 =
2α1

1 + α1

− r > 0. (15)

Here, ψ1 and ψ2 are continuous odd functions with
yψi(y) > 0 (∀y 6= 0 ∈ R) and ψi(y) = ciy + o(y) (around
y = 0) for some positive numbers ci (i = 1, 2).

Theorem 2. Suppose that the undirected graph G with A
of system (1) is connected. Then the globally finite-time
stable is achieved under the distributed consensus protocol
(14).

Proof. Also consider the Lyapunov function in the form of
(8). Note that sig(xi − xj)

α is an odd function. Consider
the derivative of V along the trajectories of the closed-loop
system, and then we have

V̇ =
n∑

i=1

viv̇i +
n∑

i=1

n∑

j=1

aijψ1(sig(xi − xj)
α1)vi

=
n∑

i=1

vi

n∑

j=1

aij [ψ1(sig(xj − xi)
α1) + vr

i ψ2(sig(vj − vi)
α2)]

+
n∑

i=1

n∑

j=1

aijψ1(sig(xi − xj)
α1)vi

=
n∑

i=1

n∑

j=1

vr
i aijψ2(sig(vj − vi)

α2)

=
1

2

n∑

i=1

n∑

j=1

(vr
i − vr

j )aijψ2(sig(vj − vi)
α2) ≤ 0.

since (vi − vj)(v
r
i − vr

j ) ≥ 0. Denote the invariant set

S = {(x1, v1, ...., xn, vn)| V̇ = 0}. Note that we continue

the same step in Theorem 1, then V̇ ≡ 0 implies that
vi ≡ vj = v̄, xi ≡ xj = v̄t + x̄,∀j 6= i.

Similar to the proof of Theorem 1, system (5) is locally
finite-time stable, and moreover, it is globally finite-time
stable, which implies the conclusion.

Remark 3. Note that, with the protocols given in the last
sections,

∑n

i=1
vi is unchanged along the time since its

derivative is zero. However, this is not true in this section.
Therefore, the steady-state velocity with the proposed

protocol (14) may not be v̄ =
∑n

i=1
vi(0)/n, and its value

will be different with different protocols.

5. EXAMPLE

In this section, we give two simple examples for illustra-
tion.

Example 1. A numerical simulation is given for illustra-
tion. Here we consider a 5-agent system described by an
undirected graph G shown in Fig 1.
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Fig. 1. G for a system with 5 agents.
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Fig. 2. Positions and velocities of the 5 agents with (9).

Take two special forms of protocol (6): (9) and (10),
where nonzero aij = 1. In the simulations α1 = 3/5 (and
therefore, α2 = 3/4). The initial conditions are randomly
selected as follows:

x1(0) = 0, x2(0) = 1, x3(0) = 3, x4(0) = 2, x5(0) = 5,

v1(0) = −1, v2(0) = 0, v3(0) = −2, v4(0) = 1, v5(0) = 4.
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Fig. 3. Positions and velocities of the 5 agents with (10).

The numerical results given in Figs. 2 (protocol (9))
and 3 (protocol (10)) show the effectiveness of the given
consensus protocol. Also, it is easy to see that the steady-
state velocity of the multi-agent system is 0.4, which is
consistent with the discussion given in Remark 1. Also,
we van find that the convergence rates of the agents with
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protocol (9) are larger than those with protocol (10) since
the latter one is in the saturation form.

Example 2. Still consider the system shown in Fig. 1. for
protocol

ui =

n∑

j=1

aij [(sig(xj − xi)
α1) + vr

i sig(vj − vi)
α2 ] (16)

with nonzero aij = 1 and α = 1/5 and r = 1/5 (and
therefore α2 = 2/15 according to (15)).
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Fig. 4. Positions and velocities of the 5 agents with (16).

The initial conditions are randomly selected as follows:

x1(0) = 0, x2(0) = 1, x3(0) = 3, x4(0) = 2, x5(0) = −1,

v1(0) = 1, v2(0) = 7, v3(0) = 3, v4(0) = 1, v5(0) = 4

The numerical results given in Fig. 4 show the effectiveness
of the given consensus protocol. It is not hard to see that
the steady-state velocity is not

∑5

i=1
vi(0)/5 = 3.2 , unlike

the results shown in Example 1.

6. CONCLUSIONS

In this paper, finite-time consensus algorithms were de-
veloped for multi-agent networks with second-order agent
dynamics. With proposed consensus protocols, finite-time
consensus as a generalization of conventional consensus
was achieved in order to obtain the consensus in finite
time. Lyapunov function, homogeneous properties, and
graph theory were used in the theoretical analysis.

However, much remains to be done and the extension
will be carried out for the cases with variable network
topologies and communication limitations as well as vari-
ous uncertainties. Moreover, many practical concerns such
as avoiding collision and optimal location were not taken
into consideration in this multi-agent consensus study, but
they should certainly be taken care of when we deal with
practical problems.
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