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Abstract: Compared to large process faults, the latent and small ones are difficult to be detected. However, 

the accumulation of these faults may even more harmful to the process. A novel fault detection and 

diagnosis method is proposed which is based on similarity factor and a variable moving window. The new 

method is based on the idea that a change of process can be reflected in the distribution of the data, which 

can be detected more easily by the proposed similarity factor. Meanwhile, it has no Gaussian distribution 

limitation of the process data, since the mixed similarity factor is introduced. The independent component 

analysis (ICA) factor and the principal component analysis (PCA) factor are used for similarity 

comparison for Gaussian and non-Gaussian information, respectively. Besides, in order to determine the 

dynamic step accurately and cut the computation cost, the conventional dynamic method is modified by 

using autocorrelation analysis.  A case study of Tennessee Eastman (TE) benchmark process shows the 

efficiency of the new proposed method.    

1. INTRODUCTION 

In order to monitor multivariable processes, multivariate 

statistical process control (MSPC) has been developed. In 

the last decade, various extensions of MSPC have been 

proposed and widely used in industrial processes. [Kano, et 

al., 2002b] However, conventional MSPC methods do not 

always function very well, because they can not detect the 

change of correlation among process variables as long as 

both of the statistics are inside their corresponding control 

limits. These process changes are latent and small, in some 

cases they can be easily compensated by the control systems. 

Therefore, they are difficult to be detected by conventional 

methods. However, catastrophic consequences can result 

from the accumulation of these latent and small faults. 

Besides, for dynamic processes, the dynamic step for the 

conventional dynamic principal component analysis (DPCA) 

[Ku, 1995] is difficult to be determined, and the large data 

matrix involves great computation burden. 

In recently years, a new monitoring index known as DISSIM 

was proposed by Kano, et al. [2002a], which was based on 

the dissimilarity analysis of process data. compared to the 

conventional MSPC method, this method is based on the 

idea that a change of operating condition can be reflected in 

the distribution of the process data, which can be detected by 

the proposed DISSIM method. Several successful theory 

researches and applications have demonstrated that the 

method can quickly and effectively detect the change of 

correlations among process variables. [Kano, et al., 2002b; 

Zhao, et al., 2007] Another type of novel methods is the 

similarity factor based method which is used to identify the 

similarity between different operation modes. [Krzanowski, 

1979; Singhai, and Seborg, 2006] However, the two types of 

methods are based on the assumption that the data formed 

Gaussian distribution. Ge, and Song [2007] proposed a new 

mixed similarity factor for fault mode identification. 

However, the fault detection method based on the proposed 

similarity factor has not been developed. Because the 

similarity factor is based on the distribution of the data, 

changes (latent or small) can be reflected in their 

corresponding data distributions. If the data distribution 

changes, the related process fault can be detected more 

easily.  

In order to detect the latent and small faults in dynamic 

processes, the conventional dynamic method is modified.  

For online monitoring, the data matrix representing the 

current operating condition is updated by a variable moving 

window. After the latent or small fault has been detected, a 

new fault diagnosis method is proposed to identify the root 

cause. The rest of the paper is organized as follows. First, 

the conventional dynamic method is modified. Then the 

mixed similarity factor is introduced and the new fault 

detection and diagnosis method is proposed.  In section 4, a 

case study of TE process is demonstrated. Conclusions are 

presented in the last section. 

2. A MODIFIED APPROACH FOR DYNAMIC 

PROCESSES 

In most dynamic cases, static fault detection methods do not 

function well for autocorrelated data. One useful approach is 

using past measurements as monitored variables for 

capturing the correlation among process variables, since the 

dynamic can be taken into accout. [Ku, 1995] The data 

matrix of process variables for dynamic monitoring is 

[ ( ) ( 1) ( 1) ( )]X X t l X t l X t X t= − − + −⋯     (1) 

Where ( )X t is the current process data matrix, l  is 

dynamic step, which is difficult to determine. It will involve 

large computation when the number of process variables is 
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huge. Besides, it will also trigger excessive false alarms 

when unnecessary dynamic steps are taken for some process 

variables. In the present paper, the traditional dynamic 

monitoring method is modified. Thus autocorrelation 

analysis is introduced to determine the dynamic steps for 

each of the process variable. The autocorrelation coefficient 

is calculated as follow: 

cov( ( ), ( ))
( )

( ( )) ( ( ))

X t X t

D X t D X t

τ
ρ τ

τ

−
=

⋅ −
                 (2) 

Where cov is covariance of the two vectors, and D  is 

variance of the corresponding vector. If ( )ρ τ  has a big 

value (but not bigger than 1), the correlation between the 

two vectors is strong. Otherwise, the correlation between the 

two vectors is weak if the value of ( )ρ τ  is small. A cut-off 

value could be set to determine whether the correlation 

between the considered vectors is significant. Therefore, 

variables with strong autocorrelation will take big dynamic 

steps, while small or no dynamic steps will be taken for 

variables with little and no autocorrelation. The data matrix 

of process variables for modified dynamic monitoring 

becomes: 

1 1 1 2 2 2
[ ( ) ( ) ( ) ( ) ( ) ( )]

m m m
X t l X t X t l X t X t l X t− − −⋯ ⋯ ⋯ ⋯ ⋯

                                                  (3) 

 Where the sub-matrix [ ( ) ( )]
i i i

X t l X t− ⋯  corresponds to 

the i -th process variable, and 
i

l  is the dynamic step of the 

i -th variable. 

3. FAULT DETECTION AND DIAGNOSIS METHOD 

BASED ON SIMILARITY FACTOR AND MOVING 

WINDOW 

3.1 Similarity factor 

In our previous work, a two-step ICA-PCA information 

extraction strategy was proposed, which is not under the 

assumption of Gaussian distribution of the process data. 

Instead, the non-Gaussian data information can also be 

extracted. Based upon this information extraction strategy, 

the mixed similarity factor was proposed. Krzanowski [1979] 

developed a method for measuring the similarity of two 

datasets using a PCA similarity factor 
PCA

S : 

2

1 1

1
cos

k k

PCA ij

i j

S
k

θ
= =

= ∑∑        (4) 

Where 
ij

θ  is the angle between the i-th principal component 

of the first dataset and the j-th principal component of the 

second dataset, k  is the number of retained principal 

components. The ICA similarity factor can be calculated 

from the main angles between the two ICA subspaces: 

2

1

1
cos

r

ICA i

i

S
r

θ
=

= ∑                   (5) 

Where 
i

θ  is the i-th main angle between the two ICA 

subspaces, see Ge, and Song [2007]. Then the mixed 

similarity factor is defined as: 

(1 )
mix PCA ICA

S S Sλ λ= ⋅ + − ⋅       (6) 

Where 0 1λ≤ ≤ . The choices of these factors depend on 

the feature of the process, and prior knowledge is also very 

useful. In the mixed similarity factor, both of the two kind of 

information (Gaussian and non-Gaussian) are considered. It 

has no distribution limitation and thus will be more reliable 

than the conventional one.  However, there may exist such a 

case that two datasets have similar distribution directions but 

have different locations. In this case, the distance similarity 

factor should be incorporated, which was indicated in 

reference [Ge, and Song, 2007]. 

Since the similarity factors (
PCA

S ,
ICA

S  and 
mix

S ) are all 

based on the distribution of the process data, the process 

change can be reflected in their model structure (PCA and 

ICA subspaces). Therefore, this method can detect changes 

in the directions of the two subspaces that span the model 

plane. Latent and small faults can also change the 

distribution of the process data, thus they can be detected by 

the proposed method. The case study of the present paper 

demonstrated that the proposed method shows good 

performance and sensitivity for latent and small faults 

monitoring. 

3.2 Moving window approach 

Generally, a constant length moving window is employed to 

track the process.  However, it is always very important to 

select proper size for such a moving window, determination 

of the moving window size is still an open problem. In the 

present paper, a variable moving window is used [Zhao, et 

al., 2007]. The moving window length grows gradually with 

the process going on, thus more valuable data will be 

consisted in the moving window. However, during the early 

period of process, because there is not enough sample 

information, the moving window may not sufficiently reflect 

the current process operating condition. Besides, the changes 

of the independent subspace and principal subspace will be 

too sensitive, which may cause inevitable false alarms. To 

solve these problems, an initial window is introduced, which 

contains normal operating sampling data. Therefore, the 

moving window grows gradually based on the initial 

window. Then with the development of process, new sample 

information is added step by step, thus the moving window 

becomes longer and longer. If the window size becomes 

bigger than the size of the reference window, the window is 

cut off to represent the most recent information as the same 

size of the reference window. With this method, the choice 

of moving window size will not impose great influence on 

the monitoring effect any more. The choice of the initial 
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window size also shows no great influence on the 

monitoring effect, therefore can be chosen by experience. 

3.3 Fault detection method 

For continuous process modelling, using similarity factor 

and moving window, the reference data under normal 

operating condition should be defined previously. Then the 

similarity between the moving window and the reference 

data set can be calculated. For monitoring purpose, it is 

better to convert similarity to dissimilarity. The conversion 

is defined as follow: 

1
mix mix

DS S= −               (7) 

After the comparison between normal process data and the 

reference data set, a proper control limit should be 

determined for process monitoring. In DISSIM method, 

[Kano, et al., 2002a] the control limits 99% and 95% are 

determined simply so that the ratio of samples outside the 

limits to the entire samples is 1% and 5% respectively. 

Recently in EDISSIM method, Zhao, et al. [2007] assumed 

that the distribution of dissimilarity factor follows Γ -

distribution. However, this is not always true due to the 

different kind of process and operating conditions.  In the 

present paper, the control limit is defined by a non-

parametric empirical density estimates using kernel 

extraction.[Chen, et al., 2004] One major advantage of the 

control limit obtained using kernel density estimation is that 

it follows the data more closely, and is less likely to 

incorporate regions of unknown operation than the one 

obtained from the conventional methods.  

The illustration and detail of the proposed fault detection 

method is shown as follows: 

Modelling phase: 

Step 1: Acquire time-serial data when then process is 

operated under normal condition. Determined the dynamic 

step for each variable, and normalize each variable with its 

mean and standard deviation values; 

Step 2: Select size of the initial window, choose a reference 

data set; 

Step 3: Generate data set with the variable moving window 

step by step, they are scaled with the mean and the variance 

obtained at step 1; 

Step 4: Build ICA-PCA model for these moving windows 

and the reference data set, then the similarity factor 
mix

S  are 

calculated at each step, and converted to the dissimilarity 

factor 
mix

DS ; 

Step 5: Determine the control limit for the dissimilarity 

factor 
mix

DS  by kernel density estimation. 

Online fault detection phase: 

Step 1: Acquire time-serial data by the moving window, and 

normalization with the same mean and standard deviation 

obtained from the step 1 of modelling phase. Construct new 

data vector for dynamic monitoring based on dynamic step 

of each variable. 

Step 2: Calculate the PCA, ICA, and mixed similarity 

factors between the new dataset and the conference dataset. 

Step 5: If the value of 
mix

DS  rejects its corresponding 

control limit, then a fault alarm will be trigged. If the value 

is inside the control limit, keeping monitoring. 

3.4 Fault diagnosis method 

Typically, the contribution plots are used to identify the root 

cause of the abnormal operation. However, they can only 

identify some simple faults, and based on 
2T  and SPE  

statistics. Since these statistics are not used for fault 

detection in the present work, the contribution plots are 

hardly to be carried out. Instead, the dissimilarity factor 

mix
DS  is used for fault detection. Therefore, a new fault 

diagnosis tool is developed based on these factors, which is 

called sub-dissimilarity factor (SubDS) in the present paper. 

The principle of the new proposed fault diagnosis tool is 

demonstrated as follow: when a fault is detected, assume 

some process variable contributes significantly to this fault. 

Thus the dissimilarity factor goes beyond the bound of 

normal operation due to this responsible variable. If the 

responsible variable is removed from both of the moving 

window and the reference data set, then the new calculated 

value of the sub-dissimilarity factor should be below the 

corresponding control limit. Otherwise, if any other process 

variable is removed, the new calculated value of the sub-

dissimilarity factor will continue to stay above the control 

limit. However, there may be several variables responsible 

for the fault, which always true in practice. In this case, the 

sub-dissimilarity factor could be ranged by its value. The 

variable corresponding to the smallest value of SubDS 

should be the most likely root cause of the fault. Thus, 

( ) min{ ( )}

1, 2,

SubDS v SubDS j

j m

=

= ⋯

            (8) 

Where v  is considered the responsible variable of the 

fault, m is the number of the variables for monitoring. 

 The details of the proposed fault diagnosis procedures are 

given as follow: 

Step 1: When some fault is detected, thus the dissimilarity 

factor 
mix

DS  goes beyond the control limit. Choose the 

current moving window and the reference data set for fault 

diagnosis; 
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Step 2: Remove one variable from the moving window and 

the reference data set every time, calculated the new 

dissimilarity factors. 

Step 3: Range the values of SubDS, the variable 

corresponding to the smallest value of SubDS should be 

judged to be responsible for the detected fault. 

The process of fault diagnosis is shown in Fig. 1. 

 

Fig. 1. Flowsheet of fault diagnosis method 

 

4. CASE STUDY OF TE PROCESS 

The TE benchmark process has been widely used to test the 

performance of various fault detection method. [Chiang, et 

al., 2000] This process consists of five major unit operations: 

a reactor, a condenser, a compressor, a separator, and a 

stripper. The control structure is shown schematically in Fig. 

2, which is the second structure listed in Lyman and 

Georgakis [1995]. The TE process has 41 measured 

variables and 12 manipulated variables, a set of 21 

programmed faults are introduced to the process. 
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Fig. 2. Control system of the Tennessee Eastman process 

In the present paper, the variables selected for monitoring 

are listed in Table 1, which are the same as Kano et al. 

[2002a] There are 16 variables selected for monitoring. The 

simulation data which we have collected were separated into 

two parts: the training datasets and the testing datasets, they 

consisted of 960 observations for each operating mode (1 

normal and 21 fault), respectively, and their sampling 

interval was 3 min. Among these faults, some faults are easy 

to be detected, since they greatly affect the process and 

change the relations between process variables. However, 

there are also faults that difficult to be detected (fault 3, 9 

and 15), because they are very small and have little 

influence to the process. According to Kano et al [2002a], all 

monitoring methods are unsuccessful in detecting fault 4, 5, 

12 and 15, because these faults can be easily compensated 

by the control system. Therefore, the present paper mainly 

focuses on fault 3, 9, 15, 4, 5 and12. 

For online fault detection, a data set obtained from an 

independent operation under normal condition is selected for 

the reference data set. In order to smooth the monitoring 

process, the size of the initial window is chosen as 

300w = . According to the autocorrelation analysis, the 

modified dynamic step for each variable is chosen as shown 

in Table 2, where the cut-off value is chosen as 0.1. The 

weighted factor is chosen as 0.5λ = . Besides, 8 

independent components and 18 principal components are 

selected for dynamic process monitoring methods. The 

results are summarized in Table 3. 

 “DSF” refers to the dynamic similarity factor based method, 

and “MDSF” is the modified dynamic similarity factor based 

method. The maximum detection rate achieved for each fault 

is marked with a bold number. As shown in Table 3, MDSF 

outperforms other methods for most of the fault modes. 

Particularly, the monitoring performance of fault 3, 9 and 15 

are greatly improved. Unfortunately, the performance of 

fault 4 and 15 become worse than DSF. However, compared 

to the DPCA and modified DPCA (MDPCA) methods, the 

monitoring performance of all the considerable faults have 

been greatly improved. Among all the monitoring mentioned 

methods, the MDSF method gets the best monitoring 

performance.  Compared to the monitoring results of Kano, 

et al. [2002a], the proposed method not only can detect the 

small faults, but also can detect the latent faults, which are 

easily compensated by the control systems.  

As examples of the latent and small faults, the monitoring 

results of fault 5 (latent) and fault 3 (small) are shown in Fig. 

3 and Fig. 4. Due to the length of the paper, only the results 

of the new method and conventional PCA are presented. As 

demonstrated in Ge and Song [2007], fault 5 can be easily 

compensated by the control system thus the fault can not be 

detected after sample 350. They had improved the 

performance of this case by using ICA-PCA method. 

However, the information of correlation between variables 

in the present paper is not as sufficient as that in Ge and 

Song [2007], because we only choose 16 variables for 

process monitoring, compared to 33 variables in Ge and 

Song. [2007] Based on the used information of the present 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

2579



     

paper, the monitoring result of ICA-PCA method is similar 

to the conventional PCA method, which is not shown here. 

As shown in Fig. 3 (a), the fault is successfully detected by 

the proposed method. Fault 3 is considered as a small fault 

which has little influence to the process. The conventional 

PCA method can not detected the fault at all. However, 

because in this case the distribution of process data is 

changed, the monitoring performance is greatly improved, 

which is shown in Fig. 4 (a).  

Next we consider the fault diagnosis ability of the new 

method upon these latent and small process faults. One or 

two responsible variables for the related fault are listed in 

table 4. Similar results can be found in Chiang, et al.[2000] 

except for fault 3, 9, and 15, which are not considered in 

their book. However, examining the cause of these three 

faults, the diagnosis results seem not very good. Hence, 

some improvement should be made to guarantee the 

reliability of fault diagnosis upon this method. 

 

Table 1. Monitoring variables in the TE process 

No. Measured variables No. Measured variables 

1 A feed 9 Product separator temperature 

2 D feed 10 Product separator pressure 

3 E feed 11 Product separator underflow 

4 A and C feed 12 Stripper pressure 

5 Recycle flow 13 Stripper temperature 

6 Reactor feed rate 14 Stripper steam flow 

7 Reactor temperature 15 Reactor cooling water outlet 

temperature 

8 Purge rate 16 Separator cooling water outlet 

temperature 

 

 

(a)                                                                                    (b) 

Fig. 3. Monitoring results of fault 5, (a) new proposed method; (b) PCA 

 

(a)                                                                               (b) 

Fig. 4. Monitoring results of fault 3, (a) new proposed method; (b) PCA 
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Table 2. Dynamic steps of monitoring variables 

Variables 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Steps 1 0 0 0 0 0 0 1 1 3 0 3 3 3 0 0 

 

Table 3. Monitoring results comparison 

Fault modes DSF MDSF DPCA(T
2
) DPCA(SPE) MDPCA(T

2
) MDPCA(SPE) 

3 20.0 33.0 1.0 2.3 2.1 1.7 

4 27.1 17.8 1.2 1.3 1.4 2.2 

5 89.4 100 26.0 26.8 27.0 28.1 

9 35.8 47.6 2.1 2.0 3.8 2.3 

12 64.6 100 96.7 98.1 98.2 98.8 

15 36.8 32.2 3.5 1.7 3.8 3.5 

 

Table 4. Fault diagnosis results of the considered faults 

Faults 3 4 5 9 12 15 

Responsible variables 6 4, 11 16, 10 7 15, 8 2, 3 

 

6. CONCLUSIONS 

In order to improve the monitoring performance of the latent 

and small faults for dynamic processes, a novel fault 

detection and diagnosis method has been proposed based on 

similarity factor and moving window. Compared to the 

conventional methods, the monitoring performance has been 

greatly improved, not only for the small faults, but also the 

latent faults of the process.   
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