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Abstract: This present study offers a new method to quantify mental workloads (MWL) utilizing 
vestibule-ocular reflex (VOR). The VOR method makes use of the relation between a person’s VOR 
responses and his/her mental demands; Human VOR responses can be accurately predicted in a dynamical 
equation that is a function of the person’s head movements, unless the person is engaging in a higher 
cognitive activity. In this present study, the coherence between the predicted VOR and the observed VOR 
was as high as 0.92 when there was no additional mental demands. However, the manipulation of MWL in 
five different tasks (i.e. the n-back task) revealed that the VOR coherences declined with the heavier MWL 
demands.  This shows that MWL can be objectively quantified by measuring the gap between observed 
VOR responses and the mathematical-model-predicting VOR. This may be applicable in the future to 
quantifying a vehicle driver’s MWL in real-time. 

 

1. INTRODUCTION 

Mental workload (MWL) is an essential concept in most 
Human-Machine systems. Mental workload can be defined as 
the currently used amount of cognitive resources in a person 
at a given point in time. Since cognitive resources in humans 
are limited, human performance is easily deteriorated by 
heavy MWL.  

Many methods have been developed to quantify MWLs.  
These techniques can be categorized in three groups (Stanton, 
et al., 2005); (a) primary/secondary task measures, (b) 
subjective-rating techniques including NASA-TLX, and (c) 
physiological measures. The third one, physiological 
measures, is supposed to be the best one to quantifiably 
measure vehicle driver’s MWL because they are objective, 
less interfering with the driving task and can be measured in 
real-time.   

Vestibule-ocular reflex (VOR), one of the physiological 
measures, has grabbed the attention of recent researchers and 
has been examined to assess its effectiveness in quantifying 
MWLs (e.g. Furman, et al., 2003; Shibata, Obinata & 
Kajiwara, 2006; and Shibata, Obinata, Kodera & Hamada, 
2006). This VOR method of quantifying MWL has at least 
six major advantages over other existing MWL measures: 
The VOR method is (1) objective not relying on the driver’s 
subjective ratings, (2) does not interrupt the main tasks, (3) 
measurable in real-time, (4) accurate, (5) not physically 
obtrusive, and (6) does not require large equipment. Taking 
from previous studies, our present study used the n-back 
tasks as the mental workload demands to determine if VOR 
responses could be reasonable measures for quantifying a 
person’s MWLs. 

2. MODEL OF EYE MOVEMENT 

2.1  Model of Vestibulo-Ocular Reflex (VOR) 

Vestibule-ocular reflex (VOR) is an involuntary eye 
movement in humans performed to keep an object at a fixed 
gaze in order to offset their head movements. For example, 
when you are fixing your gaze at an unmoved object right in 
front of you, and your head moves downward, you 
involuntarily move your eyes upward (the opposite direction 
of the head movement) so that the eyes can keep the fixation 
on the object.  

This present study integrated two parts of VOR models in 
Fig.1 to calculate the participants’ VOR responses: Fig. 1 (I) 
made by Merfeld and Zupan (2002) and Fig.1 (II) made by 
Robinson (1981). A mechanism of a VOR model consists of 
three stages, as shown in Fig.1(I); (1) physical world & 
sensors, (2) internal processing, and (3) eye movements. 

In the first stage, the person’s VOR mechanism senses six 
pieces of head movement information; linear accelerations in 
three dimensions (α in Fig.1.I) and angular velocities in three 
dimensions (ω in Fig.1.I).  In our study, a magnetic field 
sensor collected these data. 

In the second stage, the person’s VOR mechanism integrates 
these six inputs and calculates appropriate eye movements so 
that the eyes can follow a visual object when the head is 
moving. Since this calculation is not the same across people, 
personalization of the VOR model is required for an accurate 
simulation. This is explained more in the next section: 
“Model Identification.” 
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In the third stage, the person’s VOR mechanism executes the 
calculated eye movements. The eyes can theoretically move 
on three axes: horizontal, vertical, and torsional rotations. 
However, this present study utilized only the two main 
rotations: horizontal and vertical. Our study examined the 
discrepancies between the model-calculated eye movements 
and the observed eye movements on these two axes. 

 

Fig. 1. Model of vestibulo-ocular reflex. 

Although we know there is a relationship between the 
vestibular system and the VOR eye movement, as well as the 
fact that heavy MWL influences the VOR eye movement, we 
don’t know the cognitive mechanism behind why heavy 
MWL influences the VOR eye movement. One possible 
cognitive mechanism is shown in Fig.2, adopted from 
Honrubia (1997). This model stipulates that common central 
processors integrate all the sensory inputs and determine the 
eye movements, including the VOR. These central processors 
may require some cognitive resources and may therefore be 
affected by heavy MWL. However, there have been no 
studies to prove this mechanism. The focus of our study is 
not on the mechanism behind it, but on the application of 
how useful the VOR disturbance is to quantify a person’s 
MWL.  

2.2 Model Identification 

A person’s VOR responses are almost perfectly predicted 
when all the 4 conditions below are satisfied: (1) The 
person’s head is being shaken with frequencies from 1 to 6 
hertz; (2) The head movements are quantified and used as the 
inputs of the VOR model; (3) The VOR’s internal processing 
stage is personalized for the person; and (4) The person is not 
engaging in a cognitively demanding task. 

With the four conditions satisfied, as done in our study, the 
VOR model predicted the person’s VOR responses as 
perfectly as 0.92 in the coherence between the simulated 
VOR and the observed VOR. 

 
Fig. 2. One possible cognitive mechanism that explains why 
heavy MWL influences the VOR eye movement. Adopted 
from Honrubia (1997). 

Model identification is the process to identify individual’s 
eye movement dynamics that are represented by the 12 
constant parameters shown with the seven triangle shapes in 
Fig.1. Since our experimental devices did not have the means 
to measure the torsional eye movement, we used the 8 
parameters (Ka, Kf, Kfw, Kw, Kr_vertical, Kr_horizontal, 
Kv_vertical, and Kv_horizontal). These parameters are 
constants and are different by person and possibly by time. 

This present study used a computer-controlled-shaking chair 
called “Joy Chair” to induce participant’s head movements, 
which caused the participant’s VOR responses. The Joy 
Chair was set to produce tremors in frequencies from 1 to 6 
hertz. Since VOR responses are different by head movement 
and by individual, our experiment first developed the 
person’s VOR mathematical model by making the computer 
program observe the person’s specific head movement 
dynamics for 10 seconds while the person stared at a fixed 
point on a projector screen. We call this stage “the VOR 
model identification.” Fig.3 shows the experimental setup 
and devices. 

The Matlab program, a computer program specialized to 
identify a mathematical model, analyzed the relation of the 
head movements with the person’s VOR responses and 
produced a best-fit mathematical model to predict the 
person’s VOR responses in a given situation, considering 
temporal sequences of both the head movements and the 
eyeball movements. A best-fit model means that the 
mathematical equation sets certain constant numbers specific 
for the person’s VOR responses, so that errors between the 
mathematical model-predicted VOR and the actual VOR 
responses are minimal.  

Eight constant parameters need to be identified to accurately 
predict the person’s specific VOR responses in the Merfeld-
Robinson model of Fig.1. Since there are numerous  
possible combinations of eight constant numbers, it would 
take forever to find a best-fit mathematical model for each 
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individual participant if all the possible combinations were 
evaluated.  Our study took two shortcuts: a Genetic 
Algorithm (GA) and the Gradient method of local search in 
order to moderately quickly find a seemingly best-fit model 
with certain constant parameters so that the errors were 
minimized based on the 10-second data for the VOR model 
identification. For the global search, the GA started with one 
specific DNA combination of the eight parameters such as -2, 
1, 1, 4, 1, 1, 4, and 4. The GA then mutated the DNAs, paired 
with another DNA, and produced descendant DNAs. The 
Gradient method of local search determined what tendency of 
alteration in these eight parameters leads to the minimum 
error between the calculated VOR and the observed VOR. 
The combination of these two methods above found the eight 
parameters that yielded the least error values between the 
calculated VOR and the observed VOR. 

View angle = ±28[deg] 

View angle 
= ±20[deg] 

Fig.6-1 Experimental set-up 

Eye recorder

Position & angle sensor 

 

Fig. 3. Experimental setup and devices. 

Using these two methods, the goodness-of-fit index to 
estimate the constant parameters is expressed by  

2

1

{ ( ) ( )}
N

obs mdl
i

J i iθ θ
=

= −∑     (1) 

where obsθ is a time series of observed eye movement data 

and mdlθ is a time series of the model-estimated eye 
movement values.    

The first step of the model identification in our study was to 
clean up the raw data. After collecting raw data of eye 
movements, rapid eye movements such as blinking and 
saccades were removed from the data set because VOR is 
independent from these rapid eye movements, and they 
would have made our VOR analysis difficult. The cleaned-up 
data was processed by a Matlab program to identify a 
mathematical model for each participant’s VOR responses.   

2.3  Identification Results 

Fig.4 shows an example of the identification results in several 
aspects. Fig.4(a) shows the time course of the data for a 
period of 10 seconds. Fig.4(b) shows the results in the 
frequency aspect.  

Fig.4(a)(I) and (b)(I) show the results before the model 
identification, using the previously identified general 
constant parameters, offered by Merfeld and Zupan (2002). 
Fig.4(a)(II) and (b)(II) shows the results after the model 
identification, using the constants parameters that were 
personalized for each participant in our experiment.  

Each of the Figures 4(b) has two sets of graphs: horizontal 
and vertical eye movements. For each of these dimensions of 
eye movements there are two curved lines: the measured 
output in the observation (red line) and the simulated output 
of a mathematical model (blue line).  

One of the major advantages of using the VOR as MWL 
measures is that the VOR can be quantified in real-time. 
However, in our study, the simulated outputs were calculated 
after the experiments. The present article uses the word 
“predict” to mean “to calculate the person’s simulated VOR 
responses using only the past and present information” in the 
dynamical function of both head movements and 
personalized constant parameters. Usui et al. (2007) use the 
VOR measure to quantify MWL in real-time and examine the 
validity of the VOR measure in real-time. 

(Ⅰ) Before identification (Ⅱ) After identification 

(a) Time-series data 
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(Ⅰ ) Before identification 

 
(Ⅱ ) After identification 

 

(b) Frequency analysis  
 

Fig.5-14 Com parison between measured output and simulated output 
(Subject B) 
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Fig.4. Example of identification result.  

As mentioned in the previous section “2.2 Model 
Identification”, the eight constant parameters were 
personalized for each participant after the model 
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identification. This process of model identification should 
increase the degree of coherence between the two lines. 

Discrepancies between the two lines (blue and red lines in 
Fig.4.a and 4.b) indicate a low coherence (low in the green 
lines) at that moment. As seen in Fig.4, the accuracy of the 
mathematical model to predict the person’s eye movements 
in the time course was higher after the model identification in 
Fig.4(a)(II) on both horizontal and vertical eye movements 
than before personalizing the model for the participant in 
Fig.4(a)(I).  

Likewise, Fig.4(b) shows the higher accuracy after the model 
identification in Fig.4(b)(II) than before in Fig.4(b)(I) in the 
frequency analysis of the eye movements. VOR responses are 
usually observed in the frequencies between 1 and 6 hertz of 
head movements. After the personalized identification in our 
study, the identified model almost perfectly predicted the 
actual eye movements in Fig.4(b)(II).  

The apparent evidence of overlapping in the graphs is also 
represented by one measure: the coherent coefficient, which 
is defined as 

( )
( )

( ) ( )

2

2 XY
xy

XX YY

C f
f

P f P f
γ =     (2) 

where ( )XXP f , ( )YYP f are power spectra (the two output 
curves) of the measured eye movement and the predicted 
signal, respectively, and where ( )XYC f is cross spectrum 
between them.  The coherence (drawn with the green lines) 
takes the unit value of 1.00 when the relation of two signals 
can be described by a linear differential equation.  

Fig.4(b)(II) shows that after the identification of the person’s 
VOR response patterns, the coherence drawn with the green 
lines are close to the perfect coherence of 1.00 at the majority 
of the frequency range between 1 and 6 hertz. Since “after 
identification” in Fig.4(b)(II) has higher coherences than 
“before identification” in Fig.4(b)(I), our identification 
seemed to succeed in adjusting the VOR model to the 
individual participants. 

However, among the three participants in our present study, 
the averages of the model error varied by person from 3 to 6 
degrees in eye movement angles out of the experimental eye 
movement range of 20 degrees on the horizontal axis and 30 
degrees on the vertical axis. This indicates that individual 
differences might have a large impact on VOR measures, 
although the present study did not focus on the individual 
differences. 

3. METHOD OF EXPERIMENT 

3.1  Experiment Procedure 

Three male students, aged between 20 and 24, participated in 
this study.  Since the main purpose of this study was to 

examine if deviation of observed vestibule-ocular reflex 
(VOR) responses from the modeled VOR was correlated with 
required mental workloads (MWL), each participant 
performed in four different MWL conditions (1 controlled 
and 3 experimental conditions) while the computer-
controlled-shaking Joy Chair was causing the participant’s 
head to shake at the frequencies of 1 to 6 hertz. The 
participants were asked to gaze upon a certain fixed point on 
a projector screen for 30 seconds on each trial. Each of the 4 
conditions was repeated three times, meaning a total of 12 
trials were performed by each participant. On each trial, eye 
movements and reaction time to every verbal presentation 
were recorded.   

The 4 conditions were as follows: (A) a control condition that 
was the Simple Reaction Task (SRT) condition where the 
participant was asked to simply hit the button when he heard 
another alphabet letter, which was provided every 2.5 
seconds, (B) 1-back task, (C) 2-back task, and (D) 3-back 
task.  

3.2  The n-back Tasks 

The n-back tasks including 1-, 2-, and 3-back tasks impose 
different amounts of MWL on the person so that 
experimenters can manipulate the participant’s MWL. In our 
n-back tasks, one alphabet was verbally presented to the 
participant every 2.5 seconds for 30 seconds on one trial. The 
participants were asked to hit the yes button when the same 
letter reappeared after n-events of verbal alphabet 
presentation and the no button in other cases. The participants 
were notified of n beforehand. In this present study, n was 
either 1, 2, or 3.  

 

Fig. 5. Verbal n-back task in case of n = 2. 

The n-back tasks are usually used in working memory 
research because the n-back tasks require the person to 
maintain and update information at a certain pace. Past 
research has revealed that during the n-back tasks, the 
activated areas were the frontal association area, temporal 
association area, and Broca’s area (Braver, et al., 1997; 
Cohen, et al., 1994).  In this present study, the words 
“mental workload” (MWL) and “working memory” are 
interchangeably used unless specifically indicated. Loads of 
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MWL are different by person. However, for any person, a 
higher-number-back task universally requires more MWL 
than a lower-number-back task.  

4. RESULTS 

Overall, the results show what we wanted to show; the more 
demanding mental workload (MWL) tasks induced more 
discrepancies between the simulated vestibulo-ocular reflex 
(VOR) responses and the observed VOR responses. 

Fig.6 shows the average results of the three participants on 
the Proportion Correct (PC, the rate of the right answer) and 
the reaction time in the n-back tasks.  The results show that 
the participants took a longer time to answer in the more 
demanding n-back tasks, such as the 3-back task, and seemed 
to try to correctly answer by taking their time in all the three 
n-back conditions, rather than to simply respond without 
thinking. This implies that our tasks seemed to appropriately 
manipulate and impose different MWL levels with the 
different n-back tasks.  
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Fig. 6. Proportion correct in percentage and  
reaction time in the n-back tasks. 

Fig.7 shows the results of the power spectrum (red and blue 
lines) and the coherence (green lines) between the measured 
VOR and the mathematically simulated VOR in the four 
conditions: the control condition (Simple Reaction Task), 1-, 
2-, and 3-back conditions.  The coherence coefficients are 
indicated in the green lines. However, the frequencies above 
4 hertz in the horizontal eye movements were shaded lightly 
in the graphs because they seemed to have too much noise 
and be at the error levels, not reflecting the VOR responses 
much. 

The comparisons between the measured VOR and the 
simulated VOR in the four conditions in Fig.7 indicate 
several interesting things. 

First, there does not seem to be clear distinctions between the 
power spectrum curves (labeled as Measured and Simulated 
outputs) to distinguish the 4 conditions in Fig.7(I),(II),(III), 
and (IV).  In the vertical eye movements, all of them had the 
highest power spectrum at the frequencies between 2.6 and 
4.6 hertz. The horizontal axis recorded much lower power 
spectrum than the vertical axis in all the four conditions. This 
indicates that just looking at measured VOR and simulated 
VOR does not tell us the person’s MWL.  

Second, conversely, the coherence curves (green lines in 
Fig.7) had relatively distinct characteristics from each other 
among the four conditions. The coherence curves were 
highest on both horizontal and vertical axes in the control 
condition (Fig.7.I), followed by the 1-back task (II). The 
tasks with the demanding mental workloads such as 2-back 
(III) and 3-back (IV) tasks had the lower coherence lines.  
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Fig.6-16 Comparison between measured output and simulated output 
in the 2-back & 3-back  (Subject C)  

Fig. 7. Power spectrum curves and the coherence in the 
horizontal and vertical axes in four conditions.  

This fact is re-stated again in Fig.8 after simplifying the 
graphs in one aspect. Fig.8 shows the average of the 
coherence in the n-back tasks over all the three participants. 
In addition to SRT and the three n-back tasks, this figure adds 
the VOR results, in which condition the participants were 
asked just to stare at a fixed point on the projector screen 
without doing any additional task.   

As expected, the VOR condition achieved the highest 
coherence, as high as 0.92, closest to the perfect coherence 
1.00 among the 5 conditions. Also as expected, the Simple 
Reaction Task with the coherence of 0.90 followed the VOR 
condition since there was not much cognitive workload 
involving this simple reaction task. In regard to the n-back 
tasks, as the n increased, the supposed mental demand 
increased, and the deviation of the coherence increased. The 
coherences were 0.87 for the 1-back task, 0.83 for the 2-back 
tasks, and 0.80 for the 3-back task. More discrepancies from 
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the baseline value of 0.92 were observed as the supposed 
MWL increased.  

The decrease of the coherence with demanding mental tasks 
implies that the person’s cognitive activities may have 
interfered with the VOR mechanism in some ways. Our 
results were consistent with the previous studies by other 
researchers (e.g. Furman, et al., 2003; Talkwski, et al., 2005; 
and Yardley, et al., 1999).  These results suggest that the 
VOR measures enable quantification of a MWL.  

 
Fig.6-18 Results of evaluating the influence of working memory load 

(All subjects) 
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Fig.8. The coherence comparison among 5 situations: VOR 
with no additional task; Simple Reaction Task to hit a button 
without judging; and n-back tasks with mentally demanding 
judgment. Mental demands were correlated with the 
deviation of the coherence.  

5. CONCLUSIONS 

This study showed that the vestibule-ocular reflex (VOR) 
measures can be used as a method to objectively quantify a 
person’s mental workload (MWL). 

The results show that the five different levels of mental 
demands were negatively correlated with the coherence 
between the simulated VOR responses and the observed 
VOR responses.  When the participants were not engaging 
in a cognitive task, the VOR responses were predicted with 
the high coherence of 0.92. However, the coherence was as 
low as 0.80 when the participants were doing the 3-back task, 
the most mentally demanding task in our experiments. The 
observed VOR discrepancies from the simulated VOR 
responses were probably the result of interference with the 
human VOR mechanism. This indicates that when unusual 
VOR responses are observed, the person is most likely to be 
heavily using his cognitive systems.  

Possible applications of this VOR method are many since this 
method can objectively quantify a person’s MWL in real-
time without using large devices. Another researcher team in 
our laboratory is examining the real-time aspect of VOR to 
answer how accurately the person’s MWL can be quantified 
using VOR measures in real-time. 

In future research, our laboratory is planning to examine 
VOR responses when MWL is varying by seconds. This will 
reveal how quickly the VOR measures can reflect the 
person’s MWL. We hope someday this technique will detect 
over-demanding mental conditions of drivers and help to 
reduce vehicle-involved accidents. 
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