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Abstract: Cascade process, such as wastewater treatment plant, includes many nonlinear sub-
systems and many variables. When the number of sub-systems is big, the input-output relation
in the first block and the last block cannot represent the whole process. In this paper we use two
techniques to overcome the above problem. First we propose a new neural model: hierarchical
neural networks to identify the cascade process. Then we use serial structural mechanism model
based on the physical equations to connect with neural model. A stable learning algorithm and
theoretical analysis are given. Finally, this method is used to model a wastewater treatment
plant. Real operational data of wastewater treatment plant is applied to illustrate the modeling
approach.

1. INTRODUCTION

Neural networks can approximate any nonlinear function
to any prescribed accuracy provided with sufficient hid-
den neurons. It can also be applied to control problem,
Speer et al. [1998] presented a neuro-control method for
mobile robots. The stability of neural identification is very
important in applications. It is well known that normal
identification algorithms (gradient descent, least square
etc.) are stable under ideal conditions. They might be-
come unstable in the presence of unmodeled dynamics.
Lyapunov approach can be used directly to obtain robust
training algorithms of continuous-time and discrete-time
neural networks. By using passivity theory, Yu et al. [2001],
Jin et al. [1999] and Polycarpou et al. [1992] successfully
proved that gradient descent algorithms of continuous-
time recurrent neural networks were stable and robust to
any bounded uncertainties.

Cascade process, such as wastewater treatment plant,
includes many nonlinear sub-systems. The input-output
relation between the first block and the last block cannot
represent the whole process when the number of sub-
systems are big. Hierarchical models can be used to deal
with this problem. Hierarchical fuzzy systems consisting
of a number of low-dimensional fuzzy systems have been
presented by Raju et al. [1991] and Wang [1997] in order
to avoid rule-explosion problem. To the best of our knowl-
edge, the training method of hierarchical neural system

This work was supported by the State Key Program of Na-
tional Natural Science of China (No. 60534010), the National Fun-
damental Research Program of China (No. 2002CB312201), the
Funds for Creative Research Groups of China (No. 60521003),
the 111 project(B08015), and the National High-tech Pro-
gram(2006AA040307).

still is gradient descent. Normal approaches of analyzing
learning algorithms’ stability are to investigate identifica-
tion errors. The key for the training of hierarchical neural
model is how to get explicit expression of each internal
error.

The common used design for neural modeling is a black-
box approach which does not include mechanism knowl-
edge. When we have some prior knowledge, grey-box iden-
tification which is the combination of mechanism modeling
and intelligent identification may show better results, see
Lee et al. [2005]. The mechanism model usually repre-
sents the physical properties which can be described by
nonlinear functions or nonlinear dynamic equations. The
residual uncertainties between the mechanism model and
the plant can be modeled by black-box approaches such
as neural networks. The above technique is called parallel
compensation. On the other hand, the mechanism model
and compensator can be in serial form. In this paper,
we will discuss this new modeling approach and propose
a novel mechanism-based hierarchical neural model. The
stability of hierarchical neural model is also proven.

The efficiency of wastewater treatment plant is the most
important factor relating to environmental protection.
Activated sludge technology is widely used in this field,
which the removals of contaminations are implemented by
biological reactions of microorganisms in activated sludge.
A good model of activated sludge system is beneficial
for supervision operation, prediction of effluent quality
and realizing model-based optimal control. The model
of activated sludge process, mainly ‘hard modeling’ or
parametric modeling is too complex to be described in
exact mathematical expression because of unknown be-
haviors of microorganisms, the complexity of biological re-
actions, strong nonlinearity and time-varying parameters,
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see Henze et al. [1987] and Henze et al. [1999], here nonlin-
earity is introduced into activated sludge model by Monod
equation. But the reliability of these models depends on
an increasing number of kinetic and stoichiometric con-
stants in the experimental assessment of different kinds
of wastewater. Model order-reduction method based on
times scale separation was presented by Weijers [2000]. Lee
et al. [2002] introduced high-dimensional nonlinear partial
differential equations for wastewater treatment process.
Multi-Model interpolation procedure was proposed by
Smets et al. [2003]. Multiple linear approximate model
with switching algorithm was obtained by Anderson et al.
[2000]. Multivariable modeling with subspace-based algo-
rithm had been used and a linear time-invariant dynamic
model was given by Sotomayor et al. [2003]. Recently, some
intelligent methods are investigated. Zhu et al. [1998] used
time-delay neural network to model wastewater treatment
plant. The combination of activated sludge model and
neural network had improved the modeling accuracy by
Lee et al. [2005]. A statistical learning method was em-
ployed to develop a learning machine based on the physical
mechanisms of biological wastewater treatment systems by
Guergachi et al. [2006]. But there are two problems: 1)
Wastewater treatment plant is a big cascade process, one
model cannot represent a plant with many sub-systems.
2) Grey-box identification is better when we have prior
knowledge. In this paper, mechanism-based hierarchical
neural networks is applied to model wastewater treatment
plant. Real application results show that the new modeling
approach is effective for cascade process.

2. CASCADE PROCESS MODELING VIA
HIERARCHICAL NEURAL NETWORKS

For each subprocess of cascade process, such as wastewater
treatment plant, it can be described using the following
general nonlinear dynamic equation

ẋt = f (xt, ut, γ (xt)) (1)
where x ∈ Rnc is inner state, u ∈ Rmc is input, f is a
vector function, γ (xt) is unknown term. The mechanism
model is ẋt = f (·) , we will use neural networks to model
γ (xt) . We concern discrete-time model of (1) in order to
calculate model (1) with computer

x(k + 1) = Ψ [X1 (k)] , y (k) = h [X2 (k)] (2)
where Ψ (·) is an unknown nonlinear function representing
γ (xt) , h [X2 (k)] is known model containing the plant
dynamics, and y ∈ Rr is output, y (k) = [y1 · · · yr]T ,

X1 (k) = [x (k) , x (k − 1) , · · ·x (k − n1) ,
u (k) , u (k − 1) , · · ·u (k −m1)]

T

X2 (k) = [x (k) , x (k − 1) , · · ·x (k − n2) ,
u (k) , u (k − 1) , · · ·u (k −m2)]

T

(3)

where nc × n1 +mc ×m1 = nd. It is a NARMAX model.
If h−1 exists (we will not calculate it)

X1 (k) = [h
−1 [y (k)] , h−1 [y (k − 1)] ,

· · ·h−1 [y (k − n1)] , u (k) , u (k − 1) , · · ·u (k −m1)]
T

X2 (k) = [h
−1 [y (k)] , h−1 [y (k − 1)] ,

· · ·h−1 [y (k − n2)] , u (k) , u (k − 1) , · · ·u (k −m2)]
T

(4)
The basic idea of the mechanism-based neural model is
that we use neural networks to identification the unknown
parts of the plant, then the outputs x of neural networks

are sent to the mechanism model as parts of inputs X2.
Here single-output multilayer perceptrons is adopted:

x̂ (k) =W (k)φ
h
V (k) X̂ (k)

i
(5)

where the neural output x̂ (k) is scalar, input vector
X̂ (k) ∈ Rn is defined as

X̂ (k) = [y1 (k) , y1 (k − 1) , · · · yr (k − n1) ,
u (k) , u (k − 1) , · · ·u (k −m1)]

T

the weights in output layer areW (k) ∈ R1×m, the weights
in hidden layer are V (k) ∈ Rm×n, φ ism-dimension vector
function. The typical presentation of the element φi(·) is
sigmoid function. The mechanism model is

ŷ (k) = h
h
X̂2 (k)

i
(6)

First we discuss how to model one block of cascade process
with one mechanism-based neural network. The objective
is to update the weights of neural network so that the error
between the output of neural model (6) and the output
of the plant (2) is minimized. The performance index is
defined as

J =
1

2
ke (k)k2 = 1

2r

rX
i=1

(ŷi(k)−y(k))2, e (k) = ŷ (k)−y (k)

We use gradient descent learning law ∆wi (k) = −η ∂J
∂wi

,

∆vi,j (k) = −η ∂J
∂vi,j

, where W (k) = [wi (k)] , V (k) =

[vi,j (k)] . Now we use the chain rule

∂J

∂wi
=

∂J

∂ŷ

∂ŷ

∂x̂

∂x̂

∂wi
=

rX
t=1

µ
et(k)

∂ŷt
∂x̂

¶
∂x̂

∂wi

= eT (k)h0φi

(7)

where φi is the output at the ith hidden node. The same
method can be applied to V (k) . The chain rule of the
weights at hidden layer can be given as:

∂J

∂vi,j
=

∂J

∂ŷ

∂ŷ

∂x̂

∂x̂

∂φi

∂φi
∂vi,j

=
rX

t=1

(et(k)h
0
t)wiφ

0
ixj (8)

So for one block, learning law is

W (k + 1) =W (k)− ηeT (k)h0φT

V (k + 1) = V (k)− ηeT (k)h0φ0WT (k)X̂T (9)

where η is learning rate.

Secondly, we discuss modeling of cascade process with
hierarchical neural networks. Cascade nonlinear process
can be described as

ẋ
(1)
t = f

³
x
(1)
t , u

(1)
t

´
, y

(1)
t = h

³
x
(1)
t

´
ẋ
(2)
t = f

³
x
(2)
t , y

(1)
t

´
, y

(2)
t = h

³
x
(2)
t

´
...

ẋ
(p)
t = f

³
x
(p)
t , y

(p−1)
t

´
, y

(p)
t = h

³
x
(p)
t

´
Corresponding discrete-time format is as follows

x(1)(k + 1) = Ψ
h
X
(1)
1 (k)

i
, y(1) (k) = h

h
X
(1)
2 (k)

i
...

x(p)(k + 1) = Ψ
h
X
(p)
1 (k)

i
, y(p) (k) = h

h
X
(p)
2 (k)

i
(10)

The modeling scheme is shown as Fig. 1. We can train each
block independently if we know the modeling errors be-
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Fig. 1. Cascade process modeling with hierarchical neural
networks
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Fig. 2. General hierarchical neural networks

tween neural networks and corresponding process blocks,
e(1), e(2) · · · e(p).
Now we discuss how to propagate virtual modeling errors.
The general hierarchical neural networks in Fig. 2 are
Considered. When the errors are back propagated from
block q to block p, how can we get e(p) from the hierarchical
model if e(q) is known.

We can obtain the relationship between e(q) and e(p) by
the chain rule:

e(q)(k) = [e
(q)
i (k)]

e
(q)
i (k) = by(q)i (k)− y

(q)
i (k), i = 1, · · · , r

(11)

where by(q)i (k) is output of the qth neural network, y(q)i (k)
is virtual output of the qth block of the plant.

We use the error of the qth block to calculate ∂J
∂wi

=

∂J
∂ŷ

³
∂ŷ
∂x̂

∂x̂
∂wi

´
for the pth block, so

∂J

∂wi
=

∂J

∂ŷ(q)
∂ŷ(q)

∂ŷ(p)

µ
∂ŷ(p)

∂x̂

∂x̂

∂wi

¶
We can see the last two terms is the same as single block
case, ∂J

∂ŷ(q)
is the virtual error of the qth block, ∂J

∂ŷ(q)
= e(q),

the term ∂ŷ(q)

∂ŷ(p)
realize the error backpropagation

∂ŷ(q)

∂ŷ(p)
=

∂ŷ(q)

∂x̂(q)
∂x̂(q)

∂φ(q)
∂φ(q)

∂ŷ(p)
= h(q)0Φ(q)0W (q)TV (q)

Finally, we obtain

e(p) = e(q)Th(q)0Φ(q)0W (q)TV (q) (12)

The proposed algorithm can be extended to general hi-
erarchical structure, see Fig. 2. We explain the training
procedure.

(1) (Feedforward propagation) According to the struc-
ture of hierarchical neural networks, we calculate the
output of each mechanism-based neural network as
(5) and (6). The output of multilayer neural networks
should be the inputs of the next level.

(2) Calculate the modeling error for each block. We start
from the last block, the identification error is

e (k) = ŷ (k)− y (k) (13)

where ŷ is the output of the whole hierarchical neural
networks, y is the final output of the cascade plant.
Then we propagate the error back from the structure
of the hierarchical neural networks as in Fig. 2. We
can calculate the error of the block p (defined as e(p))
from its former block q (defined as e(q)) by (12).

(3) Train the weights matrices for each block indepen-
dently. Backpropagation-like algorithm of the pth
block is
W (p) (k + 1) =W (p) (k)− ηe(p)Th(p)0φ(p)T

V (p) (k + 1) = V (p) (k)− ηe(p)Th(p)0φ(p)0W (p)T X̂T

(14)

3. STABLE LEARNING

Gradient descent algorithm as in (14) is a general algo-
rithm that includes least-square and backpropagation as
special cases. The fixed learning rate yields poor perfor-
mance. In contrast, time-varying learning rate shows faster
convergence, see Ljung et al. [1983]. While it results in
slow convergence to bad solutions when time is small and
cannot guarantee stability. In this paper we propose a new
time-varying learning rate, which takes advantages of Yu
et al. [2003] and Moody et al. [1989] to assure stable and
fast learning.

We first consider one mechanism-based neural network as
(5) and (6). According to the Stone-Weierstrass theorem,
see Cybenko [1989], one sub-block of the cascade process
(10) can be written as

x (k) =W ∗φ[V ∗X̂ (k)]− μ(k) y (k) = h [X2 (k)]

whereW ∗ and V ∗ are the unknown weights matrices which
may minimize the modeling error μ(k) of this block. We
use Taylor series to obtain error dynamic. In the case
of two independent variables, smooth function f has the
following Taylor series expansion near the point

£
x01, x

0
2

¤
,

f(x1, x2) =
l−1X
k=0

1

k!
[
¡
x1 − x01

¢ ∂

∂x,1

+
¡
x2 − x02

¢ ∂

∂x,2
]kf(x,1, x

,
2) x,1 = x01
x,2 = x02

+ ε
(15)

where ε is the remainder of the Taylor formula. For neural

network x̂ (k) =W (k)φ
h
V (k) X̂ (k)

i
, if we let x1 and x2

correspond to W (k) and V (k) , x01, x
0
2 correspond to W

∗

and V ∗, we have

x̂ (k) =W ∗φ[V ∗X̂ (k)] + [W (k)−W ∗]φ

+ [V (k)− V ∗]φ0WT (k) X̂T (k) + ε (k)
= x (k) + [W (k)−W ∗]φ

+ [V (k)− V ∗]φ0WT (k) X̂T (k) + ε (k) + μ(k)

So error of single-output multilayer neural network
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en (k) = W̃ (k)φ
h
V (k) X̂ (k)

i
+Ṽ (k)φ

0
WT (k) X̂T (k)+ζ (k)

(16)
where W̃ (k) = W (k) −W ∗, Ṽ (k) = V (k) − V ∗, ζ (k) =
ε (k) + μ(k),

en (k) = x̂ (k)− x (k)

e (k) = ŷ (k)− y (k) = h
h
X̂2 (k)

i
− h [X2 (k)]

(17)

In this paper we are only interested in open-loop identi-
fication. We may assume that the plant (10) is bounded-
input and bounded-output stable, i.e., y(k), x (k) and u(k)
in (10) are bounded. Because of the boundness of the
sigmoid function φ, we may assume that ε (k) and μ(k)
in (16) are bounded. The following theorem gives a stable
backpropagation-like algorithm for the training of discrete-
time multilayer neural network.
Theorem 1. If we use the multilayer neural network (5) to
identify nonlinear plant (2), the following backpropagation-
like algorithm can make identification error e (k) bounded

W (k + 1) =W (k)− ηken (k)φ
h
V (k)X̂ (k)

i
V (k + 1) = V (k)− ηken (k)φ

0WT (k) X̂T (k)
(18)

where ηk =
η0

1 +
°°°φ0WT (k)X̂T (k)

°°°2 + kφk2 , 0 < η0 ≤ 1.

The average of the identification error satisfies

lim sup
T→∞

1

T

TX
k=1

ken (k)k2 ≤
ζ̄

1− η0
(19)

where ζ = max
k

£
ζ2 (k)

¤
4. APPLICATION TO WASTEWATER TREATMENT

The wastewater treatment plant used as a case study
throughout this paper consists of two biodegradation tanks
in series in a back-to-back scheme with multi recycle
streams, see Fig. ??. Denitrification and nitrification occur
in anoxic and aerated tanks in order to remove nitrogenous
and carbonaceous contaminations respectively. Dissolved
oxygen in aerated tank is under tight control by a PI con-
troller towards set point S∗O = 2mg/L through controlling
the air flowrate Qair into aerated tank. The secondary
settler is the device for separation of liquid and solid,
which has the ten-layer structure with double exponential
settling rate of solid components within each layer, see
Takacs et al. [1991]. Mixed liquid is recycled to the inlet
of anoxic tank at the rate of Qr to guarantee smooth
denitrification. Activated sludge is recycled to the inlet of
anoxic tank at the rate of QR to retain the concentration
of biomass sufficient for biological reactions. The surplus
activated sludge is discharged from the bottom of the
secondary settler at the rate ofQw to maintain appropriate
organic load (F/M). Besides, the influent is fed into anoxic
tank at the rate of Qin, and the effluent is discharged
to recipient river at the rate of Qe from the top of the
secondary settler.

Nitrification reactions aim to oxidate ammonia into nitrite
or nitrate, and consume biodegradable COD (Chemical
Oxygen Demand) by the heterotrophic organisms; In this
tank, two major reaction processes occurred are

 
Qin

Qw

Qe

Qr

QR

Qair

PI
SO

*

SO

Anoxic
  tank

Aerated
   tank

clarifier

Fig. 3. Plant configuration

NH+
4 + 1.5O2 → NO−2 +H2O + 2H

+

NO−2 + 0.5O2 → NO−3
COD +O2 → CO2 +H2O +AS

(20)

where COD denotes carbonous contamination, AS de-
notes activated sludge. Nitrite or nitrate that is recycled
from the aerobic tanks are deoxidized into nitrogen air by
the autotrophic organisms in denitrification phase which
results in release of alkalinity and hence increase of pH,
the reaction is

2NO−3 + 2H
+ → N2 +H2O + 2.5O2 (21)

These reactions are implemented by microorganisms exist-
ing in activated sludge under appropriate circumstances.
Water quality indices such as COD, BOD5 (Biological
Oxygen Demand), NH4 −N (ammonia), nitrate and SS
(Suspended Solid) are decomposed into those components
of ASM1 listed in Table 1 according to rough proportion.
The general mass-balance equation for a component Z in
the typical activated sludge model is given as follows:

dZ(k)

dt
= r(k) +

1

V
(FinZin(k)− FoutZ(k)) (22)

where Fin and Fout are influent and effluent flows respec-
tively, Z is component concentration listed in Table 1,
Zin and Z are corresponding influent and effluent concen-
trations, V is the volume of reactor, r(k) is reaction rate
of component. The description of reaction rates in (22) as
well as kinetic and stoichiometric parameters are given by
Henze et al. [1987].

In this section, we will use real data of North wastewater
treatment plant (NWTP) in Shenyang, China and the
mechanism-based hierarchical neural networks proposed
in this paper to model wastewater treatment plant. The
plant including 6 water lines in parallel mainly deals with
municipal wastewater, where No.1~3 lines use traditional
activated sludge technics and No.4~6 lines use anoxic-
aerobic (A/O) technics with nitrogen removal. The case
study focuses on A/O process of No.4 line which consists of
an anoxic reactor with the volume of 7772.5m3, an aerobic
reactor with the volume of 10326m3, and a secondary
settler with the height of 4.2m and the diameter of 57m.
The NWTP set-up is essentially similar to Fig. ??. The
main operational parameters from 1999 to 2004 are listed
in Table 2.

Table.2. The main operational parameters from 1999 to
2004
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Fig. 4. Influent qualities in 2003

Description COD BOD5 SS NH4−N
influent quality(mg/L) 292 98 123 45
effluent quality(mg/L) 61 17 17 22
removal ratio(%) 80 83 86 51

Unit Qin QR Qr Qw

m3/h 2278~3700 1389~3700 2778~7400 760

Steady simulation should be implemented before dynamic
one to obtain the initial values of dynamic simulation. The
average influent qualities are taken as inputs of steady
simulation. The resulting steady values of anoxic and
aerobic reactors are shown in Table 3:

Table.3.Steady values of anoxic and aerobic reactors

SS XBH XS XI SNH SI
anoxic 1.2518 3249 74.332 642.4 7.9157 38.374
aerobic 0.6867 3244.8 47.392 643.36 0.1896 38.374

SND XND SO XBA SNO XP Salk
0.7868 5.7073 0.0001 220.86 3.9377 822.19 4.9261
0.6109 3.7642 1.4988 222.39 12.819 825.79 3.7399

There are many missing data and outliers in measured
all-year data in 2003. Principal component analysis based
on EM (Expectation-Maximum) algorithm with iterative
robust least square method was employed to reduce the
influence of noise, outliers and missing data inherent in
measured values, see Zhao et al. [2005]. Pretreated real
data are shown as Fig. 4 and Fig. 5. Heavy repair of
equipment led to mass missing data of effluent qualities
from August to October. Real data still have large offset
after being coordinated.

Real data of influent COD, SS display ascending trend
firstly and then descending one. It is the increase of influ-
ent loads brought by the snow. NH4−N is not effected by
this phenomenon, while shows a fluctuation at the first ten
days of May. Effluent COD, SS are relatively smooth after
A/O biological treatment. It indicates the plant possesses
redundancy ability to fluctuation of water qualities. The
removal efficiency of NH4 − N is low relative to other
contaminations, which should be improved by optimal
control using existing equipment. Dynamic simulation uses
the resulting steady values of steady simulation as initial
values with hydraulic residence time of 10.8h and sludge
age of 15d.
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Fig. 5. Effluent qualities in 2003

100 input/output data pairs from the records in 2003
are used as the training data, and 30 input/output
pairs as the testing data. The input data of NWTP
are Ω = [SI SS XI XS XP XBH XBA SNO SNH

SO SND XND Salk Qin Qw] converted from influent
indices [CODi,NH4,i] of No.4 line and control inputs
U = [Qin, Qw], the output is effluent indices [CODe]. The
relationship between components and water quality COD
is:

COD = SS + SI +XS +XBH +XBA +XP +XI

Modeling NWTP in Fig. ?? via hierarchical neural net-
works is to use neural networks to identify the uncertain
reaction rates of cascade reactor models. The inputs of
anoxic neural blocks are input data Ω of NWTP, the
outputs are reaction rates [r2 r7 r8] under anoxic condition
and the whole outputs of mechanism-based anoxic block
is effluent components of anoxic reactor. Here we use
three single-output multilayer neural networks as anoxic
neural blocks, then the outputs of neural blocks are used
as the inputs of corresponding mechanism model. The
inputs of aerobic neural blocks are from the outputs of
mechanism-based anoxic block, which is in accordance
with the structure of hierarchical neural networks and its
outputs are reaction rates [r2 r6 r9 r10] under aerobic
condition. Four single-output multilayer neural networks
are used as aerobic neural blocks. Similarly, the outputs of
mechanism-based aerobic block are effluent components
of corresponding model, then taken as the inputs of sec-
ondary settler. The final output of cascade process is efflu-
ent COD. 30 nodes in hidden layer of each neural network
are selected, and the learning algorithm is error back-
propagation learning law similar to (14). Activation vector
functions φ are selected as φi(·) = tanh(x) = ex−e−x

ex+e−x , so
φ0i(·) = sech(x) = 2

ex+e−x . The modeling results of effluent
COD are shown in Fig.6.

The modeling error is introduced by the following reasons:
1) Wastewater treatment process suffers from external dis-
turbances such as temperature, influent qualities, influent
flow, operational status as well as internal factors like mi-
croorganism activities etc.; 2) Each reactor is supposed to
be completely mixed regardless of the influences of stream
status like back-mixing on the microorganism distributions
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Fig. 6. The modeling results via hierarchical neural net-
works

and reaction rates; 3) The number of imaginary reactor
series is less, which restricts the model precision; 4) It
is supposed that there are no biological reactions in sec-
ondary settler; 5) Secondary settler adopts solid flux model
of one-dimension gravity, regardless of the influences of
stream status like diffusion on the solid settling velocity;
6) The number of separated settler layers is small, while
30~50 layers are appropriate for considerable accuracy; 7)
Real data are corrupted by noise as well as missing data
and outliers. 8) The offset is introduced when real data are
coordinated using statistical methods. These influencing
factors to modeling error can be minimized further via
other intelligent methods as error compensator like neural
network, fuzzy rule and expert system.

5. CONCLUSIONS

The contributions of this paper are that a new neural
model for cascade process is proposed based on a mech-
anism model which has hierarchical structure; the mech-
anism model is connected with neural network in serial
form; the stability of the identification algorithm is proven.
Real data of wastewater treatment plant is applied to
illustrate the modeling approach.
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