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Abstract: Although neural networks are universal approximators, they are black-box models
and it is difficult to obtain a suitable neural structure for a special unknown nonlinear system.
Since many physical systems can be modeled by mechanistic models, we use these information
to modify the normal neural identifiers and propose a novel neural modeling approach in this
paper. This model includes a linear model which is linearized from the mechanistic model and a
multilayer neural network. By Lyapunov stability approach, we prove that this hybrid neuro is
stable in present of parameter and structure uncertainties. Then we apply these theory results
on rare-earth extraction process. The results of application show that this new method can be
used as soft-sensor of complex nonlinear systems.

1. INTRODUCTION

Element component content (ECC) is an important qual-
ity index for the rare-earth extraction process. There
exit strong coupling, nonlinear, large time delay between
ECC and solvent flow-rate, material liquid flow-rate and
hydrochloric acid flow-rate, see Chai et al. [2004]. ECC
also varies with the disturbances of solvent saponification
degree and feed-in compositions etc. And it is hard to be
measured online. Mjalli et al. [2005] proposed that this
relation can not be described by precise model.

In order to describe the extraction process, many modeling
methods are proposed. The population balance equation
model is developed to describe the hydrodynamics and
mass transfer of extraction process, see Tsouris et al. [1994]
and Weinstein et al. [1998]. And the pulsed-flow model
has also been used to predict the operating conditions and
performance of the extractive separation of the rare earth
metals by Wichterlova et al. [1999]. Recently a rigorous
model for dynamic simulation of extraction process em-
ploys an improved detailed stage-wise mixing stage with
back mixing and it takes into account the variation in
hydrodynamics, mass transfer, and physical properties, see
Mjalli et al. [2005].

Generally the exact mathematical model for rare-earth
extraction process is too complex to be handled analyt-
ically. A common method is to use linear model, but the
modeling error is relative big. Results show that neural
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network technique seems to be very effective to model a
broad category of complex nonlinear systems when we do
not have complete model information. A recent modeling
of rare-earth extraction process by neural network is intro-
duced by Giles et al. [1996]. But the lack of a process-based
internal structure is a liability for the neural network when
faced with sparse, noisy data. Insufficient data hamper
the accuracy of a neural network because the network
relies completely on the data when inducing process be-
havior. While it is a feasible approach by combining prior
knowledge with neural networks to estimate the ECC on-
line. It has more priorities comparing with prior knowledge
based model or neural networks used along the papers of
Thompson et al. [1994] and Oliveria et al. [2004]. The in-
clusion of prior knowledge is to improve the neural network
estimations when trained on sparse and noisy process data.
Prior knowledge enters the hybrid model as a linear model.
The linear model controls the extrapolation of the hybrid
in the regions of input space that lack training data. The
neural network compensates for inaccuracy in the prior
model.

Neuro modeling approach uses the nice features of neural
networks, but the lack of mathematical model for the
plant makes it hard to obtain theoretical results on stable
learning. It is very important to assure the stability of
neuro modeling in theory before we use them in some
real applications. Discrete-time neural networks are more
convenient for real applications. Two types stability for
discrete-time neural networks were studied. The stability
of neural networks can be found in the papers of Feng
et al. [1999] and Suykens et al. [1997]. The stability of
learning algorithms was discussed by Jin et al. [1999] and
Polycarpou et al. [1992]. Polycarpou et al. [1992] assumed
neural networks could represent nonlinear systems exactly,
and concluded that backpropagation-type algorithm guar-

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 11427 10.3182/20080706-5-KR-1001.1625



anteed exact convergence. It is well known that normal
identification algorithms are stable for ideal plants, see
Ioannou et al. [1996]. In the presence of disturbances or
unmodeled dynamics, these adaptive procedures can go to
instability easily. Several robust modification techniques
were proposed by Ioannou et al. [1996]. The weight ad-
justing algorithms of neural networks is a type of parame-
ters identification, the normal gradient algorithm is stable
when neural network model can match the nonlinear plant
exactly, see Polycarpou et al. [1992].

In this paper, a hybrid neuro is proposed by combining a
linear model with a multilayer neural network. And Lya-
punov stability approach is applied to obtain stable learn-
ing laws for the ECC estimator for rare-earth extraction
process. An application study of a La, Ce, Pr, Nd tetra-
component for rare-earth extraction process is conducted
to illustrate the hybrid neuro modeling approach.

2. MATHEMATICAL MODELS OF RARE-EARTH
EXTRACTION PROCESS

In order to model the rare-earth extraction process by
input/output data, we first study mathematical models
of extraction process. In the process of rare earth ex-
traction, a single mixer-settler cannot achieve an effective
separation due to the small separation coefficients between
different elements. As such, some mixer-settlers should
be connected in cascade. A typical rare-earth extraction
process is illustrated in Fig.1, which involves n extraction
stages and m washing stages, where the material to be
extracted in aqueous phase gets in touch with the organic
phase continuously. As a result, the purified products in
aqueous and organic phase are exported from the 1st stage
and the (n+m)th stage respectively.

The blank organic phase flow rate VS is added to the 1st
stage and flows from the left to the right, whereas the
material liquid flow rate VF containing the elements to
be separated is added to the nth stage and flows from
the right to the left. The hydrochloric acid flow rate
VW is added to the (n +m)th stage, flowing against the
organic phase and converging with the material liquid at
the nth stage. In the extraction section, the distribution
rates between different elements in aqueous and organic
phase make many easy-extracted elements and partial
hard-extracted elements enter into organic phase. In the
scrubbing section, the hard-extracted elements can be
washed down into aqueous phase much more than the easy-
extracted elements under certain conditions. Although
easy-extracted elements are partially washed down into
aqueous phase in the scrubbing section, the aqueous phase
from the scrubbing section enters into the extraction
section along with the material liquid, and the washed
down elements is extracted again. The extraction section
can ensure the recovery ratio of easy-extracted elements
and make more of them into organic phase, whilst the
scrubbing section is utilized to ensure the quality of
products and wash more hard-extracted elements down
to purify the easy-extracted elements.

The rare-earth cascade extraction process is a typical mul-
tistage process, where the concentrations of the elements in
aqueous and organic phases at every stage can be regarded
as Stephanopoulos [1984].
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Fig. 1. Schematic diagram of rare-earth extraction process
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Fig. 2. Schematic diagram of the stagewise extraction with
backmixing flow

dni
dt

=
X
inlets

ci,kFk −
X

outlets

ci,lFl − riV (1)

where ni is the molar accumulation of component i in
mixer- settlers, ci,k and ci,l are the molar concentrations
of the ith component in the kth inlet stream and the lth
outlet stream respectively, Fk and Fl are the volumetric
flow rates of the kth inlet stream and the lth outlet
stream respectively, ri is the mass-transfer velocity, V is
the apparatus volume.

The above rare-earth extraction process is stage-wise with
back mixing flow, it can be simply described as Fig.2.
The entrainment between aqueous and organic phases
should be considered, and elements transfer ratio is used
to describe the mass transfer between the two phase.
According to the mass balance equation (1), a dynamic
model with back mixing flow for rare-earth extraction
process is established. Firstly, the basic Assumptions is
necessary.

(1) Flow non-idealities are handled by incorporating back-
flow streams opposite to the direction of the main flow
streams. The values of these streams are expressed as
fractions of the main flow streams using fractional symbol
αc and αd.

(2) Mass transfer coefficient K is calculated for each stage
as function of physical properties, operational parameters
and stage design specifications.

(3) Equilibrium between phases at each stage is expressed
as a distribution coefficient D = y

x . Its value is calculated
for each stage from experimental data as a function of
solute concentration in the refined phase.

(4) Hydrodynamics within stages is expressed as a frac-
tional volume hold-up εi and calculated for each stage.
The hold-up is as a function of phase flow ratio.
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(5) The physical properties of the two phases are consid-
ered as variables throughout the mixer-settlers and are
calculated for each stage as functions of concentration,
mixer-settler geometry, and operational parameters.

(6) In order to approximate the damping and delaying
action of the phase separation volumes (single phase)
located between the interfaces and the conductor ends,
a form of delay must be added to the theoretical model.
This is attained by considering the volume between the
interface and the sampling tube as comprising a perfectly
mixed, single-phase stage without mass transfer.

In Fig.2, the holdup volume and of aqueous phase and
organic phase at each stage are constants, while the flow
rates of organic phase VS,j, the material liquid VF,j and
the hydrochloric acid VW,j are assumed to be invariant
instantaneously. By step-wise extraction model with back
mixing flow and using equation (1), the high-order nonlin-
ear dynamic model of the ith component in the jth stage
is obtained as Mjalli et al. [2005].

hA,j
dxAi,j
dt

= VA,j+1(1 + αA,j)x
A
i,j+1 + VA,j−1αA,jx

A
i,j−1

−VA,j(1 + 2αA,j)xAi,j −QA
i,j

(2)

hO,j
dxOi,j
dt

= VO,j−1(1 + αO,j)x
O
i,j−1 + VO,j+1αO,jx

O
i,j+1

−VO,j(1 + 2αO,j)xOi,j +QA
i,j

(3)
where hA,j = V (1 − εj), hO,j = V εj are holdup volume
of the aqueous and organic phase in the jth stage, xAi,j ,
xOi,j are concentrations of the ith component at the jth
stage, and the balance equation between xAi,j and xOi,j
is xOi,j = Di,j · xAi,j , QA

i,j represents the mass transfer
between aqueous and organic phase, it can be described
as Srivastava et al. [2000].

QA
i,j = Vc

dxAi,j
dt

= Koc,jαjV (x
A
i,j − xAi,j) (4)

where Vc is the volume of continuous phase , V is the
volume of mixer-settler, Koc,j is the total mass transfer
coefficients, xAi,j is the aqueous balance concentration of
the ith element in the jth stage.

At stage 1, n and n + m, the boundary equations are
expressed as

hA,1
dxAi,1
dt

= (VF,2 + VW,2)(1 + αA,1)x
A
i,2 − (VF,1 + VW,1)

×(1 + αA,1)x
A
i,1 −QA

i,1

(5)

hO,1
dxOi,1
dt

= VSx
O
i,0 + VS,2αO,1x

O
i,2 − VS,1(1 + αO,1)x

O
i,1

+QA
i,1

(6)

hA,n
dxAi,n
dt

= VFxi,F + VW,n+1(1 + αA,n)x
A
i,n+1 − (VF,n

+VW,n)(1 + 2αA,n)x
A
i,n + (VF,n−1 + VW,n−1)αA,nx

A
i,n−1

−QA
i,n

(7)

hO,n
dxOi,n
dt

= VS,n−1(1 + αO,n)x
O
i,n−1 + VS,n+1αO,nx

O
i,n+1

−VS,n(1 + 2αO,n)xOi,n +QA
i,n

(8)

hA,n+m
dxAi,n+m

dt
= VWxAi,n+m+1 + VW,n+m−1αA,n+m

×xAi,n+m−1 − VW,n+m(1 + αA,n+m)x
A
i,n+m +QA

i,n+m

(9)

hO,n+m
dxOi,n+m

dt
= VS,n+m−1(1 + αO,n+m)x

O
i,n+m−1

−VS,n+m(1 + αO,n+m)x
O
i,n+m +QA

i,n+m

(10)
where xOi,0 and xAi,n+m+1 are boundary concentrations.

The extraction purpose is to improve the component
contents of hard- and easy-extracted elements in refined
and extract. The hard-extracted component content P1
and easy-extracted component content P2 is defined as

P1 = 100×
qX

i=1

xAi,1/

pX
i=1

xAi,1 (11)

P2 = 100×
pX

i=q+1

xOi,n+m/

pX
i=1

xOi,n+m (12)

where q(q < p) is the number of hard-extracted elements,
and p− q is the number of easy-extracted elements.

3. MODELING OF RARE-EARTH EXTRACTION
PROCESS VIA HYBRID NEURO

The mathematical models discussed above work only un-
der some special conditions, espacially some kinetics pa-
rameters can not be measured, and the calculation results
are ideal. In real application, we have only input/output
data. In this case a linear model and a neural network are
used to modeling the whole extraction process. The linear
model is for the linear part of the step-wise model (2) or
(3) and the static neural network can be used to identify
the nonlinear part (4). A new stable learning algorithm
will be presented for static hybrid neuro modeling.

The properties of ECC can be written in the following
form

y(k) = Φ[X(k)] (13)
where X(k) = [u(k), u(k − 1), u(k − 2), · · · ]T , y(k) is the
element component content (ECC), Φ(·) is an unknown
nonlinear function representing the rare-earth extraction
properties, u(k) is measurable vector inputs or distur-
bances. We consider a linear model and a multilayer neural
network to model the extraction properties.

The mechanistic model is linearized as an ARMAX modelbyl(k) = −A1by(k − 1)− · · ·−AnAby(k − nA)
+B0u(k − d) + · · ·+BnBu(k − d− nB)

(14)

where u = [u1(k), u2(k), u3(k), · · · ]T , d is the time delay.
The above model (14) can be rewritten as a vector formbyl (k) = θkXl(k) (15)

where θk = [−A1 · · ·AnA , B0 · · ·BnB ],Xl(k) =
£byTl (k − 1)

· · · byTl (k − nA) , u
T (k − d) · · ·uT (k − d− nB)

¤T
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The linear model is liable for the process-based internal
structure. Then we use a neural network to compensate
the modeling error of the linear mechanistic model (15)byn (k) =Wkφ [VkXn (k)] (16)
where the scalar output byn (k) and vector input Xn (k) ∈
Rn×1 is defined in (13), the weights in output layer are
Wk ∈ R1×m, the weights in hidden layer are Vk ∈ Rm×n, φ
is m−dimension vector function. The typical presentation
of the element φi(.) is sigmoid function. According to the
Stone-Weierstrass theorem Cybenko [1989], this general
nonlinear smooth function (13) can be written as

y (k)− byl =W ∗φ [V ∗Xn (k)]− μ (k) (17)
where V ∗ and W ∗ are sets of unknown weights which may
minimize the modeling error μ (k). Or

y (k) = θ∗Xl(k) +W ∗φ [V ∗Xn (k)]− μ (k)

where θ∗ is the ideal value of θk for the linear mechanistic
model (15).

First we fix the hidden weight we V 0, let us define the
identification error as

e (k) = (byn (k) + byl)− y (k) (18)
So the error dynamic is

e (k) = eθkXl(k) +fWkφ
£
V 0Xn (k)

¤
+ μ (k) (19)

where fWk =Wk −W ∗, eθk = θk − θ∗.

In this paper we are only interested in open-loop identifica-
tion, we can assume that the plant (13) is bounded-input
and bounded-output stable, i.e., y(k) and u(k) in (13) are
bounded. Since Xn(k) = [u(k), u(k − 1), u(k − 2), · · · ]T ,
Xn(k) is bounded. By the boundedness of the active func-
tion φ, we assume that μ (k) in (19) is bounded.

3.1 Parameter Uncertainty

Let us first assume that exact linear mechanistic model and
neural network model of the plant are available (without
unmodeled dynamics μ (k) = 0), i.e., there exist weights θ∗

and W ∗ such that the nonlinear system (13) is completely
described by these two models.

The following theorem gives a new stable learning algo-
rithm for the hybrid neuro identification.
Theorem 1. If we use the linear mechanistic model (15)
and the neural network (16) to model the nonlinear system
(13), and there only exits parameter uncertainty, the
following gradient updating law can make identification
error be asymptotic stable.

θk+1 = θk − ηke (k)Xl (k)
Wk+1 =Wk − ηke (k)φ

£
V 0Xn (k)

¤ (20)

where 0 < ηk =
η0

1 + kXlk2 + kφk2
, 0 < η0 ≤ 2.

Proof. Lyapunov function is selected as

Vk =
°°°eθk°°°2 + °°°fWk

°°°2 (21)

From the updating law, we can obtaineθk+1 = eθk − ηke (k)Xl (k) ,fWk+1 = fWk − ηke (k)φ
£
V 0Xn (k)

¤ (22)

From (19) we know e (k) = eθkXl(k)+fWkφ
£
V 0Xn (k)

¤
,hence

Vk+1 − Vk =
°°°eθk+1°°°2 + °°°fWk+1

°°°2 − °°°eθk°°°2 − °°°fWk

°°°2
= η2ke (k)

2 kXl (k)k2 − 2ηktr
neθkXl (k) e (k)

o
+η2ke (k)

2 kφk2 − 2ηktr
nfWkφe (k)

o
= η2k

³
kX1 (k)k2 + kφk2

´
e (k)

2

−2ηktr
n³eθkX1 (k) +fWkφ

´
e (k)

o
= η2k

³
kX1 (k)k2 + kφk2

´
e (k)2 − 2ηke (k)

2

= −ηk

Ã
2− η0

kX1k2 + kφk2

1 + kX1k2 + kφk2

!
e (k)

2

(23)
When 0 < η0 ≤ 2, Vk+1 − Vk ≤ 0. From

Vk+1 − V1 =
kX
i=1

−ηi

Ã
2− η0

kXlk2 + kφk2

1 + kXlk2 + kφk2

!
e (i)

2

and the boundedness of ηk

Ã
2− η0

kXlk2 + kφk2

1 + kXlk2 + kφk2

!
,

limk→∞ Vk and V1 are bounded, we can obtain

lim
k→∞

||e(k)||→ 0 (24)

3.2 Unmodeled Dynamics Present

If the linear mechanistic model and neural network model
can never follow the nonlinear system (13), the modelling
error is defined as (19). The following dead-zone modifi-
cation gives a stable backpropagation-like algorithm for
training the neural network and the linear mode.
Theorem 2. If we use the linear mechanistic model (15)
and the neural network (16) to model the nonlinear system
(13), the following dead-zone gradient updating law can
make identification error bounded

θk+1 = θk − ηke (k)Xl (k)
Wk+1 =Wk − ηke (k)φ

£
V 0Xn (k)

¤ (25)

where

ηk =
skη0

1 + kXlk2 + kφk2
,

sk =

⎧⎨⎩ 1 e (k)2 ≥ μ

1− η0
0 otherwise

0 < η0 ≤ 1, μ is an upper bound of μ(k)2. The average of
the identification error satisfies

J = lim sup
T→∞

1

T

TX
k=1

e2 (k) ≤ μ

1− η0
(26)

Proof. Lyapunov function is selected as

Vk =
°°°eθk°°°2 + °°°fWk

°°°2 (27)

Following the same process as Theorem 1, but e (k) =eθkXl(k) +fWkφ
£
V 0Xn (k)

¤
+ μ (k)
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Vk+1 − Vk = η2k

³
kXl (k)k2 + kφk2

´
e (k)2

−2ηktr
n³eθkXl (k) +fWkφ

´
e (k)

o
≤ η2k

³
kXl (k)k2 + kφk2

´
e (k)

2 − 2ηke (k)
2

+2ηk kμ (k)k ke (k)k
≤ η2k

³
kXl (k)k2 + kφk2

´
e (k)2 − ηke (k)

2

+ηkμ (k)
2

= −ηk (1− η0) e (k)
2
+ ηkμ

= −ηk
h
(1− η0) e (k)

2 − μ
i

(28)

with 1 ≥ η0 > 0, when (1− η0) e (k)
2−μ ≥ 0, Vk+1−Vk ≤

0, then θk andWk are bounded. Therefore e(k) is bounded.
If (1− η0) e (k)

2 − μ < 0, then, θk+1 = θk, Wk+1 =Wk,so
θk and Wk are also bounded, and e (k)

2
< μ

1−η0
< ∞ is

also bounded.

(28) can be rewritten as

∆Vk ≤ −ηk (1− η0) e
2 (k) + ηkμ (29)

Summarizing (29) from 1 up to T , and by using VT > 0
and V1 is a constant, we obtain

VT − V1 ≤ −ηk (1− η0)
TX
k=1

e2 (k) + Tηkμ

ηk (1− η0)
TX
k=1

e2 (k) ≤ V1 − VT + Tηkμ

≤ V1 + Tηkμ

(30)

(26) is established.
Remark 1. (25) is the gradient descent algorithm, which
the normalizing learning rate ηk is time-varying in order
to assure the identification process is stable. This learning
law is simpler to use, because we do not need to care about
how to select a better learning rate to assure both fast
convergence and stability. No any previous information is
required.
Remark 2. If we also want to train the hidden weights
Vk, with the similar approach as in Yu et al. [2003],
the following backpropagation-like algorithm can make
identification error e (k) bounded

θk+1 = θk − ηke (k)Xl (k)
Wk+1 =Wk − ηke (k)φ [VkXn (k)]
Vk+1 = Vk − ηke (k)φ

0WT
k X

T
n (k)

(31)

where

ηk =
skη0

1 + kXlk2 + kφk2 +
°°φ0VWkXT

n

°°2 ,
sk =

⎧⎨⎩ 1 e (k)2 ≥ μ

1− η0
0 otherwise

where 0 < η0 ≤ 1.

4. APPLICATION STUDY

The hybrid neuro is used to estimate element component
content (ECC) of hard—extracted component B(La, Ce)
or easy-extracted component A(Pr, Nd) for a La, Ce,
Pr, Nd tetra-component extraction production line in
Jiangxi Province, South China. The extraction process
under consideration is illustrated as Fig.1. The organic,

material liquid and hydrochloric acid flow rates are added
to the extraction process at the 1st, 20th and 48th stage.
At the same time the hard—extracted component and easy-
extracted component are exported from the 1st and 48th
stage respectively. We mainly use the proposed hybrid
neuro to estimate ECC of component B, and the similar
result can also be drawn on component A by the similar
modeling procedure.

The data vector of the linear model Xl(k) = [byl (k − d) ,
u1(k − 2), u1(k − d − 1), u2(k − n − 1), u2(k − n − d),
u3(k − n − m − 1), u3(k − n − m − d), u4(k − n − 1),
u5(k − n− d)]T , and data vector of the multilayer neural
network Xn(k) = [u1(k), u2(k), u3(k), u4(k), u5(k)]

T . Thebyl is ECC of component B or component A via linear
model, ui(i = 1, · · · , 5) are measurable inputs, which are
solvent flow rate VS , material liquid flow rate VF , hy-
drochloric acid flow rate VW , and measurable disturbances,
which are material compositon xA,F and xB,F . The time
delay d = 48, n = 25,m = 23. We use u, y data to train
following hybrid neuro modelby = θkXl(k) +Wkφ [VkXn (k)] (32)

where Vk ∈ R9×5,Wk ∈ R1×9,the initial conditions for the
elements of V 0T ,Wk, Vk are random number in [0, 1]. The
learning algorithm is (31), e(k) = by(k)−y(k), and learning
rate

ηk =
sk

1 + kXlk2 + kφk2 +
°°φ0VWkXT

n

°°2 ,
sk =

½
1 e (k)2 ≥ 1
0 otherwise

where φ(·) = tanh(x) = ex−e−x
ex+e−x , φ

0
(·) = sech(x) = 2

ex+e−x .

We use the following mean squared error for finite time to
calculate the average modeling error

J(N) =
1

2N

NX
k=1

[by(k)− y(k)]2 (33)

where N is finite time.

The first 170 groups of data sampled at 24-hour intervals
are used to train the hybrid neuro. The other 50 groups of
data are used to verify the hybrid neuro. In the training
phase, the average modeling error is shown in Fig.3. Mod-
eling errors depend on the complexity of the particular
model selected and how close it is to the actual plant. In
this application the modeling error is bigger in verifying
phase than training phase. The worse results due to the
hybrid neuro cannot match the plant exactly. From the
point of identification, it is because the parameters are
not very close to their ideal value. We should mention that
structure the of multilayer neural network also influences
modeling error, but does not destroy stability of identifi-
cation process.

The verified result is shown in Fig.4. Theorem 2 gives a
necessary condition of η for stable learning, 0 < η ≤ 1. The
hybrid neuro identification discussed in this paper is on-
line, we do not study the convergence of the weight, we care
about the identification error e(k) shown in Fig.5. Under
the same verifying conditions, the root mean squared error
of hybrid neuro and multilayer neuro are 0.0052403 and
0.0058344 respectively. In training phase and verifying
phase, the hybrid neuro simultaneity represents the superi-

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

11431



0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0
0

1

2

3

4

5

6

Tra ining  T im e  (N )

J(
N

) M ulti la ye r ne ura l ne tw o rk

H yb rid  ne ura l ne tw o rk

Fig. 3. Modeling error of hybrid neuro and multilayer
neuro.
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Fig. 4. Estimation of element component content (ECC)
via neural network.
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Fig. 5. Error comparison between hybrid neuro and mul-
tilayer neuro.

ority to traditional multilayer neural network. It is mainly
attributed to the introducetion of process-based internal
structure.

5. CONCLUSION

The main contributions of this paper are: 1) A novel
mechanism based neural network is proposed to realize
grey-box identification. 2) The stability of this modeling
method is proven in present of parameter and structure

uncertainties. 3) This method is successfully applied on a
rare-earth extraction process. Comparing with measured
data from an extraction site, the validity and precision of
the hybrid neuro is verified.
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