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Abstract: Ball and beam system is one of the most popular and important laboratory models
for teaching control systems engineering. There are two problems for ball and beam synchronized
control: 1) many laboratories use simple controllers such as PD control, and theory analysis is
based on linear models, 2) nonlinear controllers for ball and beam system have good theory
results, but they are seldom used in real applications. Almost nobody realize synchronized
control for ball and beam systems. In this paper we first use PD control with nonlinear exact
compensation for the cross-coupling synchronization. Then a RBF neural network is applied
to approximate the nonlinear compensator. Two types of controller are proposed: parallel and
serial PD regulators. The synchronization stability of two ball and beam systems are discussed
. Real experiments are applied to test our theory results.

1. INTRODUCTION

Ball and beam system is widely used because many impor-
tant classical and modern design methods can be studied
based on it. It has a very important property: open loop
unstable, because the system output (the ball position)
increases without limit for a fixed input (beam angle).
The control job is to automatically regulate the position
of the ball by changing the position of the motor. This
is a difficult control task because the ball does not stay
in one place on the beam when it is tilted. This standard
experiment can be approximated by a linear model, many
universities use it for education of classical control theory.
Linear feedback control or PID control can be applied, the
stability analysis are based on linear state-space model or
transfer function [18].

Resent results show that the stabilization problem of the
ball and beam can be solved by nonlinear controllers. Ap-
proximate input-output linearization used state feedback
to linearize ball and beam system first, the a tracking
controller based on the approximates system can stabilize
the ball and beam system [9]. But this controller is very
complex for real application. In order to solve transient
performance problem, energy shaping method uses a non-
linear static state feedback that is derived from the inter-
connection and damping assignment [8]. But it requires
the kinetic and potential energies shaping [17]. Sliding
mode controller can overcome the problem associated with
singular states [11]. Some intelligent controllers for ball
and beam can also be found, such as fuzzy control [23],
sliding mode fuzzy control, neural control [3], fuzzy neural
control [5], etc.

Synchronization can be defined as the mutual time confor-
mity of two or more processes [1]. Different kinds of syn-
chronization can be defined based on the type of intercon-
nections in the system [6][19][22]. In case of disconnected

systems, synchronous behavior is called natural synchro-
nization. If the synchronization is achieved by proper
interconnections, i.e., without any artificially introduced
external action, then the system is called self-synchronized.
If there exist external actions (controls) and/or artificial
interconnections then the system is called controlled syn-
chronization. It has two formulation: internal (mutual)
synchronization and external synchronization. For the first
type, all synchronized objects occur on equal terms in the
unified multi-composed system, e.g., cooperative systems.
For the second type, one object is more powerful than the
others and its motion can be considered as independent of
the motion of the other objects, e.g., master—slave systems.
The idea of cross-coupling control was first introduced by
[12]. There are some examples for machine tools, such as
in [6], [13], [22], [21] and [19].

This paper first focuses on internal controlled synchroniza-
tion of under actuated mechanical systems: ball and beam
system. A synchronization controller based on the so-
called cross-coupling control plus a nonlinear compensator
is proposed, coupling errors are used to induce the mu-
tual synchronization behavior. We analyze the stability of
the internal controlled synchronization, with the complete
nonlinear models of the ball and beam systems. Since the
dynamic equations of ball and beam systems are not suit-
able for Lyapunov method, some special transformation
are applied.

But unfortunately the above controller requires a ball
and beam model to compensate for the uncertainties, and
the compensator is very complex. In this paper, a new
modified algorithm is proposed which overcomes this lim-
itation of nonlinear ball and beam control. A RBF neural
networks is used to estimate the compensator. Unlike other
work which used neural networks to compensate the un-
certainties [21], a new proof of stability is presented using
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Fig. 1. Ball and beam systems

Lyapunov analysis. Finally, results from experimental tests
carried out to validate the controller are presented.

2. SYNCHRONIZATION OF TWO BALL AND BEAM
SYSTEMS

The control objective of ball and beam systems described
schematically in Fig.1 is to turn the angle of gear θ,
and the angle of the beam α, such that the ball can
stay in a position. When the angle is changed from the
horizontal position, gravity causes the ball to roll along
the beam. The synchronization control problem is to
design a controller which computes the applied voltage Ui
for the motor i to move the ball i in such a way that
the synchronization error reaches zero. The electrical and
mechanical subsystems are coupled to each other through
an algebraic torque equation

U = Lm
·
Im +RmIm +Kb

·
θ

1

Kg

µ
Jm

··
θ +Bm

·
θ

¶
= τm

τm = KmIm

(1)

where U is input voltage, Im is armature current, Rm and
Lm are the resistance and inductance of the armature, Kb

is back emf constant,
·
θ is angular velocity. Compared to

RmIm and Kb

·
θ, the term Lm

·
Im is very small. In order

to simplify the modeling and as most DC motor modeling

methods, we neglected the term Lm
·
Im, Kg is gear ratio,

Jm is the effective moment of inertia, Bm is viscous friction
coefficient, τm is the torque produced at the motor shaft,
Km is torque constant of the motor. Assume that there
is no backlash or electric deformation in the gears, the
work done by the load shaft equals to the work done by
the motor shaft, τ = 1

Kg
τm = τm, here τ is the toque

on the frame of ball and beam system. In the absence of
friction or other disturbances, the dynamics of the ball and
beam system can be obtained by Lagrangian method, the
mathematical model of the ball and beam system is given
by ¡

J + Je +mr2
¢ ··
α+ 2mr

·
r
·
α+ ζ cosα = τ

k4
··
r − r

·
α
2
+ g sinα = 0

(2)

where J is the moment of inertia of the beam,
·
α is angle

velocity of the beam, α is the angle of the beam, Je is the
moment of inertia of the ball,

·
r is the velocity of the ball,

r is the position of the ball, m is mass of the ball, M is
mass of the frame, L is longitude of the beam. The beam
angle α and motor position θ, could not be the same, a
general relation between them is given by αγ = θ.
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For the ball and beam system 1 in Fig.1 (a), ζ = mgr +
L
2Mg, because the rotation center of the beam is on one
end side (the gravity of the beam cannot be neglected [24]).

For the ball and beam system 2 in Fig.1 (b), ζ = mgr [9].

Firstly, we discuss the control of one ball and beam system.
Two types of PD controllers will be designed for this
system. The first one is serial PD control which is shown
in Fig.2 a). It has the following form

U = kpm(α
∗ − α) + kdm(

.
α
∗ − .

α) + π (3)
where π is a compensator which can assure asymptotically

stable, α∗ = −kpb
¡
rd − r

¢
−kdb

µ
·
r
d
− ·
r

¶
. The parallel PD

control has the following form

U =
³
−kpmα− kdm

·
α
´
−
∙
kpb
¡
rd − r

¢
+ kdb

µ
·
r
d
− ·
r

¶¸
+π

(4)
For regulation problem the control aim is to stabilize the

ball in a desired position rd, so
·
r
d
= 0. The two PD

controllers can be rewritten in a unique form

U = −a1er + a2
·
r + a3

··
r − a4α− a5

·
α+ π (5)

where for serial PD control a1 = kpmkpb, a2 = kpmkdb +
kdmkpb, a3 = kdmkdb, a4 = kpm, a5 = kdm, for parallel PD
control a1 = kpb, a2 = kdb, a3 = 0, a4 = kpm, a5 = kdm,
ai > 0 (i = 1 · · · 5). In this section, PD regulation for ball
and beam system is proposed. By (1) we have

Km

Rm

µ
U −Kb

·
θ

¶
= τ

The whole ball and beam system is (1) and (2)¡
mr2 + k1

¢ ··
α+ 2mr

·
r
·
α+

µ
mgr +

L

2
Mg

¶
cosα = k2U − k3

·
α

k4
··
r − r

·
α
2
+ g sinα = 0

(6)
where k1 = RmJm

KmKg

L
d + J1, k2 = 1 + Km

Rm
, k3 =

L
d

³
KmKb

Rm
+Kb +

RmBm
KmKg

´
, k4 =

7
5 , ki > 0 (i = 1 · · · 4).

We define

x = [ α r ]
T
, ẋ =

£ .
α ṙ

¤T
, x̃ = [−α r̃ ]

T

The closed-loop system with PD controller (5) is

M(x)
..
x+ C(x,

.
x)

.
x+G(x) = B

∼
x +D (7)
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where

M(x) =

∙
k1 +mr2 −k2a3
k2a3 k4

¸
,

C(x,
.
x) =

∙
k2a5 + k3 −k2a2 + 2mr

.
α

−r .α 0

¸
B =

∙
k2a4 −k2a1
−k2a1 1

¸
, D =

∙
k2π

k2a3
..
α− k2a1α− r̃

¸
,

G(x) =

⎡⎣µmgr +
L

2
Mg

¶
cosα

g sinα

⎤⎦
We have the following stability theorem for one ball and
beam system control.
Theorem 1. The serial or parallel control (5) with the
compensator as if

π =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ṙ
.
αk2

[k2a1α+ 2g sinα− ṙ + r̃]

+
1

k2
[

µ
mgr +

L

2
Mg

¶
cosα− k2a3r̈

−(k1 +mr2)
..
α− 2rṙ .α]

.
α 6= 0

1

k2

µ
mgr +

L

2
Mg

¶
cosα− a2

·
r

.
α = 0

(8)

if the PD gains in (5) satisfy

a4 > k2a
2
1, k2a5 + k3 >

1

4
k22a

2
2 (9)

then the closed-loop system is asymptotically stable with
initial condition 0 ≤ r(0) ≤ L

lim
t→∞

α (t) = 0, lim
t→∞

r (t) = 0

Secondly, we discuss the synchronization of two ball and
beam systems. The synchronization error si is defined as

si = ri − ri, ṡi = ṙi − ṙi, i = 1, 2

Here we only discuss serial PD synchronization control,
see Fig.2 a). For the parallel PD synchronization control
(Fig.2 a)), we can get the similar results, because serial
and parallel controllers have the same form as in (5). The
serial PD synchronization control has the form as
Ui = kpmi(α

∗
i −αi)+kdmi(

.
α
∗
i −

.
αi)+βkpbisi+βkdbiṡi+ π̂i

where πi is a compensator which can assure asymp-
totically stable, β is a synchronization constant, α∗i =

−kpbi
¡
rd − ri

¢
−kdbi

µ
·
r
d
− ·
ri

¶
. The parallel PD synchro-

nization control has the following form

Ui =
³
−kpmiαi − kdmi

·
αi

´
− [kpbi

¡
rd − ri

¢
+kdbi

µ
·
r
d
− ·
ri

¶
] + βkpbisi + βkdbiṡi + πi

The two synchronization controllers can be rewritten
Ui = −a1ir̃i+a2iṙi−a4iαi−a5iα̇i+a6isi+a7iṡi+πi (10)
where for serial synchronization control a1i = kpmikpbi,
a2i = kpmikdbi + kdmikpbi, a3i = kdmikdbi, a4i = kpmi,
a5i = kdmi, a6i = βkpbi, a7i = βkdbi for parallel PD
control a1i = kpbi, a2i = kdbi, a4i = kpmi, a5i = kdmi,
a6i = βkpbi, a7i = βkdbi, aji > 0, j = 1...7, i = 1, 2 ,
β > 0, r̃i = rd − ri. We define

xi = [ αi ri si ]
T
, x̃i = [−αi r̃i −si ]T

The closed-loop system with PD controller (10) is

Mi(xi)
..
xi + Ci(xi,

.
xi)

.
xi +Gi(xi) = Bi

∼
xi +Di (11)

where

Mi(x) =

⎡⎣ k1i +mir
2
i −k2ia3i 0

−k2ia3i k4i + 1 −1
0 −1 1

⎤⎦ ,
Bi =

"
k2ia4i −k2ia1i −k2ia6i
−k2ia1i 2 −1
−k2ia6i −1 1

#

Ci(x,
.
x) =

⎡⎣ k2ia5i + k3i −k2ia2i + 2miri
.
αi −k2ia7i

−ri
.
αi 0 0
0 0 0

⎤⎦ ,
Di =

⎡⎣ k2iπi
r̈i|2 − k2ia3i

..
αi − 2r̃i − k2ia1iαi − si

rd − ri|2 − r̈i|2 − k2ia6iαi

⎤⎦ ,
Gi(x) =

⎡⎢⎣
µ
migri +

Li
2
Mig

¶
cosαi

g sinαi
0

⎤⎥⎦
i|2 = 2 when i = 1, i|2 = 1 when i = 2. We have the
following stability theorem for the synchronization control
of two ball and beam systems.
Theorem 2. The serial or parallel PD synchronization con-
trol (10) with the compensator as

πi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

k2iα̇i
[−ṙiṙi|2 + k2ia1iαiṙi + 2r̃iṙi

+k2ia3i
..
αiṙi − r̈i|2ṙi + g sinαiṙi

−ṡir̃i|2 + r̈i|2ṡi + k2ia6iαiṡi − ṡ2i ]

+
1

k2i
[

µ
migri +

Li
2
Mig

¶
cosαi

+(mi − 1)ri
.
αiṙi]

.
αi 6= 0

1

k2i
(migri +

Li
2
Mig) cosαi − a2iṙi

.
αi = 0

(12)

If the PD gains in (10) satisfy

a4i > max

∙
k2ia

2
1i

2
, a21ik2i + 2a

2
6ik2i + 2 (a1ia6i) k2i

¸
k1ik4i > k22ia

2
3i

then the closed-loop system and the synchronization error
are asymptotically stable with initial condition 0 ≤ r(0) ≤
L

lim
t→∞

αi = 0, lim
t→∞

r̃i = 0, lim
t→∞

si = 0 i = 1, 2 (13)

3. SYNCHRONIZATION WITH NEURAL NETWORK
COMPENSATION

Since the nonlinear compensators (8) and (12) needs the
complete information of the ball and beam system. It
is very difficult to realize these compensations. We will
use Radial Basis Function (RBF) neural networks to
approximate these compensators. The advantages of the
RBF approach, such as the linearity in the parameters and
the availability of the fast and efficient training methods,
have been noted in several publications [10]. RBF neural
networks has one hidden layer and a linear output layer.
The output of neural networks may be presented as

y =
NX
j=1

wjφj(V x) + b (14)

whereN is hidden nodes number, wj is the weight connect-
ing hidden layer and output layer. x is input vector x ∈ <m
(m is input node number), V ∈ <N×m is the weight
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matrix in hidden layer, b is the threshold. The significance
of the threshold is that the output values have nonzero
mean. It can be combined with the first term as w0,j = b,

φ0(V x) = 1, so y =
NP
j=0

wjφj(V x). φj(V x) is radial basis

function which we select it as Gaussian function

φj(Vixinn) = exp

(
kVixinn − cjk

2σ2j

)
(15)

where cj and σ2j represent the center and spread of the
basis function,

xinn =
£
αi, α̇i, α̈i, ri, ṙi, r̃i|2, ṙi|2, r̈i|2, ṡi, s

¤T
RBF neural networks compensation does not require struc-
ture information of the uncertainties [10]. According to the
Stone-Weierstrass theorem [4], the nonlinear compensator
πi in (12) can be written as neural networks (14) form

−π̂i (xinn)− s2 =W ∗Ti φi(V
∗T
i xinn) + ηi, i = 1, 2 (16)

where W ∗i , V
∗
i are some fixed bounded weights, ηi is the

approximated error, whose magnitude also depends on the
values of Ŵt and V̂t, ηi is assumed to be quadratic bounded
as

η2i ≤ η̄i (17)
where η̄i is a positive constant, πi can be estimated by
ŴT

it φi(V̂
T
it xinn), Ŵ

T
it and V̂ T

it are time-varying weights of
the neural networks. It is clear that all Gaussian function,
commonly used in neural networks, satisfy Lipschitz con-
dition
φ̃i = φi(V

∗T
it xinn)−φi(V̂ T

it xinn) = DσiṼ
T
it xinn+νσi (18)

where Ṽit = V ∗it − V̂it, Dσi =
∂φTi (Z)
∂Z |Z=V̂ T

t xinn

kνσik2Λσi = νTσiΛσiνσi ≤ η̄σi (19)
where η̄σ is a positive constant. We have the following
relation

W
∗T
i φi(V̂

∗T
i x)− ŴT

i φi(V̂
T
i x)

= W̃T
i φi(V̂

T
i xinn) +W ∗Ti φ̃i

= W̃T
i φi(V̂

T
i xinn) +W ∗Ti DσiṼ

T
i xinn +W

∗T
i νσi

= W̃T
i φi(V̂

T
i xinn) + ŴT

i DσiṼ
T
i xinn

+W̃T
i DσiṼ

T
i xinn +W

∗T
i vσi

(20)

where W̃i = W ∗i − Ŵi. In regulation case , i.e. xd2 = 0,
the synchronization control with RBF neural network
compensation can be expressed as

Ui = −a1ir̃i + a2iṙi + a3
..
r − a4iαi

−a5iα̇i + a6isi + a7iṡi − ŴT
it φi(V̂

T
it xinn)

(21)

First we consider a simple case, V̂it = I. The following
theorem gives a stable learning algorithm of the neural
network compensator.
Theorem 3. The PD neural network cross-coupling con-
trol, serial or parallel as in (21) with the following adap-
tation law

.
∧
W i = k2iα̇iΓiφi(xinn) (22)

where Γi is the learning rate, Γi > 0,

xinn =
£
αi, α̇i, α̈i, ri, ṙi, r̃i|2, ṙi|2, r̈i|2, ṡi

¤T
and the condition:

a4i > max

∙
k2ia

2
1i

2
, a21ik2i + 2a

2
6ik2i + 2 (a1ia6i) k2i

¸
,

k1ik4i > k22ia
2
3i, k2ia5i + k3i >

k2i
2

can guarantee stability of the ball and beam system (6)
and synchronization error converges

lim sup
T→∞

1

T

Z
T
0 s

2dt ≤ k2i
2
η̄i (23)

from any well defined set of initial conditions.

Now we consider multilayer case, V̂t 6= I, i.e., there
exist hidden layers. The following theorem gives a stable
learning algorithm of the neural compensator.
Theorem 4. The PD neural network cross-coupling con-
trol, serial or parallel as in (21) with the following adap-
tation law

.
∧
W i = Γwi[

.
αik2iφi(V̂

T
i xinn) +

.
αik2iDσiṼ

T
i xinn]

.
∧
V i = Γvi[

.
αik2ixinnŴ

T
i Dσi]

(24)

where Γvi, Γwi are learning rates, Γvi,Γwi > 0, and the
condition:

a4i >
k2ia1i

2

2
,

a4i > k22ia
2
3i

k2ia5i + k3i >
k2i
2

can guarantee stability of the ball and beam system (6)
and synchronization error converges to

lim sup
T→∞

1

T

Z
T
0 s

2dt ≤ k2i
2
η̄i + η̄σi (25)

from any well defined set of initial conditions.
Remark 1. The error will converge to the ball radius the
upper bounded of k2i

2 η̄i + η̄σi, and it is influenced by the
prior known matrices W ∗ and V ∗. Theorem 3 shows that
W ∗ and V ∗ do not influence the stability property, we may
select any value for W ∗ and V ∗ at first. From Theorem
2 we know the algorithm (24) can make the identification
error convergent.W ∗ and V ∗ may be selected by following
off-line steps:

(1) Start from any initial value for W ∗ and V ∗

(2) Do on-line identification with W ∗ and V ∗

(3) Let Wt and Vt as new initial conditions, i.e., W ∗ =
Wt, and V ∗ = Vt

(4) If the identification error decreases, repeat the iden-
tification process, go to 2. Otherwise, stop off-line
identification, now Wt and Vt are final values for W ∗

and V ∗.

4. EXPERIMENTAL CASE STUDY

The experiment is carried out on two ball and beam
systems of the Quanser [18] and the Balance Control, see
Fig.3. The configurations of the two ball and beam systems
are different, see Fig.1. The input to the system is motor
control voltage Ui, outputs are the positions of motor (θi)
and ball (ri). Power modules are Quanser PA-0103 with
±12V and 3A output. A/D-D/A board is based on a a Xil-
inx FPGA microprocessor, which is a multifunction analog
and digital timing I/O board dedicated to real-time data
acquisition and control in the Windows XP environment.
The board is mounted in a PC Pentium-III 500MHz host
computer. Because Xilinx FPGA chip supports real-time
operations without introducing latencies caused by the
Windows default timing system, the control program is
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Fig. 3. Two ball and beam controled systems
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Fig. 4. Control without synchronization

operated in Windows XP with Matlab 6.5/Simulink. The
sampling time is about 10ms.

Because of the PD controllers require direct velocity mea-
surements and they are unavailable. We use derivative
block of Simulink to calculate them. This require position
signals are smooth enough, first order low-pass filters are
applied. For motor position we use the following first-order
filter G1 (s) = 7

s+7 . For ball position we use the following
first-order filter G2 (s) = 8

s+8 . For the experimental case
study we use the PD cross-coupling serial control with the
following parameters kpm1 = .7, kdm1 = 0.1, kpb1 = 0.15,
kdb1 = 0.09, kpm2 = .9, kdm2 = 0.065, kpb2 = 0.35,
kdb2 = 0.015, k21 = 2, k22 = 1,Γ1 = diag{.5},Γ2 =
{1.8}, σ1 = σ2 = 1, N1 = 50, N2 = 10, β = 0.5, a constant
reference signal rd = 1. The responses of normal PD
synchronization control and stable synchronization control
proposed in this paper are shown in Fig.4 and Fig.5

We can see that synchronization between the ball and
beam systems is achieved, bounded synchronization error
is obtained and that synchronization error is smaller
and converges faster to a minimum in comparison with
the uncoupled case without compensator. Since in the last
there is not any interaction between the systems.

5. CONCLUSION

In this paper, a stable PD control with RBF neural net-
work compensation is proposed for internal synchroniza-
tion of two under actuated mechanical systems, two ball
and beam systems. It has been shown that the proposed
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Fig. 5. Stable synchronization control with neural network
compensation

synchronization control guarantees stability of the multi-
composed system and synchronization errors, for a well de-
fined set of initial conditions by using Lyapunov’s method
with the complete nonlinear models and neural approx-
imation. Two types of synchronization controllers have
been presented for regulation case. Experimental results
are presented to illustrate the control system stability and
performance.
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6. APPENDIX

Proof. [Proof of Theorem 1] Substitute (5) into (2)

(mr2 + k1)
..
α+ 2mr

.
r
.
α+

µ
mgr +

L

2
Mg

¶
cosα

= −k2a1r̃ + k2a2ṙ + k2a3r̈ − k2a4α− k2a5α̇+ k2π − k3
.
α

k2a3
..
α+ k4

..
r − r

.
α
2
+ g sinα

= k2a3
..
α− k2a1α+ r̃ + k2a1α− r̃

(26)
From (7) we knowM(x) and B are positive definite by the
condition a4 > k2a

2
1. Define a Lyapunov function as

V (x1, x2) = xT2M(x)x2 +
1

2
xT1 Bx1 = ẋTM(x)ẋ+

1

2
x̃TBx̃

(27)
So
·
V = ẍTM(x)ẋ+ ẋTD− ẋTC(x,

.
x)

.
x− ẋTG(x)+ ẋT Ṁ(x)ẋ

Using k4r̈ = −g sinα+ r
.
α
2
,

·
V = − ·

x
T
Q
·
x+

.
αk2π + ṙ [ṙ − k2a1α− 2g sinα− r̃]

+
.
α[(k1 +mr2)

..
α+ k2a3r̈ −

µ
mgr +

L

2
Mg

¶
cosα+ 2rṙ

.
α]

(28)

where Q =

⎡⎢⎣ k2a5 + k3 −
1

2
k2a2

−1
2
k2a2 1

⎤⎥⎦ , it is positive definite
matrix when k2a5 + k3 > 1

4k
2
2a
2
2 . If we choose the

compensator as

A) If
.
α 6= 0 when

π = − ṙ
.
αk2

[ṙ − k2a1α− 2g sinα− r̃]− 1

k2
[(k1 +mr2)

..
α+ k2a3r̈

−
µ
mgr +

L

2
Mg

¶
cosα+ 2rṙ

.
α]

(28) becomes
·
V = − ·

x
T
Q
·
x ≤ 0

B) If
.
α = 0 and

..
α = 0, we assume α 6= 0. From (2) and

(5) we knowµ
mgr +

L

2
Mg

¶
cosα = −k2a1er+k2a2 ·r+k2a3··r−k2a4α+k2π

We select π = −a2
·
r+ 1

k2

¡
mgr + L

2Mg
¢
cosα, since k4

··
r+

g sinα = 0,µ
mgr +

L

2
Mg

¶
cosα = −k2a1er − k2a3

g sinα

k4

−k2a4α+
µ
mgr +

L

2
Mg

¶
cosα

er = − 1

k2a1

∙
k2a3

g sinα

k4
+ k2a4α

¸ (29)

So r̃ is a constant, but it is impossible for α 6= 0, because
the ball must move with α 6= 0. So when

.
α = 0 and the

compensator is π = −a2
·
r + 1

k2

¡
mgr + L

2Mg
¢
cosα imply

α = 0. r̃ is a constant means
·
r = 0 and π = 0. So

·
V ≤ 0.

We can conclude that α̇ = 0 and α = 0 imply x1 = x̃ and
x2 = −ẋ are always bounded.
Now we use LaSalle lemma, define

Ψ =
n
[x1, x2] : V̇ = 0

o
The only possible solution for α is α = 0, otherwise the ball
has to move. For any α 6= 0, er cannot be a constant, so (29)
has no solution. When α = 0, from (29) we know er = 0.
Because α∗ = 0, this allows us to conclude [α, r] =

£
α∗, rd

¤
is the unique solution for (27). The invariant set V̇ = 0, is
defined by x1 = 0, x2 = 0, so x1 and x2 are asymptotically
stable.
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