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Abstract: In this paper, the stabilization problem of discrete-time bilinear systems by linear
state-feedback control is investigated. First, conditions guaranteeing the positive invariance of
polyhedral sets with respect to nonlinear systems with second order polynomial nonlinearity
are established. Then these results are used for the determination of linear state-feedback
unconstrained and constrained control laws making a prespecified polyhedral set a domain
of attraction of the resulting closed-loop system.

1. INTRODUCTION

Bilinear systems are systems linear in state, linear in
control, but not jointly linear in state and control. Many
processes in biology, socioeconomics, immunology, quan-
tum mechanics, biomedical applications, and engineering
can be naturally modeled by bilinear systems (Bruni et al.
[1974], Mohler et al. [1980], and Mohler et al. [2000]).
Also, many bilinear systems arise from the approximation
of nonlinear systems which in most cases is much more
accurate when bilinear terms are included in the expansion
of the Taylor series.

The importance of this class of nonlinear systems has led
to an extensive study in terms of analysis and developing
control techniques. Most work deal with continuous time
systems. In Khapalov et al. [1998], a piecewise-constant
feedback control law was used to stabilize asymptotically
a continuous-time bilinear system. This was done by
introducing an auxiliary bilinear system with additional
control in the drift term. Chen et al. [2000] present a bang-
bang sliding mode control technique where the stability
region strongly depends on the sliding function which is
designed via a pole assignment based method. In Amato
et al. [2007], quadratic Lyapunov functions are used for the
development of a method for the determination of a linear
control law making a polyhedral set a domain of attraction.
The optimal quadratic cost control problem has also been
studied for bilinear systems. In Benallou et al. [1988],
a globally stabilizing nonlinear optimal control strategy
for bilinear systems possessing rather strong properties
was found. In a recent work (Ekman [2005]), a nonlinear
suboptimal control was computed through an approximate
solution of the Hamilton-Jacobi-Bellman equation.

Very few works dealing with the stabilization problem of
discrete-time systems have been reported. Kim et al. [2002]
using quadratic Lyapunov functions derive conditions for
a globally stabilizing nonlinear control law for multi-input
bilinear systems which, however, are assumed to be open-
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loop stable. Bacic et al. [2003] deal with SISO bilinear
systems with constraints in the control input. A switching
control technique between controllers produced from input
output feedback linearization and bilinear controllers that
render a polytopic set invariant and feasible was used. An
extension of this work is in Liao et al. [2005].

It is not surprising that very few works dealing with the
stabilization problem of discrete-time systems have been
reported. This is due to the fact that quadratic functions
which can be viewed as the “natural” Lyapunov functions
for linear systems lead to very complex computational
problems when they are applied to the stabilization prob-
lem of nonlinear discrete-time systems. For this reason,
in this paper we propose the use of “polyhedral” Lya-
punov functions, that is Lyapunov functions that provide
polyhedral invariant sets and/or domains of attraction.
This however requires the development of the appropriate
theoretical background, namely the establishment of con-
ditions guaranteeing that a polyhedral subset of the state
space is positively invariant with respect to a nonlinear
system with second order polynomial nonlinearity. This is
the object of Section 3 of this paper. In Section 4, two
problems are investigated: The first one is the derivation
of linear state feedback control laws so that a prespecified
subset of the state space is a domain of attraction of the
resulting closed-loop system. Then this problem is also
investigated when in addition hard linear constraints on
the control input are imposed.

2. PROBLEM STATEMENT

Throughout the paper, capital letters denote real matrices
and lower case letters denote column vectors or scalars.
R

n denotes the real n-space and R
n×m denotes the set of

real n×m matrices. Given a real n×m matrix A = (aij),
A+ = (a+

ij) and A− = (a−

ij) are n × m matrices with

entries defined by the relations a+
ij = max{aij , 0} and

a−

ij = −min{aij , 0}. Thus, A = A+ − A−. Given a square

matrix D = (dij), Dδ = (dδ
ij) denotes the diagonal matrix

with dδ
ii = dii and Dµ = (dµ

ij) denotes the square matrix
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with d
µ
ii = 0 and d

µ
ij = dij for i 6= j. Thus D = Dδ +

Dµ. For two n × m matrices A = (aij) and B = (bij),

A ⊙ B =
n
∑

i=1

m
∑

j=1

aijbij denotes their component-wise inner

product, called the Frobenius inner product.

The inequality A ≤ B (A < B) with A,B ∈ R
n×m is

equivalent to aij ≤ bij(aij < bij) . Similar notation holds
for vectors.

Given a function v(x), v : R
n → R

p and a set X ⊆ R
n,

then v(X) = {y ∈ R
p : (∃x ∈ R

n : v(x) = y)}.Finally, T
denotes the time set T = {0, 1, 2, ...}.

We consider bilinear discrete-time systems described by
difference equations of the form

x(t + 1) = Ax(t) + Bu(t) +











xT (t)C1

xT (t)C2

...
xT (t)Cn











u(t) (1)

where x ∈ R
n is the state vector, u ∈ R

m is the input
vector, t ∈ T is the time variable and A ∈ R

n×n, B ∈
R

n×m, Ci ∈ R
n×m, i = 1, 2, . . . , n.

For linear state-feedback control laws of the form

u(k) = Kx(t) (2)

with K ∈ R
m×n, the resulting closed-loop system is

described by the equation

x(t + 1) = (A + BK)x(t) +











xT (t)C1Kx(t)
xT (t)C2Kx(t)

...
xT (t)CnKx(t)











. (3)

This equation describes a nonlinear system with second
order polynomial nonlinearity.

The unconstrained stabilization problem to be investi-
gated is formulated as follows: Given system (1) and a
bounded subset of the state space defined by the inequal-
ities

−w2 ≤ Gx ≤ w1 (4)

with G ∈ R
r×n, w1 > 0, w2 > 0, determine a linear

state-feedback control law (2) making this set a domain
of attraction of the resulting closed-loop system (3).

In the constrained stabilization problem, control con-
straints of the form

−um ≤ u(t) ≤ uM (5)

with uM > 0, um > 0 are imposed. The problem is the
determination of a linear state-feedback control law (2)
so that all initial states belonging to the set defined by
inequalities (4) are transferred asymptotically to the origin
while the control constraints (5) are satisfied.

3. POLYHEDRAL POSITIVELY INVARIANT SETS

Given a dynamical system, a subset of its state space is
said to be positively invariant if all trajectories starting
from this set remain in it for all future instances. This
property is very important for control problems with
state constraints. Thus, if the state constraints define an
admissible subset of the state space then a solution to the

control problem under state constraints is a stabilizing
linear control law making this admissible set positively
invariant with respect to the resulting closed-loop system.
Since in practical control problems the state constraints
are usually expressed by linear inequalities, the admissible
set is a polyhedron. Therefore, it is necessary to establish
conditions guaranteeing positive invariance of polyhedral
sets of the form (4) with respect to nonlinear systems of
the form (3).

The following Lemma which provides necessary and suf-
ficient conditions for a set defined by a nonlinear vector
inequality of the form v(x) ≤ w to be positively invariant
with respect to a nonlinear discrete-time system is very
important for the development of the results of this paper.

Lemma 1. (Bitsoris et al. [1995],Bitsoris et al. [2006]). The
set

R(v, w)
△

= {x ∈ R
n : v(x) ≤ w)}

with v(x), v : R
n → R

p and w ∈ R
p is a positively

invariant set of system

x(t + 1) = f(x(t)) (6)

with f : R
n → R

n, if and only if there exists a nondecreas-
ing function h(y), h : R

p → R
p such that

v(f(x)) ≤ h(v(x))

and
h(w) ≤ w.

We shall use this result to establish conditions guarantee-
ing that a polyhedral set defined by

−ρ2 ≤ Sx ≤ ρ1

with S ∈ R
r×n, ρ1 > 0, ρ2 > 0, is positively invariant

with respect to a nonlinear system with second order
polynomial nonlinearity. Let

y1 =









y11

y12

...
y1r









= Sx, y2 =









y21

y21

...
y2r









= −Sx (7)

and Y M , Y m r × r be matrices defined by the relations

Y M = (yM
ij ) with yM

ij

△

= max(y1iy1j , y2iy2j) (8)

Y m = (ym
ij ) with ym

ij

△

= max(y1iy2j , y2iy1j). (9)

Theorem 2. The polyhedral set

Q(S, ρ1, ρ2)
△

= {x ∈ R
n : −ρ2 ≤ Sx ≤ ρ1}

with S ∈ R
r×n, rankS = n, ρ1 ∈ R

r, ρ1 > 0, ρ2 ∈ R
r, ρ2 >

0 is positively invariant with respect to the nonlinear
system

x(t + 1) = Ax(t) +











xT (t)M1x(t)
xT (t)M2x(t)

...
xT (t)Mnx(t)











(10)

if there exist matrices H ∈ R
r×r and Dj ∈ R

r×r j =
1, 2, . . . , r such that

SA = HS (11)
n

∑

i=1

sjiMi = ST DjS j = 1, 2, . . . , r (12)

and
h(ρ) ≤ ρ (13)
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where

h(y) =

[

H+ H−

H− H+

] [

y1

y2

]

+

+























Dδ+

1 ⊙ Y M + D
µ+

1 ⊙ Y M + D
µ−

1 ⊙ Y m

...

Dδ+

r ⊙ Y M + Dµ+

r ⊙ Y M + Dµ−

r ⊙ Y m

Dδ−

1 ⊙ Y M + D
µ−

1 ⊙ Y M + D
µ+

1 ⊙ Y m

...

Dδ−

r ⊙ Y M + Dµ−

r ⊙ Y M + Dµ+

r ⊙ Y m























(14)

and

ρ =

[

ρ1

ρ2

]

.

Proof. Let

v(x) =

[

v1(x)
v2(x)

]

=

[

Sx
−Sx

]

.

Then inequalities

−ρ2 ≤ Sx ≤ ρ1

can be equivalently written in the form

v(x) ≤ ρ.

Consequently,

Q(S, ρ1, ρ2) = R(v, ρ).

On the other hand,

vi(x(t+1)) = (−1)i+1SAx(t)+(−1)i+1S











xT (t)M1x(t)
xT (t)M2x(t)

...
xT (t)Mnx(t)











and taking into account (11) and (12) we establish the
relations

vi(x(t+1)) = (−1)i+1HSx(t)+(−1)i+1











xT (t)ST D1Sx(t)
xT (t)ST D2Sx(t)

...
xT (t)ST DrSx(t)











(15)
for i = 1, 2. Since H = H+ − H−,

HSx = H+(Sx) + H−(−Sx) (16)

H(−Sx) = H−(Sx) + H+(−Sx) (17)

Furthermore,

xT ST DjSx = xT ST Dδ
jSx + xT ST D

µ
j Sx =

= xT ST Dδ
jSx + xT ST D

µ+

j Sx − xT ST D
µ−

j Sx (18)

and
−xT ST DjSx =

= −xT ST Dδ
jSx − xT ST D

µ+

j Sx + xT ST D
µ−

j Sx (19)

because
Dj = Dδ

j + D
µ
j

D
µ
j = D

µ+

j − D
µ−

j .

Finally, using notation (7)-(9), from (16)-(19) it follows
that

HSx = H+y1 + H−y2 (20)

−HSx = H−y1 + H+y2 (21)

xT ST Dδ
jSx ≤ xT ST Dδ+

j Sx = Dδ+

j ⊙ Y M (22)

xT ST D
µ
j Sx = xT ST D

µ+

j Sx − xT ST D
µ−

j Sx ≤

≤ D
µ+

j ⊙ Y M + D
µ−

j ⊙ Y m (23)

−xT ST Dδ
jSx ≤ xT ST Dδ−

j Sx = Dδ−

j ⊙ Y M (24)

−xT ST D
µ
j Sx = −xT ST D

µ+

j Sx + xT ST D
µ−

j Sx ≤

≤ D
µ+

j ⊙ Y m + D
µ−

j ⊙ Y M (25)

because matrices Dδ+

j ,Dδ+

j ,D
µ+

j and D
µ−

j have nonnega-
tive elements and for a nonnegative matrix D

xT ST DSx =
r

∑

i=1

r
∑

j=1

dij(Sx)i(Sx)j =

r
∑

i=1

r
∑

j=1

dij(−Sx)i(−Sx)j ≤

≤
r

∑

i=1

r
∑

j=1

dij max{(Sx)i(Sx)j , (−Sx)i(−Sx)j} = D ⊙ Y M

and
−xT ST DSx

=

r
∑

i=1

r
∑

j=1

dij(Sx)i(−Sx)j =

r
∑

i=1

r
∑

j=1

dij(−Sx)i(Sx)j ≤

≤
r

∑

i=1

r
∑

j=1

dij max{(Sx)i(−Sx)j , (−Sx)i(Sx)j} = D ⊙ Y m.

Thus, taking into account (20)-(25), and using (16)-(19)
from (15) it follows that

y(t + 1) ≤ h(y(t))

or, equivalently,

v(x(t + 1)) ≤ h[v(x(t))]

with function h(y) defined by (14). By construction, this
function is nondecreasing. Therefore, by virtue of Lemma
1, from (13) it follows that the set Q(S, ρ1, ρ2) = R(v, ρ) is
positively invariant with respect to the nonlinear system
(10).

This result can be used for solving a control problem
that has been the object of much research work during
the last years, namely to determine a control law that
makes a given subset of the state space positively invariant.
Thus, given a bilinear system (1) and a polyhedral subset
Q(S, ρ1, ρ2) of its state space, a linear control law u(t) =
Kx(t) that makes this subset positively invariant with
respect to the resulting closed-loop (3), can be determined
by solving the linear algebraic relations

S(A + BK) = HS
n

∑

i=1

sjiCiK = ST DjS j = 1, 2, . . . , r

[

H+ H−

H− H+

] [

ρ1

ρ2

]

+

+























Dδ+

1 ⊙ PM + D
µ+

1 ⊙ PM + D
µ−

1 ⊙ Pm

...

Dδ+

r ⊙ PM + Dµ+

r ⊙ PM + Dµ−

r ⊙ Pm

Dδ−

1 ⊙ Pm + D
µ−

1 ⊙ PM + D
µ+

1 ⊙ Pm

...

Dδ−

r ⊙ Pm + Dµ−

r ⊙ PM + Dµ+

r ⊙ Pm























≤

[

ρ1

ρ2

]

.
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where

PM = (ρM
ij ) with ρM

ij = max(ρ1iρ1j , ρ2iρ2j) (26)

Pm = (ρm
ij ) with ρm

ij = max(ρ1iρ2j , ρ2iρ1j). (27)

4. STABILIZATION

The usual approach to derive domains of attraction of
nonlinear systems is the application of Lyapunov’s direct
method. If v∗(x) is a continuous positive definite function
and its total time difference ∆v∗(x)(Σ) = v∗(f(x))− v∗(x)
w.r.t system Σ is negative definite, then any set R(v∗, a)
with a > 0 is positively invariant w.r.t. this system. In
addition, any subset of R(v∗, a) is a domain of attraction
of system Σ. Such a function is said to be a Lyapunov
function of the system under consideration. Thus a control
law u(t) = Ku(t) is a solution to the unconstrained
stabilization problem if there exist a continuous positive
definite function v(x) and a positive real number a such
that ∆v∗(x)(3) is negative definite in R(v∗, a) and

Q(G,w1, w2) ⊆ R(v∗, a).

For linear systems a natural Lyapunov function is a
quadratic one. However, this is not the case for nonlinear
systems. In particular, for discrete-time nonlinear systems
the use of quadratic Lyapunov functions leads to high
order nonlinear algebraic problems. For example, the use
of quadratic Lyapunov functions to the study of nonlinear
systems with second order nonlinearity leads to a fourth
order nonlinear algebraic problem. We shall show that
these difficulties can be overcome by using “polyhedral”
Lyapunov functions as it has been proposed for studying
constrained control problems for linear systems. To this
end we can use the following result:

Lemma 3. (Bitsoris [1984], Bitsoris et al. [1995]). If for
a vector valued function v(x), v : R

n → R
p, the scalar

function
v∗(x) = max

i=1,2,...,p
{vi(x)}

is positive definite and there exist a nondecreasing function
h(y), h : R

p → R
p and a vector ρ ∈ R

p, ρ > 0 such that

v(f(x)) ≤ h(v(x)) (28)

and
h(rρ) < rρ r ∈ (0, 1] (29)

then the equilibrium x = 0 of system x(t + 1) = f(x(t))
f(0) = 0 is asymptotically stable, v∗(x) is a Lyapunov
function, and R(v, w) is a domain of attraction.

We shall use this result by choosing a polyhedral function
v(x) of the form

v(x) =

[

Sx
−Sx

]

. (30)

Theorem 4. The control law u(t) = Kx(t) is a solution
to the unconstrained stabilization problem if there exist
matrices H ∈ R

r×r and D ∈ R
r×r, j = 1, 2, . . . , r,

L ∈ R
2r×2r with L ≥ 0, S ∈ R

r×n with rankS = n and
vectors ρ1, ρ2 ∈ R

r , ρ1, ρ2 > 0 with positive components
such that

S(A + BK) = HS (31)
n

∑

i=1

sjiCiK = ST DjS j = 1, 2, . . . , r (32)

[

H+ H−

H− H+

] [

ρ1

ρ2

]

+

+























Dδ+

1 ⊙ PM + D
µ+

1 ⊙ PM + D
µ−

1 ⊙ Pm

...

Dδ+

r ⊙ PM + Dµ+

r ⊙ PM + Dµ−

r ⊙ Pm

Dδ−

1 ⊙ PM + D
µ−

1 ⊙ PM + D
µ+

1 ⊙ Pm

...

Dδ−

r ⊙ PM + Dµ−

r ⊙ PM + Dµ+

r ⊙ Pm























<

[

ρ1

ρ2

]

(33)

L

[

G
−G

]

=

[

S
−S

]

(34)

L

[

w1

w2

]

≤

[

ρ1

ρ2

]

(35)

Proof. Setting v1(x) = Sx, v2(x) = −Sx and following
the demonstration procedure of Theorem 2 , we establish
(28) with h(y) given by (14) and H, Dj , j = 1, 2, . . . , r
being matrices satisfying (31) and (32) respectively. By
construction, function h(y) is nondecreasing. In addition,
from (33) it follows that h(rρ) < rρ for all r ∈ (0, 1].
Indeed, setting h(y) = H∗y + g∗(y) where H∗y and g∗(y)
denote the linear and the nonlinear part of function h(y)
respectively, from (33) it follows that

h(rρ) = H∗rρ + g∗(rρ) = rH∗ρ + r2g∗(ρ) =

= r(H∗ρ + rg∗(ρ)) ≤ r(H∗ρ + g∗(ρ)) ≤ rρ

for all r ∈ (0, 1] . On the other hand, the nonnegative
scalar function

v∗(x) = max{(Sx)1, ..., (Sx)r, (−Sx)1, ..., (−Sx)r}

is positive definite because from the hypothesis that
rankS = n, it follows that Sx = 0 only if x = 0.
Thus, function v(x) defined by (30) and vector ρ satisfy
all hypotheses of Lemma 3. Therefore, the set

Q(S, ρ1, ρ2) = R(v, ρ)

is a domain of attraction of the closed-loop system (3).
On the other hand, according to Farkas Lemma relations
(34)-(35) together with L ≥ 0 imply the set relation

Q(G,w1, w2) ⊆ Q(S, ρ1, ρ2) = R(v, ρ).

Therefore, Q(G,w1, w2) is a domain of attraction of the
equilibrium x = 0 of the closed-loop system (3).

Many different approaches to the determination of a so-
lution of the unconstrained stabilization problem can be
developed using this result. Such an approach can be es-
tablished by applying the next result which follows directly
from Theorem 4 by setting S = G, ρi = wi i = 1, 2,
PM = WM , Pm = Wm where

WM = (wM
ij ) with wM

ij = max(w1iw1j , w2iw2j)

Wm = (wm
ij ) with wm

ij = max(w1iw2j , w2iw1j)

that is, by applying Lemma 3 with

v(x) =

[

Gx
−Gx

]

.

Then we obtain the following corollary of Theorem 4.

Corollary 5. The control law u(t) = Kx(t) is a solution
to the unconstrained stabilization problem if there exist
matrices H ∈ R

r×r and D ∈ R
r×r j = 1, 2, . . . , r and a

real number ε, 0 ≤ ε < 1 satisfying relations
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G(A + BK) = HG (36)
n

∑

i=1

gjiCiK = GT DjG j = 1, 2, . . . , r (37)

[

H+ H−

H− H+

] [

w1

w2

]

+

+























Dδ+

1 ⊙ WM + D
µ+

1 ⊙ WM + D
µ−

1 ⊙ Wm

...

Dδ+

r ⊙ WM + Dµ+

r ⊙ WM + Dµ−

r ⊙ Wm

Dδ−

1 ⊙ WM + D
µ−

1 ⊙ WM + D
µ+

1 ⊙ Wm

...

Dδ−

r ⊙ WM + Dµ−

r ⊙ WM + Dµ+

r ⊙ Wm























≤ ε

[

w1

w2

]

.

(38)

According to this result, a stabilizing control law u(t) =
Kx(t) can be obtained by applying any standard method
for the determination of a solution to the set of linear al-
gebraic relations (36)-(38). For example, a solution can be
determined by applying a linear programming algorithm
to solve the optimization problem with performance index:

min
K,H,D1,...,Dr,ε

{ε} (39)

under linear constraints (36)-(38). If the positive optimal
value ε∗ is less than one, then the corresponding control
law is a solution to the stabilization problem. It should be
noticed that from (36)-(38) it follows that

v∗(x(t + 1)) ≤ εv∗(x(t))

where v∗(x) is the positive definite function

v∗(x) = max

{

(Gx)1
w1

, ...,
(Gx)r

wr

,
(−Gx)1

w1
, ...,

(−Gx)r

wr

}

Therefore, minimization of ε results to a faster transient
behavior of the system.

Let us now consider the case where control constraints
of the form (5) are imposed. It is known from Bitsoris
et al. [1995] that a linear control law u(t) = Kx(t) is a
solution to the constrained control problem if and only if
there exists a subset Ω of the state space which is both a
positively invariant set and a domain of attraction of the
resulting closed-loop system and satisfies the set relation

Q(G,w1, w2) ⊆ Ω ⊆ Q(K,uM , um). (40)

Many different approaches for the determination of such a
control law can be developed by combining this result with
those concerning the positive invariance of polyhedral sets.
An interesting special case is when Q(G,w1, w2) = Ω, that
is when the stabilizing linear control law u(t) = Kx(t) ren-
ders the desired domain of attraction positively invariant
w.r.t. the closed-loop system. Then the set relation (40)
becomes

Q(G,w1, w2) ⊆ Q(K,uM , um)

and is equivalent to the existence of a nonnegative matrix
L ∈ R

2m×2r such that

L

[

G
−G

]

=

[

K
−K

]

(41)

L

[

w1

w2

]

≤

[

uM

um

]

. (42)

Combining these relations with the conditions of positive
invariance and attractivity of the set Q(G,w1, w2) stated
in Corollary 5, we establish the following result:

Theorem 6. The control law u(t) = Kx(t) is a solution
to the constrained stabilization problem if there exist
matrices H ∈ R

r×r ,Dj ∈ R
r×r j = 1, 2, . . . , r, L ∈

R
2m×2r, L ≥ 0 such that (36)-(38) and (41)-(42) are

satisfied.
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Fig. 1. Phase portrait of the closed loop system for initial
states belonging in Q(G,w1, w2).
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Fig. 2. State response of the closed-loop system for initial
state x0 = [−1.80 2.05]T .

5. NUMERICAL EXAMPLE

We consider a bilinear system (1) with

A =

[

0.8 0.5
0.4 1.2

]

, B =

[

1
2

]

C1 =

[

0.45
0.45

]

, C2 =

[

0.3
−0.3

]

The desired domain of attraction is a polyhedral set
Q(G,w1, w2) with

G =

[

2.28 −0.04
−1.62 −2.79

]

, w1 =

[

3.63
3.63

]

, w2 =

[

4.20
2.80

]
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Fig. 3. Control input of the closed loop system when
x0 = [−1.80 2.05]T .

The control input must satisfy physical constraints

−um ≤ u ≤ uM

with uM = um = 0.5.

The optimal values resulting from the linear programming
problem with performance index (39) and constraints (37)-
(38),(41)-(42) are ε∗ = 0.96 and

K∗ = [−0.22 −0.38 ] .

Since ε∗ < 1, the control law

u(t) = −0.22x1(t) − 0.38x2(t)

is a solution to the constrained control problem. In (Fig. 1)
the phase portrait of the closed loop system for states
belonging to the domain of attraction is shown. The bold
curves are trajectories starting from x0 = [−1.8 2.05]T

and x0 = [1.55 − 2.20]T . In (Fig. 2), the time response of
states x1 and x2 for x0 = [−1.8 2.05]T is shown. Finally, in
(Fig. 3), the control input for the closed-loop system when
the initial state vector is x0 = [−1.8 2.05]T is shown.

6. CONCLUSION

A new approach to the constrained and unconstrained
stabilization of discrete-time bilinear systems by linear
state-feedback has been presented. In contrast to all known
Lyapunov oriented methods which are based on quadratic
functions, in this paper “polyhedral” Lyapunov functions
have been used. The first step to this direction has been
the development of the necessary theoretical background,
namely the establishment of conditions guaranteeing the
positive invariance of polyhedral sets w.r.t to nonlinear
systems with second order polynomial nonlinearity. Using
known results on the connection between comparison sys-
tems and positively invariant sets (Bitsoris et al. [1995]), it
has been shown that a polyhedral set is positively invari-
ant w.r.t this class of nonlinear systems if an associated
linear algebraic problem is feasible. Then the stabilization
problem of bilinear systems is investigated. In Theorem 4
conditions for a linear state-feedback control law to be a
solution to the stabilization problem have been developed.
The result stated in Corollary 5 which reduces the determi-
nation of a stabilizing control law to a linear programming
problem is just one of many different design approaches

that can be developed using the general result stated in
Theorem 4.
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