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Abstract: In tracer kinetic studies for extracting biological information, measurement noise and error in 

the kinetics could affect the reliability of the estimated biological parameters.  While the effect of 

statistical noise has been studied extensively before, the effect of outliers has not been addressed as much. 

In this study, we described an algorithm for detecting and removing outliers.  Computer simulation was 

used to generate kinetic data sets corresponding to those of the FDG tracer used in PET studies to evaluate 

the effect of outliers and the performance of the outlier detection algorithm. Results show that outlier could 

increase drastically the variability of the estimated rate constants of FDG transport and phosphorylation. 

The outlier detection algorithm imbedded in a regular model fitting procedure was found to have a low 

probability of missing outliers in the kinetics.  The probability of falsely identifying non-outliers as outliers 

was high, but these false positive detections did not affect the reliability of the biological estimates. With 

the outlier detection, the variability of the parameter estimates in the simulated FDG kinetics with outliers 

could be reduced by a factor of more than 5. The present study demonstrated the importance of outlier 

detection in interpreting tracer kinetics. Some areas for future studies are also discussed.   

 

1. INTRODUCTION 

In extracting biological information from tracer kinetics, 

measurement noise and error in tracer kinetics could be 

propagated to the biological parameters estimated from the 

kinetics and affect the accuracy of the resulted biological 

estimates. In positron emission tomography (PET), for 

example, tracer kinetics in local tissue regions can be 

measured simultaneously over tens of thousands of voxels of 

cubic milli-meters in size.  However, the kinetics for each 

pixel have high noise levels.  Furthermore, due to subject 

movement during the kinetic measurement or artifacts from 

tomography reconstruction, occasional large errors 

unaccountable by statistical noise are seen. Another example 

is in the in vivo measurement of transport rate constants of 

FDG across the red blood cells (RBC) in mice (Huang et al, 

2007). The measurements are derived from tiny blood 

samples (<30 micro-liters), and go through multiple 

processing steps. Some measurements appear clearly out of 

line with the others. They could drastically affect the model 

fitting results if not properly dealt with. A common approach 

is to examine the tracer kinetics visually by an experienced 

expert and throw out what he considers as the outliers before 

applying the model fitting to the kinetics.  However, this 

approach is labor-intensive and could also be criticized as 

being subjective.  

An alternative approach is to use a regression algorithm that 

is not sensitive to outliers.  While there are many possible 

algorithm candidates, we have explored the use of a two-step 

approach.  It involves in first finding the outliers 

automatically and then removing the outliers before the 

regular model fitting procedure (the second step).  Outlier 

detection is not a new topic.  Many outlier finding or 

detection algorithms/methods have been proposed and 

developed for various applications, including statistics, 

business, sociology, signal processing, and real-time 

automatic control. They have different properties to suit 

different types of outliers in different applications. In this 

paper, we described an outlier detection method that we have 

adopted from a real-time automatic control application 

(Menold et al, 1999), and we have tested its performance 

with computer simulated kinetic data. The results of the 

evaluation are reported and the implications of automatic 

outlier detection on biological estimates and parametric 

images are discussed. The effect of outliers in tracer kinetics 

on the extracted biological information is also examined. 

Additional investigations or developments to address further 

the outlier problem in tracer kinetics are also discussed.  

2. AN OUTLIER DETECTION ALGORITHM 

The algorithm that we have used in this study for detecting 

outliers in tracer kinetics is adopted from one originally 

employed for a real-time automatic control problem (Menold 

et al, 1999).  Modifications however have been made to adapt 

to the special characteristics of tracer kinetics.  

2.1  Assumptions  

A measurement in the tracer kinetics is considered to be an 

outlier, if it deviates from its expected value by more than 2 

standard deviations of the noise level of other measurements 

in that kinetics. A tracer kinetic time activity curve (TAC) 

can have more than one outlier, but outliers are assumed not 

adjacent to each other in the measurement sequence.  The 

noise level of the measurements in a TAC is assumed to be 

describable by a zero mean Gaussian random variable. The 

noise variance is constant over time or varies in a known 

way. 
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2.2  Detection algorithm 

The outlier detection algorithm is imbedded in a least-square 

model fitting procedure. At the end of an iteration of the 

model fitting procedure, the noise variance (and standard 

deviation) of the data is estimated and the deviation of each 

measurement is compared to the estimated noise standard 

deviation. If the deviation is larger than a threshold based on 

the estimated standard deviation, the corresponding 

measurement is considered to be an outlier candidate.  The 

deviation of each measurement is estimated as the difference 

of the measurement from the model fitted value at the end of 

that model fitting iteration.  The model fitting procedure is 

based on the least-square Marquardt algorithm and is 

identical to what is used in the KIS modelling software 

package (Huang et al, 2005). 

The threshold for identifying a deviation as the outlier is 

selected as  

Threshold=max(ck·MAD, Tm),  

where  

ck=2.96· (1+2
(3-i)

) with i=the iteration number of the 

regression,  

MAD is the median absolute deviation of the 

difference between the measurements and the model 

predictions (Menold et al, 1999),  

and  

Tm=2·sqrt(estimated noise variance).  

The dependency of ck on the iteration number gives a larger 

threshold value at the beginning. It intends to decrease the 

sensitivity of the outlier detection to the initial condition used 

in the model fitting.  

To avoid picking up too many false positive outliers due to 

possible poor model predictions at early stage of the model 

fitting procedure, the estimated deviation sequence is 

smoothed (with a filter [1/3 1/3 1/3]), and the amount of 

reduction in the deviation after smoothing was checked to see 

if it is larger than 30% of the original deviation. For an outlier 

candidate, if it passes the check, the measurement is then 

declared as an outlier.  

After the detected outlier is removed (i.e., by assigning it a 

zero weighting), the iterative regression procedure is 

continued and the outlier checking steps are repeated.  The 

procedure would continue till no more outlier is detected and 

the model fitting satisfies the convergence criterion. 

For the case of non-constant noise variance, the deviations 

are weighted by the inverse of the square root of the variance 

before the thresholds for the deviations are checked. 

3. COMPUTER SIMULATIONS 

Computer simulation was used to generate tracer kinetics for 

evaluating the performance of the outlier detection algorithm 

described in Section 2 above.  The FDG model (Huang et al, 

1980; Phelps et al, 1979) was used to generate the underlying 

tissue TAC from 0 to 60 min, using a measured plasma FDG 

TAC in a mouse experiment as the input function. The 

measurements were assumed to follow a PET scanning 

protocol of 2x0.5, 1x1, 1x2, and 12x5 min. The values for the 

rate constants of the model were selected to be 0.1 ml/min/g, 

0.2 /min, 0.04 /min and 0.01 /min for K1, k2, k3 and k4, 

respectively.   

Measurement noise was simulated as a zero-mean Gaussian 

variable with a standard deviation equal to 0.3, which is ~2% 

of the tissue TAC value of 15 at 60 min. For the case of non-

constant noise, the noise variances at early measurements 

were adjusted higher (with the resulted variance inversely 

proportional to the scan duration). 

Outliers were added randomly.  The probability of having an 

outlier for each measurement was 13.5%, so the number of 

outliers per TAC (of 16 measurements) was about 2. The 

magnitude of the outlier was also random (uniformly 

distributed between 4 and 10).   

In two cases of simulations, no outlier was added.  In one of 

them, the measurement noise was increased by 10 times. 

After a simulated TAC was generated, the kinetics was model 

fitted using the outlier-detection-imbedded procedure 

described in Section 2 above.  One hundred realizations were 

performed for each condition. 

The initial condition of the parameter values for the model 

fitting was the true values.  To evaluate the effect of the 

initial condition, the initial parameter values in one case were 

changed to [0.07, 0.3, 0.02, 0.004] that were significantly 

different from the true values. 

The number of outliers detected and the number of false 

detection were recorded.  The estimated values of the model 

rate constants with outlier detection and removal were 

compared to those without outlier detection.  Other than the 

outlier detection part, the regression routines used were 

identical between the two cases. 

 

Fig. 1. a simulated FDG kinetics (circles) with outliers.  The solid 

curve is a model fit after outliers have been detected and removed. 
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4. PERFORMANCE OF OUTLIERS DETECTION 

Figure 1 shows a simulated tissue kinetic curve with outlier 

measurements.  The number of outliers missed and the 

number of false positive detection in 100 simulated kinetics 

are tabulated in Table 1.  

 

Table 1. accuracy in identifying outliers 

Simulations  total outliers false positive  missed  

Constant noise level 185 108 (109)* 5 (17)* 

Non-constant noise 191 152 8 

No outliers 0 15 (39)** 0 

*for case with a second set of initial condition.                      

**for case when noise level was 10 times larger. 

The mean and standard deviation of the estimated values of 

the rate constants with and without outlier detection (and 

removal) are shown in Table 2.  Of the 100 realizations, the 

ones that had much larger residual sum of squares than the 

rest were not included in the calculation of the mean and 

standard deviation. 

Table 2. estimated values of the rate constants in model 

 K1w* K1 k2w k2 k3w k3 k4w k4 
const. 
noise 

0.104# 
0.027 

0.109 
0.049 

0.217 
0.135 

0.276 
0.459 

0.042 
0.009 

0.052 
0.042 

0.011 
0.005 

0.010 
0.011 

non-
constant 

0.105 
0.018 

0.116 
0.047 

0.222 
0.098 

0.301 
0.440 

0.043 
0.014 

0.055 
0.048 

0.010 
0.003 

0.011 
0.012 

no 
outlier 

0.100 
0.002 

0.100 
0.002 

0.200 
0.011 

0.200 
0.011 

0.040 
0.004 

0.040 
0.004 

0.010 
0.002 

0.010 
0.002 

no 
outlier, 
high 
noise 

0.118 
0.041 

0.113 
0.039 

0.37 
0.52 

0.35 
0.53 

0.074 
0.098 

0.070 
0.096 

0.013 
0.014 

0.013 
0.014 

diff. 
initial 
values 

0.102 
0.015 

0.105 
0.017 

0.207 
0.049 

0.236 
0.105 

0.040 
0.008 

0.052 
0.034 

0.010 
0.006 

0.011 
0.011 

* w denotes the estimates with outlier detection and removal. 

# first number is mean and second number is standard 

deviation. The true values of K1, k2, k3, and k4 used in the 

simulation were 0.1, 0.2, 0.04, and 0.01, respectively. 

5.  DISCUSSIONS  

Based on the results in Tables 1 and 2, the outlier detection 

algorithm described in this paper performed well in detecting 

(and removing) outliers in tracer kinetics.  The outliers 

escaped detection were those adjacent to another outlier (not 

excluded in the simulation). Although there are a large 

number of false positive detections, the resulted estimates of 

the rate constants were still close to the true values and with 

small variations. 

By comparing the standard deviations in row 1 with those in 

row 3 in Table 2, outliers are seen to have large effects on the 

variability of the estimated model parameters, especially 

when outliers were not detected/removed. For the case 

without outliers added but with enhanced measurement noise 

level (row 4), the use of outlier detection did not adversely 

affected the results, indicating that the use of outlier detection 

is not harmful even when there are no outliers in the tracer 

kinetics. 

If each of the simulated kinetic corresponds to the kinetics 

from a single pixel location in an image (10x10 in size), the 

estimated rate constants can form parametric images of the 

estimated rate constants.  The standard deviations of the rate 

constants shown in Table 2 thus reflect directly the noise 

levels on these parametric images.   

One general concern for outlier detection/removal in 

nonlinear regression is the initial condition. Altering the 

initial condition of the model fitting is seen to have a large 

effect on the estimated parameter values. In practice, one can 

use the group average from regular model fitting as the initial 

condition. Another strategy is to perform multiple model 

fittings for each kinetic curve with various sets of initial 

conditions. The Akaike Information Criterion (AIC) (Akaike, 

1974), for example, can be used to select the best among 

multiple results.  

Optimization of the thresholds used in the outlier detection in 

this study has not been performed. It is possible that the 

thresholds can be adjusted to achieve better results.  If the 

measurement noise level and the outlier occurrence 

probability are significantly different from those used in this 

study, the thresholds may need to be tuned to achieve 

satisfactory results.   

The present study only examines the kinetics of one common 

model using a single input function and a single set of true 

parameter values. It is likely that the algorithm will need to 

be modified for other cases. However, the characteristics 

observed in this study are expected to be valid in more 

general cases. It warrants doing more studies in the future.  

6. CONCLUSION 

The outlier detection algorithm described and imbedded in a 

least-square model fitting routine gave good results in 

detecting and removing outliers in tracer kinetics and thus 

improved the reliability of the parameter estimates in model 

fitting. Addition work is needed to improve further its 

performance and its general applicability.  
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