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Abstract: In this paper we propose an application of distributed model predictive control
techniques to the problem of driving a group of autonomous agents towards a consensus point,
i.e. a negotiated position in their state space. Agents are assumed to be governed by discrete-
time single- or double-integrator dynamics and the communication network can be directed and
time-varying. Our control protocols are called “contractive” due to a specific constraint imposed
on the agents’ state path. Consensus is formally proven, also in presence of bounds on the norm
of the inputs, by means of a geometrical analysis of the optimal paths.

Keywords: Multi-agent systems, Model predictive control, Consensus problems, Decentralized
control.

1. INTRODUCTION

The topic of cooperative control of multiple agents has
gained considerable attention over the last years. In this
paper we deal with a specific coordination task, called
consensus problem, whose objective is to obtain the con-
vergence of the states of a group of autonomous agents
to a common value by means of suitable control laws.
Consensus problems were historically faced in computer
science (Lynch [1996]) and recently have received much
attention in control engineering, due to their impact in
many applicative contexts, e.g. unmanned autonomous ve-
hicles and sensor networks (see Olfati-Saber [2006], Olfati-
Saber et al. [2007], Ren et al. [2007] and the references
therein). Many control techniques have been applied to
solve this problem in presence of various models of the
agents’ dynamics and the communication network, see e.g.
Moreau [2005], Olfati-Saber and Murray [2004], Tanner
et al. [2003a], Tanner et al. [2003b], Cortes et al. [2006],
Ferrari-Trecate et al. [2006], Bauso et al. [2006]. Most of
them do not exploit optimal control ideas and, with the
exception of Moreau [2005] and Cortes et al. [2006], do not
account for input constraints, which in many cases have to
be included in the problem formulation due to actuators
limitations.
In Ferrari-Trecate et al. [2007a] we proposed an innovative
solution for consensus in networks of single-integrators,
⋆ The work has been partially done in the framework of the HYCON
Network of Excellence, contract number FP6-IST-511368, and it has
also been supported by MIUR Project “Advanced methodologies for
hybrid systems control”.

based on Model Predictive Control (MPC). This method
can be applied in a distributed fashion to the control of a
group of agents by letting each agent solve, at each step,
a Constrained Finite-Time Optimal Control (CFTOC)
problem involving the state of neighboring agents. More-
over, following the so-called Receding-Horizon principle,
at each time step the controller only applies the first
input of the computed control sequence. An advantage of
MPC is the built-in capability to handle control and state
constraints. The MPC scheme proposed in Ferrari-Trecate
et al. [2007a] applies to time-varying and undirected com-
munication graphs, and in Ferrari-Trecate et al. [2007b]
these results were extended to the case of directed graphs.

In this paper we propose alternative distributed MPC
schemes for consensus. The main advantage with respect to
the techniques proposed in Ferrari-Trecate et al. [2007a,b]
is that the new schemes comprise also the case of net-
works of double-integrators with time-varying and directed
communication graphs. Our control laws require periodical
communication among agents and use a peculiar state
constraint, which is called “contractive” because it mim-
ics, in a multi-agent system domain, the state constraint
proposed in De Oliveira and Morari [2000] for the con-
trol of nonlinear systems. In our schemes, because of the
Receding-Horizon technique, the value of the consensus
point to which agents’ states converge depends on the
sequence of agents’ states and the communication network
along time. Since the global cost to be minimized by our
MPC algorithms is not monotonically decreasing, it cannot
be used as a Lyapunov function for studying closed-loop
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stability, as it is done for example in Mayne et al. [2000]
and De Nicolao et al. [2000]. Rather, we exploit geomet-
ric properties of the optimal path followed by individual
agents and rely on the results exposed in Moreau [2005]
for analyzing consensus.

The paper is organized as follows: in Section 2 we define
a model of the communication network and summarize
some key results on convergence in multi-agent systems
presented in Moreau [2005]. Section 3 describes our con-
tractive MPC solution for networks of single-integrators.
In Section 4 its generalization to the case of double-
integrators is presented. Simulation examples illustrate the
results obtained by applying the presented control laws.
Section 5 is devoted to conclusions.

2. BASIC NOTIONS AND PRELIMINARY RESULTS

We consider a set of n agents moving in a d-dimensional
Euclidean space; the uncontrolled dynamics of each agent
is described by a discrete-time single- or double-integrator
model.
The communication network is represented by a directed
graph (or digraph) G = (NG, EG), where NG = {1, . . . , n}
is the set of nodes indexing individual agents and EG ⊆
{(i, j) : i, j ∈ NG, j 6= i} is the set of edges. If, ∀i, j ∈ NG,
(i, j) ∈ EG, the graph is complete. G is undirected if
(i, j) ∈ EG ⇔ (j, i) ∈ EG. The adjacency matrix defined
on G is the n × n matrix A(G) = [aij ], where

aij =

{
1 if ∃(j, i) ∈ EG,

0 otherwise.
(1)

A node i ∈ NG is connected to a node j ∈ NG\{i} if there
is a path from i to j in the graph following the orientation
of the arcs. The graph G is strongly connected if, ∀(i, j) ∈
NG × NG, i is connected to j. The creation and loss of
communication links can be modeled by means of a time-
dependent collection of graphs {G(k) = (NG, EG(k)), k ∈
N}.

Definition 1. [Jadbabaie et al. [2003]] A collection of
graphs {G(1), . . . , G(m)} is jointly connected if ∪m

k=1G(i) =
(NG,∪m

k=1EG(i)) is strongly connected. The agents are
linked together across the interval [l, m], l ≤ m ≤ +∞
if the collection of graphs {G(k), k = l, . . . ,m} is jointly
connected. A node i is connected to all other nodes across
a time interval T ⊆ N if i is connected to all other nodes
in the directed graph (NG,

⋃

k∈T EG(k)).

If (j, i) ∈ EG we say that j is a neighbor to i and the
j-th agent transmits instantaneously its state to the i-
th agent. The set of neighbors to the node i ∈ NG

is Ni(G) = {j ∈ NG : (j, i) ∈ EG} and |Ni| is the
valency of the i-th node. The valency matrix is V (G) =
diag{|N1(G)|, . . . , |Nn(G)|}. We introduce the matrix

K̃(G) = [V (G) + In]−1[In + A(G)].

K̃(G) is a stochastic matrix (i.e. it is square and nonneg-
ative and its row sums are equal to 1, see Jadbabaie et al.
[2003]), whose entry (i, j) is non null if and only if i = j
or (j, i) ∈ EG. It can be shown by the Gershgorin’s disc

theorem that all eigenvalues of K̃(G) that are not unitary
are within the open unit circle. Notably, if 1 is a simple

eigenvalue of K̃(G) and the others have modulus less than

one, it results limk→+∞ K̃(G)k = 1νT , where ν is a column
vector. This implies that, given the discrete-time system

x(k + 1) = K̃(G)x(k)

with x(·) = [x1(·) · · ·xn(·)], one has limk→+∞ ‖xi(k) −
xj(k)‖ = 0, ∀i, j ∈ {1, . . . , n}. Moreover, the Perron-
Frobenius Theorem states that, if a stochastic matrix has
a single eigenvalue in 1, the graph corresponding to the
matrix is strongly connected.
We also define

K(G) = K̃(G) ⊗ Id

where ⊗ denotes the Kronecker product and Id is the
identity matrix of order d. The matrix K(G) is stochastic

as well and inherits the spectral properties of matrix K̃(G)
up to eigenvalue multiplicity. In the sequel, we also use the
symbol ‖ · ‖ to denote the Euclidean norm.

For sake of completeness, now we summarize some results
provided in Moreau [2005] that will enable us to prove
consensus under the MPC schemes we will propose in the
sequel. Assume that agents obey to the general closed-loop
dynamics

x(k + 1) = f(k, x(k)) (2)

where x(k) = [x1(k)T · · ·xn(k)T ]T and xi ∈ R
d, ∀i ∈ NG.

The nodes of the network have reached consensus if and
only if xi = xj ,∀i, j ∈ EG, i 6= j. The corresponding state
value is called consensus point. Let Φ 6= ∅ be the set of
equilibria for (2).

Definition 2. [Moreau [2005]] System (2) is globally at-
tractive w.r.t. Φ if for each φ1 ∈ Φ, ∀c1, c2 > 0 and
∀k0 ∈ N, ∃T ≥ 0 such that every solution ζ to (2) has
the following property:

|ζ(k0)−φ1| < c1 ⇒ ∃φ2 ∈ Φ : |ζ(k)−φ2| < c2,∀k ≥ k0+T.

The system is uniformly globally attractive w.r.t. Φ if it
is globally attractive w.r.t. Φ and the constant T can be
chosen independently of k0.

Definition 3. The multi-agent system (2) asymptotically
reaches consensus if it is (uniformly) globally attractive
w.r.t. Φ = {x ∈ R

d : x1 = x2 = · · · = xn}.

The consensus results stated in Moreau [2005] hinge on
the following assumption.

Assumption 1. For every graph G(k), agent i ∈ NG

and state x ∈ Xn,X ⊆ R
d, there is a compact set

ei(G(k))(x) ⊆ X such that:

(1) fi(x, k) ∈ ei(G(k))(x),∀k ∈ N,∀x ∈ Xn;
(2) ei(G(k))(x) = {xi} if xi = xj , ∀j ∈ Ni(G(k));
(3) whenever the states of agent i and agents j ∈

Ni(G(k)) are not all equal,

ei(G(k))(x) ∈ Ri(Co({xi(k)}∪{xj(k), j ∈ Ni(G(k))}))

where Co(A) and Ri(A) denote the convex hull and
the relative interior, respectively, of the set A;

(4) the set-valued function ei(G(k))(x) : Xn 7→ 2X is
continuous (2X is the power set of X).

We are now in a position to state the main Theorems on
consensus we will use.

Theorem 1. [Moreau [2005]] Let {G(k) = (NG, EG(k)),
k ∈ N} be a collection of directed graphs and assume that
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f in (2) verifies Assumption 1. Then, the system (2) is
uniformly globally attractive with respect to the collection
of equilibrium solutions x1 = x2 = · · · = xn if and only
if there exists a non-negative integer T ≥ 0 such that,
∀k0 ∈ N, there is a node connected to all other nodes
across [k0, k0 + T ].

Theorem 2. [Moreau [2005]] Let {G(k) = (NG, EG(k)), k ∈
N} be a collection of undirected graphs and assume that f
in (2) verifies Assumption 1. Then, the system (2) is glob-
ally attractive with respect to the collection of equilibrium
solutions x1 = x2 = · · · = xn if and only if, ∀k0 ∈ N, all
agents are linked together across the interval [k0, +∞).

3. CONSENSUS FOR AGENTS WITH
SINGLE-INTEGRATOR DYNAMICS

In this Section we consider a system of n agents where each
agent’s dynamics is described by the following discrete-
time single-integrator model:

xi(k + 1) = xi(k) + ui(k) (3)

with initial condition xi(0) = x̃i, i = 1, . . . , n. The vectors
xi(k) ∈ R

d and ui(k) ∈ R
d are the state and the control

input, respectively, of agent i at time k ∈ N.
Let N ≥ 1 denote the length of the prediction horizon.
We associate to the i-th agent, whose dynamics is given
by (3), the input vector Ui(k) = [uT

i (k) · · ·uT
i (k+N −1)]T

and the cost

Ji(x(k), Ui(k)) = Jx
i (x(k), Ui(k)) + Ju

i (Ui(k)) (4)

where

Jx
i (x(k), Ui(k)) = qi

N∑

j=1

‖xi(k + j) − zi(p(k)N)‖2
(5)

Ju
i (Ui(k)) = ri

N−1∑

j=0

‖ui(k + j)‖2
(6)

where qi, ri > 0 are weights, x(k) = [xT
1 (k) · · ·xT

n (k)]T

is the state of the multi-agent system at the beginning
of the prediction horizon, zi(k)

.
= Ki(G(p(k)))x(k) and

Ki(G(p(k))) is the i-th block of the matrix K(G(p(k))),
partitioned as [KT

1 (G(p(k))) · · ·KT
n (G(p(k)))]T , with

Ki(G(p(k))) ∈ R
d×dn, i = 1, ..., n. Notice that zi(k) is just

the barycenter of {xi(k)} ∪ {xj(k), j ∈ Ni(k)}. G(p(k)N)
is the communication graph at time p(k)N , where

p(k) = max
λ∈N

λN≤k

λ

The function p(k) is illustrated in Fig. 1 for N = 4.

Fig. 1. Function p(k) for N=4.

We associate to k ∈ N the p-interval P (k) = {p(k)N,
p(k)N +1, . . . , (p(k)+1)N−1}. Note that p(k) is constant
over each p-interval.

Now consider the following CFTOC problem for agent
i ∈ NG:

min
Ui(k)

Ji(x(k), Ui(k)) (7)

subject to the following constraints:

(A) the agent dynamics (3);
(B) the input constraint

‖ui(k + j)‖ ≤ ui,max, (8)

with ui,max > 0, ∀i ∈ NG,∀j ∈ {0, . . . , (N − 1)};
(C) the state constraint

xi((p(k) + 1)N) = zi(p(k)N). (9)

Constraint (9) is such that:

• it is defined on the multi-agent system state at the
first time instant after the end of P (k);

• it changes when the current time k switches from a
p-interval to the next one;

• it is the same for all k ∈ P (k); consequently, while k
approaches the end of a p-interval, the difference be-
tween the next time at which the state is constrained
and k decreases.

Therefore (9) can be interpreted as a “contractive” con-
straint because, under suitable conditions on the commu-
nication graph, it forces the reduction of the convex hull
spanned by agents’ states, as it will be shown in the sequel.

Remark 1. For p(k)N < k < (p(k) + 1)N , the cost (4) is
independent of the graph G(k) and the states xi(k), i ∈
Ni(k). This implies that agents are required to transmit
their state to neighbors only at times lN, l ∈ N.

Remark 2. Note that if at time lN, l ∈ N the CFTOC
problem (7) is feasible, then it is feasible at times
lN + j, ∀j ∈ {1, . . . , (N − 1)}. Indeed let Xo

i (lN) =
[xi(lN)T xo

i (lN + 1)T · · · xo
i (lN + N)T ]T collect the

states produced by the input sequence Uo
i (x(lN)). Uo

i (lN)
steers xi(lN) into xi(lN + N) = zi(lN) in order to fulfill
constraint (C). Hence, at time k = lN + j the sequence

Ui(lN + j) = [uo
i (lN + j) · · · uo

i (lN + N − 1) 0 · · · 0]

is feasible (since it steers xo
i (lN + j) into xo

i (lN + N) =
Ki(G(lN))x(lN)) and optimal (by Bellman’s principle).
This means that in the nominal case, problem (7) needs
to be solved just at times lN, l ∈ N. However, computing
the control law in a receding-horizon fashion enhances
the robustness properties of the control scheme against
unmodeled perturbations.

Optimal inputs will be denoted with

Uo
i (x(k)) = [uoT

i (k) · · ·uoT
i (k + N − 1)]T

and we will investigate the consensus properties provided
by the Receding-Horizon control law

uRH
i (k) = κRH

i (x(k)), κRH
i (x(k)) = uo

i (k). (10)

The following result shows that an appropriate choice of
the prediction horizon N always ensures the feasibility of
the control problem:

Lemma 1. The CFTOC problem (7) with constraints (A),
(B), (C) is feasible at all times if N ≥ maxi∈NG

Ni where
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Ni =

⌈
maxj∈NG

‖xi(0) − xj(0)‖

ui,max

⌉

and ⌈ξ⌉ denotes the least integer upper bound to ξ ∈ R
+.

The proof of this result, that is easy but rather long, is
omitted. From now on we will assume that the adopted
value of N guarantees the feasibility of (7) at all times.
We are now in a position to state the main results of this
Section.

Theorem 3. Given the collection of directed graphs GS(k0) =
{G((p(k0) + j)N), j = 0, . . . ,+∞} defined over a common
node set NG = 1, . . . , n, the closed-loop multi-agent sys-
tem given by (3) and (10) asymptotically reaches consen-

sus if and only if there exists a non-negative integer T̃ ≥ 0
such that, ∀k0 ∈ N, there is a node connected to all the
others across {p(k0)N (p(k0) + 1)N · · · (p(k0) + T̃ )N},
with T̃ ∈ N.

Theorem 4. Given the collection of undirected graphs
GS(k0) = {G((p(k0) + j)N), j = 0, . . . ,+∞} defined
over a common node set NG = 1, . . . , n, the closed-loop
multi-agent system given by (3) and (10) asymptotically
reaches consensus if and only if, ∀k0 ∈ N, GS(k0) is jointly
connected.

Due to space limitations, we just sketch the technique
used for proving Theorems 3 and 4. First, one can show
that the sequence of contractive constraints, thanks to the
spectral properties of matrix K(·), fulfills Assumption 1.
Furthermore, by a geometrical analysis of the optimal state
path followed by the agents, it can be proven that As-
sumption 1 is fulfilled also within each P -interval. Thanks
to these results, the rest of the proof is a straightforward
application of Theorems 1 and 2, respectively.

Remark 3. If there exists k ∈ N such that G(p(k)N) is
complete, consensus is reached at time (p(k) + 1)N . In
fact, in this case, ∀i, j ∈ NG

Ki(G(p(k)N))x(p(k)N) = Kj(G(p(k)N))x(p(k)N)

as it can be readily seen from the definition of the matrices
Ki(G).

Example 1. We consider a set of n = 5 agents moving in a
bidimensional space, with initial states x1(0) = [−30 30]T ,
x2(0) = [−25 35]T , x3(0) = [65 − 75]T , x4(0) = [70 −
68]T , x5(0) = [100 − 25]T . The prediction horizon is
N = 10. The weights in the cost function (4) are qi =
1, i = 1, . . . , 5, r1 = 100, ri = 1, i = 2, . . . , 5. The
communication network is described by the time-invariant
undirected graph represented in Fig. 2, that corresponds
to the following matrix:

K̃(G) =













1

2

1

2
0 0 0

1

3

1

3

1

3
0 0

0
1

3

1

3

1

3
0

0 0
1

3

1

3

1

3

0 0 0
1

2

1

2













(11)

1 52 43

Fig. 2. Communication network.

The input constraints (8) are given by ui,max = 100, i =
1, . . . , 5. Simulations depicted in Figures 3-4 confirm the
expected tendency of agents to consensus. Notice that the
contractive constraint (9) forces the agents to reach states
which are independent of the weights ri and qi.

0 20 40 60 80 100
−50

0

50

100

time

x
i,

1

0 20 40 60 80 100
−100

−50

0

50

time

x
i,

2

Fig. 3. Example 1: Evolution of agents’ states. Dashed line:
path followed by agent 1.

In this example input constraints are not active. The
cost functions relative to the single agents and the global
cost function have sudden growths in correspondence of
the beginning of each p-interval, due to the changes in
K(G(p(·)N)).

0 20 40 60 80 100
0

500

1000

1500

2000

2500

3000

3500

time

Fig. 4. Example 1: Optimal cost of individual
agents Ji(x

o(k), Uo
i (k)) and optimal global

cost Jo(xo(k), Uo(k)) =
∑5

i=1 Jo
i (xo(k), Uo

i (k))
(continuous line).

Example 2. We consider the setting of Example 1, with
the difference that now the input constraint is ui,max =
20, ∀i ∈ NG. Moreover, the collection of graphs GS(0) is
structured as follows:

GS(0) =

{GS1
︸︷︷︸

1

GS2 GS1 GS1
︸ ︷︷ ︸

2

GS2 GS1 GS1 GS1
︸ ︷︷ ︸

3

GS2 · · · }

(12)

where
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K̃(GS1) =













1
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1
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1
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, K̃(GS2) =
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GS(0) is a collection of directed graphs, because GS1 is
directed, and does not fulfill the assumptions of Theorem
3. In fact the non-connected communication graph GS1 is
active over time intervals of increasing length. Therefore
asymptotic consensus is not achieved (see Fig. 5).
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−50

0

50

100

time

x
i,

1

0 10 20 30 40 50
−100

−50

0

50

time

x
i,

2

Fig. 5. Example 2: Evolution of agents’ states.

4. CONSENSUS FOR AGENTS WITH
DOUBLE-INTEGRATOR DYNAMICS

We now consider a set of n agents with discrete-time
dynamics

xi(k + 1) = xi(k) + vi(k) (13a)

vi(k + 1) = vi(k) + ui(k) (13b)

∀i = 1, . . . , n and with initial conditions xi(0) = x̃i,
vi(0) = ṽi. The vectors xi ∈ R

d, vi ∈ R
d and ui ∈ R

d

can be used, for example, to describe position, velocity
and control input, respectively, of vehicle i moving in
a d-dimensional space. Next, we present an extension
of the contractive technique proposed in Section 3 for
guaranteeing consensus.

Define the following cost:

Ji(x(k), v(k), Ui(k)) =

Jx
i (x(k), v(k), Ui(k)) + Jv

i (v(k), Ui(k)) + Ju
i (Ui(k))

(14)

where

Jx
i (x(k), v(k), Ui(k)) = qix

N+1∑

j=2

‖xi(k + j) − zi(p(k)N)‖2

(15)

Jv
i (v(k), Ui(k)) = qiv

N∑

j=1

‖vi(k + j)‖2
(16)

Ju
i (Ui(k)) = ri

N−1∑

j=0

‖ui(k + j)‖2
(17)

and qix, qiv, ri > 0. We consider the optimization problem

min
Ui(k)

Ji(x(k), v(k), Ui(k)) (18)

subject to the following constraints:

(I) the agent dynamics (13);
(II) the input constraint ‖ui(k + j)‖ ≤ ui,max, ui,max >

0,∀i ∈ NG,∀j ∈ {0, . . . , (N − 1)} ;
(III) the contractive state constraints

xi((p(k) + 1)N) = zi(p(k)N) (19a)

vi((p(k) + 1)N) = 0. (19b)

Due to the double-integrator dynamics of the agents, we
require that N ≥ 2 in order to guarantee the reachability
of system (13). The constraints (19a) and (19b) imply that,
during its movement, each agent is periodically forced to
arrive to the position given by (19a) with zero velocity.

Denoting with Uo
i (x(k)) = [uoT

i (k) · · ·uoT
i (k + N − 1)]T

the optimal control sequence, the corresponding control
law takes the form

uRH
i (k) = κRH

i (x(k), v(k)), κRH
i (x(k), v(k)) = uo

i (k).
(20)

It can be shown that by choosing N big enough, problem
(18) is feasible at all time instants, as we will assume from
here on.

It is now possible to state the main results on consensus
of this Section:

Theorem 5. Given the collection of directed graphs GS(k0)
= {G((p(k0) + j)N), j = 0, . . . ,+∞} defined over a node
set NG = 1, . . . , n, the closed-loop multi-agent system
given by (13) and (20) asymptotically reaches consensus

if and only if there exists a non-negative integer T̃ ≥ 0
such that, ∀k0 ∈ N, there is a node connected to all the
others across {p(k0)N (p(k0) + 1)N · · · (p(k0) + T̃ )N},
with T̃ ∈ N.

Theorem 6. Given the collection of undirected graphs
GS(k0) = {G((p(k0) + j)N), j = 0, . . . , +∞} defined over
a node set NG = 1, . . . , n, the closed-loop multi-agent
system given by (13) and (20) asymptotically reaches con-
sensus if and only if, ∀k0 ∈ N, GS(k0) is jointly connected.

Proofs of Theorems 5 and 6, which are omitted, are
based on a geometrical decomposition of the optimal
control problem and on the properties of the sequence of
contractive constraints (19a), which fulfill Assumption 1.

Remark 4. Also in this case, if there exists k ∈ N such
that G(p(k)N) is complete, consensus is reached at time
(p(k) + 1)N .

Example 3. The case we consider includes five agents
moving in the plane with the following initial conditions:
x1(0) = [−30 30]T , v1(0) = [−50 50]T . x2(0) = [−25 35]T ,
v2(0) = [5 15]T . x3(0) = [65 − 75]T , v3(0) = [−65 −
5]T . x4(0) = [70 − 68]T , v4(0) = [−10 48]T . x5(0) =
[100 − 25]T , v5(0) = [20 85]T . The prediction horizon
is N = 20. The weights in the cost function (14) are
qi = 1, ri = 1, i = 1, . . . , 5 and the input constraint is
ui,max = 200, i = 1, . . . , 5. We consider a time-invariant
undirected graph collection GS(·) described by the matrix
(11). The simulation results depicted in Fig. 6 confirm
asymptotic consensus.
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Fig. 6. Example 3: Evolution of agents’ states.
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Fig. 7. Example 3: Evolution of agents’ velocity.

5. CONCLUSIONS

We have proposed MPC control schemes capable of guar-
anteeing consensus in a multi-agent system where in-
dividual dynamics are described by single- and double-
integrator models. The proof of consensus, which holds un-
der suitable assumptions on the communication graph, re-
lies on the convergence results presented in Moreau [2005],
that are applicable because of the particular properties of
optimal state trajectories.

The control techniques proposed in this paper can be
blended to obtain more complex group behaviors in mul-
tiagent systems. This can be shown by an example. Take
n agents with double-integrator dynamics, moving in a
three-dimensional space. We apply to these agents:

• the contractive single-integrator solution (Section 3)
to obtain consensus on two components of the velocity
variables;

• the contractive double-integrator solution presented
in Section 4 to obtain consensus on the remaining
component of the position variable.

In this way we (asymptotically) obtain a planar motion of
the agents with the alignment of their velocities along that
plane. Further combinations of the proposed solutions can
be studied, thus realizing other actions of interest.

Future extensions of this work will concern an evaluation
of the effect of communication delays and/or uncertainties
on the performance of the proposed control schemes.
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