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Abstract: In this paper, we analyze the stability of a network that uses piecewise smooth
potential functions. A gravitation-like force is applied to deploy a group of agents and to form
a certain configuration. We use a nonsmooth version of the Lyapunov stability theory and
LaSalles invariance principle to show asymptotic stability of the network which is governed by
discontinuous dynamics. Hexagonal deployment using such a force is shown through simulation.

1. INTRODUCTION

The sensor location problem in mobile sensor networks
has similarities to the conventional art gallery problem
(AGP) studied in computational geometry [1]. AGP seeks
to determine how to use a minimal number of guards
(cameras) in a polygon so that every point in the polygon
is observed by at least one guard (camera). However, the
solutions of AGP cannot be directly applied to the mobile
sensor network deployment problem. First, AGP solutions
assumes that the model of a environment can be well con-
structed a priori. This is not typical in mobile sensor net-
work deployment. Secondly, AGP solutions suppose that
a guard can observe as long as a line-of-sight exists, while
sensors usually have finite sensing ranges. Furthermore,
AGP solutions do not consider the limitations imposed by
communication range.

The problems of coverage and deployment are funda-
mentally interrelated. In [2], the authors have discussed
the problem of location and deployment of sensors from
a coverage standpoint. The authors define the coverage
problem from different points of view, including deter-
ministic, statistical, and the worst and best cases. The
goal is to have each location in the environment covered
by at least one sensor. They argue that coverage is a
primary performance metric that determines quality-of-
service (QoS) and combined computational geometry and
graph theory for their algorithms.

The concept of coverage as a paradigm for the system-
level functionality of multirobot systems was introduced
by Gage [3]. Gage defines three basic types of coverage:
(i) Blanket, (ii) Barrier, and (iii) Sweep coverage. In
Blanket coverage, the objective is to accomplish a static
arrangement of nodes that maximizes the total detection
area. The objective of Barrier coverage is to minimize
the probability of undetected penetration through the
barrier. Sweep coverage is roughly equivalent to the
moving Barrier coverage. According to this taxonomy,
the deployment problem in this research is equivalent to
blanket coverage.

Autonomous mobile sensor deployment algorithms have
been intensively researched. One of the most widely used
methods is to employ artificial force concept between mo-
bile agents. Since first presented by Khatib [4], potential
field based methods have been extensively used in path
planning. In potential field based algorithms [5] [6] [7],
a control law is defined as the negative gradient of the
potential. Popa et al. [8] deployed sensor networks us-
ing conventional potential field method. Voronoi diagram
method has also been used to generate artificial forces [9].
On applying these algorithms, the mobile sensor nodes get
situated in the environment in a distributed manner. A
Virtual force can be directly derived to enhance network
coverage for randomly placed sensors as developed by [10].

Most of the previous researches, however, assumed a
smooth potential field which is differentiable over the en-
tire region. This assumes two properties. First assumption
is that a neighboring set (a set of nodes with which a
node can communicate) of a node never changes, and the
second is that a potential function is differentiable. A force
field derived from a smooth potential function becomes
continuous, and the system is governed by continuous
dynamics.

We remove the second assumption on the continuity of a
force field. We develop a system represented by differential
equations with discontinuous right hand side, where inter-
active forces between nodes are discontinuous. We followed
the framework by Shevitz and Paden [11] to prove stability.
The main advantage of this work is to grant much freedom
in designing a force field or shaping a potential field for a
network formation.

2. SENSOR NETWORK DEPLOYMENT

2.1 Optimal Sensor Locations

An important phase in the operation of a sensor network
is the deployment of sensors in a field of interest. It is
a critical issue because it directly affects the cost and
detection capability of a wireless sensor network. Sensor
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Fig. 1. Sensor model and coverage

deployment has received considerable attention recently.
Critical goals during deployment of a sensor network
include coverage, connectivity, and load balancing among
others.

The deployment strategy for sensor networks varies with
the application considered. It can be predetermined when
the environment is sufficiently known and under control,
in which case the sensors can be strategically deployed
manually.

The deployment can also be a priori undetermined when
the environment is unknown or hostile, such as remote
harsh fields, disaster areas and toxic urban regions. In
this case, sensor deployment cannot be pre-planned and
performed manually. For example, the sensors may be
airdropped from an aircraft or deployed by other means,
generally resulting in a random placement. Random place-
ment of sensors in a target area is often desirable espe-
cially if no a priori knowledge of the terrain is available.
Random deployment is practical in military applications,
where sensor networks are initially established by drop-
ping or throwing sensors into a desired field. However,
such random deployment does not always lead to effective
coverage, especially if the sensors are overly clustered and
there is a small concentration of sensors in certain parts
of the sensor field. The actual landing position cannot be
controlled due to the existence of wind and obstacles such
as trees and buildings. Consequently, the coverage may be
inadequate for specific application requirements regardless
of how many sensors are dropped.

In these scenarios, it is possible to make use of mobile
sensors, which can can be made to move to appropriate
locations to provide the required coverage. Mobility can
significantly increase the capability of a sensor network
by making it resilient to failures, react to events, and be
able to support disparate missions with a common set of
sensors. Multiple mobile agents provide us with a flexible,
robust and distributed solution for data collection in sensor
networks.

Sensor deployment is basically an optimal sensor location
problem. Let us consider a binary sensor model which
is a disk model as shown in fig. 1(a), and define rs as
its sensing range. The aim of the sensor network is to
maximize the area covered by placing multiple sensors in
the environment. When there are more than 2 sensors, an
optimization problem arises. For example, we can maxi-
mize the coverage area by arranging two disks adjacent to
each other as shown in fig. 1(b). With more than 3 sensors,
which is generally true in sensor networks, there may exist
a coverage hole (void) between sensors as shown in fig.
1(c) (colored area in the middle of the three sensors). To
remove this void, we may overlap sensor detection areas.

In this case, we need to minimize the overlapped area to
maximize the covered area for a given number of sensors.

Let us define ds as the distance between two sensors. Then,

ds =
√

(xi − xj)2 + (yi − yj)2, (1)

where (xi, yi) and (xj , yj) are two sensor positions in 2-D
space. In a two sensor case, it is simply 2rs to maximize
coverage area and minimize the communication range. Let
us now consider the triangle shown in fig. 2(a). As every ds

is the same, the triangle is an equilateral and from simple
geometry, we know ds is

√
3rs. The optimal placement

of sensors is then the traditional circle packing problem

for circles whose radii are
√

3r
2 [12, 13]. A circle packing

(a) 3 sensors
without hole

(b) circle packing (c) 4 sensors

Fig. 2. Coverage problem to disk packing

is an arrangement of circles inside a given boundary
such that no two overlap and some (or all) of them are
mutually tangent. The densest packing of circles in the
plane is the regular hexagonal lattice arrangement, which

has a packing density of
√

3π
6 as shown in fig. 2(b). The

overlapped area (Ao) between two circle in fig. 2(a) is

2(π
6 −

√
3

4 )r2. In case of four sensors, there are 5 overlapped
area as in fig. 2(c).The optimal deployment minimizes such
an overlapped area.

2.2 Hexagonal deployment

We have so far shown that a hexagonal structure is optimal
in terms of our coverage definition. The main problem now
is how one should propagate the hexagonal configuration
in a distributed manner.

To successfully reach the goal of networked systems, mo-
bile nodes should communicate with each other. In general,
a mobile sensor node has a limited range of communica-
tion. Therefore, only nodes which are sufficiently close to
each other, can establish communication, and the commu-
nication topology is strongly influenced by node motion.

Let xi be the position vector of the i-th node in 2-D
and N be the number of nodes, and assume each node
has standard second order linear dynamics. We can define
rij = |xij | as the distance between the i-th node and the
j-th node, and we construct a potential function V(rij),
which is a function of the distance between two nodes. The
control input to a node is the force Fij exerted on the i-th
node by the j-th node. It is useful to write the force as
the negative gradient of the potential field. Therefore, the
total force on each node can be described as

Fi =

N∑

j 6=i

Fij = −
N∑

j 6=i

∇V(rij). (2)
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Fig. 3. Force model and hexagonal structure

The magnitude of the force as a function of the distance
is shown in fig. 3. It is necessary to adjust the magnitude
of the force to the feasible level to accommodate control
input saturation. This limit is set as Fmax, and comes into
play when r ≤ r1. The force is repulsive if r ≤ r2, and
attractive if r ≥ r2. There is no force exerted if r ≥ r3.
In this work, the potential field is chosen so that the force
function is of the form

Fij =
α

rβ
ij

, (3)

where α and β are the parameters we can tune. Each
node uses exactly the same control law because the nodes
are assumed to be identical, and are influenced only by
the neighboring nodes, i.e., those within a ball of radius
r3. The global minimum of the sum of all the potentials
consists of a configuration in which neighboring nodes are
spaced equally at a distance r2 from one another as shown
in fig. 3(b).

For a uniform distribution of the sensor nodes, the hexag-
onality of a deployment can be measured by uniformity.
Uniformity is defined as the average of the local standard
deviation of the distances between neighboring nodes [14].
Let Ni be a set of nodes which can communicate with and
be detected by the i-th node. Then, the overall uniformity
of a deployment is

U =
1

N

N∑

i=1

Ui

Ui = (
1

|Ni|
∑

j∈Ni

(|xij | − µi)
2)

1

2

where Ui is the local uniformity, and µ is the mean of
the distances between the i-the node and its neighbors.
A smaller value of U means that the nodes are more uni-
formly placed, and with our force model, the deployment
has a hexagonal structure.

The main problem of this form of artificial force is that the
system has discontinuous right hand side. The sign of the
force switches at a certain distance r2. A node is locally
interacting with neighbors, and each node is governed by
discontinuous differential equations. Therefore, stability
analysis is required for the overall network.

3. STABILITY ANALYSIS FOR TIME INVARIANT
SYSTEM

We define the state of the n nodes as

xi xj

xk xlekl

eki

eij

elj

eli

ekj

(a) Undirected graph

x

y

xi

xj

xij

(b) Spacial representation

Fig. 4. Undirected graph and its spacial representation

x = (x1, ..., xn, ẋ1, ..., ẋn).

Let us consider an undirected neighboring graph, G =
{V , E}, which is composed of as a finite non-empty set
of vertices, V = {x1, x2, ..., xn}, and a finite set of edges,
E = {eij|(xi, xj) ∈ V × V , xi ∼ xj} (fig. 4). A vertex
represents a mobile node and an edge contains unordered
pairs of nodes that depict neighborhood between the
nodes. We now define a neighboring set of node i, Ni =
{j|(xi, xj) ∈ E , |xi − xj | ≤ rr, rc}, as a set of nodes which
can communicate with and be detected by node i. It is
proved that if rc ≥ 2rr, complete coverage of a convex
region implies connectivity of an arbitrary network [15].
We assume the same condition here so that connectivity
is always guaranteed.

First, we consider the time invariant case, where a node
can communicate with all other nodes or a set of neigh-
boring nodes Ni does not change. This property induces
that the total potential energy of the group is differentiable
as long as the potential energy function for each node is
differentiable. Then the control input to a node is smooth
and classic Lyapunov stability theory can be applied.
Let us consider a continuously differentiable Lyapunov
function (Φ) that combines kinetic energy and potential
energy in the form

Φ =
1

2

n∑

i=1


ẋT

i · ẋi +
∑

j∈N
V (xij)


 . (4)

Let us define a set Ω as

Ω = {(x, ẋ)|Φ ≤ φ} , ∀ i, j ∈ {1, ..., n}, (5)

for a sufficiently large value of φ. The set, for φ > 0, is
closed by continuity. Because of the symmetric property
of V (xij) and V (xji), and the property of xij = −xji,

∂Vij

∂xij

=
∂Vij

∂xi

= −∂Vij

∂xj

(6)

Therefore, the time derivative of the potential energy
becomes

d

dt

∑

j∈N
V (xij) =

∑

j∈N
(V̇ij) =

∑

j∈N
ẋT

ij∇V (xij) (7)

= 2
∑

j∈N
ẋT

i · ∇V (xij). (8)

And, the time derivative of Φ becomes
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Φ̇ =

n∑

i=1

ẋT
i ·



ẍi +
∑

j∈N
∇V (xij)



 . (9)

For simplicity, let us consider a simple unit mass dynamics
system for a node.

ẍi = ui − cẋi. (10)

Because we are considering control input u as the negative
gradient of the potential, equation 9 can be expressed as

Φ̇ =

n∑

i=1

ẋT
i ·



−cẋi −
∑

j∈N
∇V (xij) +

∑

j∈N
∇V (xij)





= −c
n∑

i=1

ẋT
i · ẋi.

For the positive damping coefficient c, Φ̇ is semi-negative
definite (Φ̇ ≤ 0). Equality Φ̇ = 0 holds only when ẋi =
0. Therefore, the system with the given control law is
asymptotically stable. Let S be the invariant set in Ω

S = {(x, ẋ)|Φ̇ = 0}. (11)

From LaSalle’s invariance principle, we can conclude that
the nodes will converge to the largest invariant set in S.
However, with nonzero c, Φ̇ is zero only when all the nodes
are at rest. We do not consider the trivial case, in which
a node is at rest because there is no node within given
sensing range. Therefore, the above statement means that
all the distances of neighboring nodes are the same, where
the local minima of the potentials are achieved.

4. DISCONTINUOUS DYNAMIC SYSTEMS

Let us again consider each node with unit mass, and define
the state variable

x = [x1, ẋ1, ..., xi, ẋi, ..., xn, ẋn]T

where xi = [xi, ẋi]
T . Then the agent dynamics can be

given by

ẋi = ψ(x) + τ(x) = f(x),

where ψ(x) is a friction force proportional to the velocity,
and τ(x) is a control input derived from the negative
gradient of the system. For the simplest expression,

ẍi = −cẋi −∇V,
where V is the total potential at xi due to all the neighbor-
ing nodes. The equation appears linear and same as the
equation used in the constant topology case which was
described in the previous section. However, what we are
considering in this section is a system with discontinuous
right hand side. In group motion analysis, there are two
possibilities that the system has discontinuous dynamics.
The first case appears where each node has discontinuous
dynamics, while the second case presents the switching
topologies where the neighboring set of a node Ni varies as
time passes. We consider the first case here, while method-
ology and results of nonsmooth analysis are same for the

second one. Then the agent dynamics can be explained
with a differential inclusion [16]

ẋi ∈ K[f ](x)i

At the points of discontinuity, x lies in the convex closure
of the liming values of the vector field. Therefore,

K[f ](x) = [ẋi,−cẋi − Σj∈Ni
∇Vij ]

Note that we discard sets of measure zero where the
gradient of V is not defined. Figure 5 shows the changes
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(a) Force model based on
gravitational force
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(b) Force model between the
nodes

Fig. 5. Force model

of the force magnitude corresponding to the distance to a
neighbor. It is necessary to refine the magnitude of force
to feasible level because of control input saturation. This
limit is set as Fmax, and comes into effect when r ≤ R1.
The force is repulsive if r ≤ R2, and attractive if r ≥ R2.
There is no force exerted if r ≥ R3.

F =






Fmax if r < R1

G

rp
if R1 < r < R2

−G

rp
if R2 < r < R3

0 if R3 < r.

Let us consider the nonnegative Lyapunov function candi-
date

Φ =
1

2

n∑

i=1



ẋT
i · ẋi +

∑

j∈N
V (xij)





We now define V = −
∫
r
Fdr, which is a negative form for

the conventional potential energy along the path so that
control input to the system is a negative gradient of the
the potential energy. For the force shown in figure 5, we
have following potential energy (V ) =






−rFmax if r < R1,

−R1Fmax − G

ρ
rρ +

G

ρ
Rρ

1 if R1 < r < R2,

−R1Fmax − 2G

ρ
Rρ

2 +
G

ρ
Rρ

1 +
G

ρ
rρ if R2 < r < R3,

−R1Fmax − 2G

ρ
Rρ

2 +
G

ρ
Rρ

1 +
G

ρ
Rρ

3 if R3 < r,

where ρ is (1 − p). First two terms in each region are
negative for repulsive force whereas the last integral is
positive for attractive force. The graphical representation
of the potential is shown in figure 6.
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Fig. 6. Potential energy derived from the force law

There are three nonsmooth points in the potential at R1,
R2, and R3. The potential values at the discontinuities are

VR1
=−R1Fmax

VR2
=R1Fmax +

G

(1 − p)
R

(1−p)
2 − G

(1 − p)
R

(1−p)
1

VR3
=−R1Fmax − 2G

(1 − p)
R

(1−p)
2

+
G

(1 − p)
R

(1−p)
1 +

G

(1 − p)
R

(1−p)
3

If the distance between two nodes are one of those nons-
mooth points (r /∈ Ωv), we need to consider the generalized
time derivative of Φ. To apply the nonsmooth version of
Lyapunov stability analysis, we need to check the regular-
ity of Φ.
Let us first establish regularities of V at distances which
belong to the set of measure zero.

One sided directional derivatives [17] are defined as

f ′(R1, v) = lim
t↓0

V (R1 + tv)

VR1

=

{
a < 0 if v > 0,

b > 0 if v < 0.

f ′(R2, v) = lim
t↓0

V (R2 + tv)

VR2

=

{
c > 0 if v > 0,

d < 0 if v < 0.

f ′(R3, v) = lim
t↓0

V (R3 + tv)

VR3

=

{
e = 0 if v > 0,

f < 0 if v < 0.

Now we define gradient of V where r /∈ Ωv

∇V (r) =






− G

Rp
1

if r < R1

−G

rp
if R1 < r < R2

G

rp
if R2 < r < R3

0 if R3 < r.

Note that ∇V includes the derivative with respect to
time even though it is not shown in the expression. By
combining definition of Glarke’s generalized gradient, we
have

f◦(R1, v) =

{
a < 0 if v > 0,

b > 0 if v < 0.

f◦(R2, v) =

{
c > 0 if v > 0,

d < 0 if v < 0.

f◦(R3, v) =

{
e = 0 if v > 0,

f < 0 if v < 0.

By the definition of regular function, V is regular, and Φ is
regular as a sum of regular functions. Regularity and the
property of finite sums of generalized gradients provide us

∂Φ = [Σ∂x1
Vi, ẋi...,Σ∂xn

Vi, ẋn]T

From Clarke’s chain rule, we have the generalized time
derivative of Φ

˙̃
Φ =

⋂

ξ∈∂Φ(x(t))

ξT (K[f ](x(t)))

=
⋂

Σ
[
ẋT

i Σ∂xi
V − cẋT

i ẋi − ẋT
i Σ∂xi

V
]

= co{−ΣcẋT
i ẋi}

≤ 0.

As we do not consider the trivial case where the graph

is not connected,
˙̃
Φ = 0 only when ẋi = 0.Let S be the

invariant set in Ω

S = {(x, ẋ)|Φ̇ = 0}. (12)

From LaSalle’s invariance principle, we can conclude that
the nodes will converge to the largest invariant set in S.
However, with nonzero c, Φ̇ is zero only when all the nodes
are at rest. We do not consider the trivial case, in which
a node is at rest because there is no node within given
sensing range. Therefore, the above statement means that
all the distances of neighboring nodes are the same, where
the local minima of the potentials are achieved.
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Fig. 7. Hexagonal structure construction

5. SIMULATION RESULTS

Simulation is conducted for the hexagonal formation via
the artificial force from potential, and for the hierarchical
formation control. The main purpose of this kind of
coverage is to get maximum coverage without coverage
hole.

Figure 7 shows the results from a hexagonal formation of
50 mobile sensor nodes (fig. 7(a)) and 200 nodes (fig. 7(b)).
In this simulation, α and β are 500 and 2, respectively,
desired equilibrium distance r2 is 50m, and Fmax is limited
to be 1. The sampling time (δt) is 0.1 sec. and the
number of iterations is 6000 so that the total time for the
deployment is 10 minutes. Figure 7(a) shows an example of
a hexagonal formation. Note however, that the hexagonal
structure is not perfect. There are a small number of nodes
lumped in the lower right corner. The perimeter of the
structure is not hexagonal. These defects are inevitable
in our potential based force model, because we are not
considering a global controller which can shape the whole
system. The overall formation shows, however, well-defined
hexagons.

6. CONCLUSIONS

A force law inspired by gravitational force was employed
to form such a hexagonal structure. Due to the nature of
the proposed force law, the stability of the system was
analyzed with discontinuous dynamics. A Lyapunov func-
tion which combines kinetic energy and potential energy
was constructed and a nonsmooth version of Lyapunov
stability theory and LaSalle’s invariance principle were
used to prove stability.

The main contribution of this proof is to expand the
mutual relation between the force which is required to have
a certain formation and the potential function which is
used for the stability analysis. This is because the force
is derived by taking the derivative of the potential. In
other words, different formations can be achieved with
different force laws. The line integral which becomes the
potential function is then taken to analyze the stability of
the system. This procedure is the inverse of the conven-
tional potential field methods, which first build potential
functions and then use the derivative of the potential as a
control input. Based on the proof given in this research, a
stable system with a desired formation can be achieved.
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