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Abstract: In recent years the main focus of research in the area of robust stability of systems
was on linear systems. In this paper the question of robust stability for nonlinear systems is
adressed. We are mainly interested in global asymptotic stability and the main tools to solve
these problems are methods based on Lyapunov functions. Using an appropriate Lyapunov
function and an exact linearization of the system we are able to derive a sufficient condition
for global asymptotic stability of a nonlinear system. This sufficient condition is known in
the literature as robust linear matrix inequality. The main contribution of this paper is a
new relaxation for robust linear matrix inequalities which avoids vertexization and leads to
a computationally efficient procedure.
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1. INTRODUCTION

In this paper we will investigate nonlinear systems given
by the state space representation

ż(t) = f(z(t)) , z(0) = z0 (1)
where z ∈ Rn represents the state vector and the nonlinear
function f satisfies f(0) = 0. Thus, z = 0 is a stationary
point of the autonomous system. We assume that the
system under investigation results from the application of
a controller to a nonlinear system in such a way that the
closed loop system is independent of external inputs. As
a result of this it is also natural to assume that z = 0
is asymptotically stable (cf. Hahn [1967]). Based on the
previous considerations we are able to transform (1) into
the formally linear expression

ż(t) = A
(
z(t)

)
z(t) , z(0) = z0 (2)

where the n × n matrix function A(z) is not unique. One
convenient choice of A(z) is given by

A(z) =
∫ 1

0

g(sz) ds , g(z) =
∂f

∂z
(z) (3)

where it is assumed that the function f(z) is differentiable.

In controller synthesis it is guaranteed, as already stated
before, that the stationary point z = 0 is asymptotically
stable. But it is very difficult to estimate or compute the
region of attraction of this stationary point.

We will approach this problem for the case of global
asymptotic stability. In order to have a chance to find
sufficient conditions we assume that all entries of A(z)
are bounded functions of z. The formal linearity of (2)
enables us to use as a Lyapunov function (cf. Hahn [1967])
the following quadratic form

V (z) = zT P z , P = PT > 0 (4)
for which the time derivative along the trajectories of (2)
is computed as

V̇ (z) = zT
{

AT (z)P + PA(z)
}

z (5)

which leads to the condition
AT(z)P + P A(z) < 0 ∀ z (6)

for global asymptotic stability. Due to the assumed bound-
edness of the elements of A(z) we have an embedding

A(z) ∈{
M ∈ Rn×n

∣∣ mij ∈ [min
z

aij(z) ,max
z

aij(z)] ,

i, j = 1, . . . , n} = Ã (7)

for all z where Ã is an interval matrix (cf. Moore [1966]).
The stability condition (6) can now be relaxed to

AT P + P A < 0 ∀A ∈ Ã (8)
which represents a robust linear matrix inequality (robust
LMI). In the following sections an efficient and fast nu-
merical solution of this condition for P will be presented.

This article is an expanded version of Tibken [2002]. For a
different approach to the same problem using the theorem
of Ehlich and Zeller see Warthenpfuhl and Tibken [2008].

2. LINEAR MATRIX INEQUALITIES

In the last decade, LMI conditions and efficient numerical
software for solving them played a major role in the
development of control theory. A typical LMI is given by

F (x) = F0 + F1 x1 + . . . + Fr xr ≥ 0 (9)
where x ∈ Rr represents the vector of decision variables
while Fi ∈ Rn×n, i = 0, . . . , r are given real symmetric
matrices. The feasible set

Ω =
{

x ∈ Rr
∣∣ F (x) ≥ 0

}
(10)

is either empty or convex. Due to the convexity of Ω,
very efficient software for the computation of a point in
Ω is available (interior-point methods, cf. Nesterov and
Nemirovski [1994]).
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A very important generalization of LMIs are robust LMIs
which are represented as

F̃ (x, δ) = F̃0(δ) + F̃1(δ) x1 + . . .

+ F̃r(δ) xr ≥ 0 ∀ δ ∈ ∆
(11)

where δ ∈ ∆ ⊂ Rm is a vector of parameters lying in
the bounded set ∆ and the matrices F̃i depend on these
parameters. In this case the feasible set is defined by

Ω̃ =
{

x ∈ Rr
∣∣ F̃ (x, δ) ≥ 0 ∀ δ ∈ ∆

}
(12)

and a robust LMI represents an uncountable number of
ordinary LMI conditions if the set ∆ contains uncount-
ably many points. The stability condition (8) represents a
robust LMI if we make the following identifications

decision variables x = independent entries of P , (13)

r =
1
2

n (n + 1) , (14)

parameter vector δ = independent entries of Ã , (15)

m = n2 . (16)
It is important to observe that in this case the dependence
on the parameter δ is linear, which will simplify the follow-
ing analysis. It is convenient to introduce the abbreviations

Ā = midpoint matrix of Ã and (17)

S = radius matrix of Ã (18)
which lead to the equivalent characterization

Ã =
{
M ∈ Rn×n

∣∣ mij ∈ [āij − sij , āij + sij ] ,

i, j = 1, . . . , n} . (19)
Due to its linearity in both the decision variables x and
the uncertain parameters δ, it is easy to convert the robust
LMI (8) into a set of ordinary LMIs. In order to do this,
we first define the set

vert(Ã) = set of vertices of Ã (20)
and immediately arrive at the equivalent stability condi-
tion

ÂT P + P Â < 0 ∀ Â ∈ vert(Ã) , (21)
which represents a finite number of ordinary LMIs. The
major problem with this approach is that the vertex set
consists of 2(n2) matrices, in general. This number grows
rapidly with increasing n, so we get 512 LMI conditions
for n = 3 and 65, 536 LMI conditions for for n = 4. Thus,
with available LMI solvers this problem cannot be solved,
even for n = 4. Considering that most practical problems
are of much higher dimension, the vertexization method is
useless for solving the stability problem in general. In the
next section we will use recent results from real algebra in
order to find new sufficient conditions to replace (8).

3. REFORMULATION OF THE PROBLEM

In this section we assume a robust LMI with linear
dependence on the uncertain parameters δ (cf. Apkarian
and Tuan [2000]). This robust LMI, with the linearity in
δ made explicit, is given by

G(x, δ) = G0(x) + G1(x) δ1 + . . .

+ Gm(x) δm ≥ 0 ∀ δ ∈ ∆ .
(22)

The matrices Gi also depend linearly on the decision
variables x. In order to transform the problem from a

matrix to a polynomial formulation we first define the
quadratic form

q(x, δ, z) = zT G(x, δ) z .

We then have the following equality of solution sets
Ω = {x ∈ Rr | G(x, δ) ≥ 0 ∀ δ ∈ ∆ }

= {x ∈ Rr | q(x, δ, z) ≥ 0 ∀ δ ∈ ∆ and ∀ z ∈ Rn },
(23)

where the second characterization of Ω consists solely of
a polynomial condition. We then interpret q(x, δ, z) as a
polynomial in δ and z with coefficients which are linear
in x. Our goal is now to find a set of sufficient conditions
which are linear in x and which represent ordinary LMI
conditions.

If we omit the variable x for clarity, q(δ, z) can be written
as

q(δ, z) = q0(z) + δ1 q1(z) + . . . + δm qm(z) (24)
and we would like to test if

q(δ, z) > 0 ∀ δ ∈ ∆ and ∀ z ∈ Rn (25)
holds with

∆ = { δ | −1 ≤ δi ≤ 1 , i = 1, . . . ,m } . (26)
We may assume this convenient structure for ∆ as an
interval vector without loss of generality (cf. (33)).

At the heart of our approach lies the equivalent alternative
representation

q(δ, z) = q̃0(z) +
m∑

i=1

(1 + δi) q̃i1(z)

+
m∑

i=1

(1 − δi) q̃i2(z)

(27)

which was chosen to have a structure similar to the repre-
sentation described in Theorem 4.2 in Jacobi and Prestel
[2001]. Because of the structure of (27), the set of sufficient
conditions for positivity

q̃0(z) > 0

q̃i1(z) > 0 , i = 1, . . . ,m (28)

q̃i2(z) > 0 , i = 1, . . . ,m

can be derived immediately. A comparison of coefficients
leads to the set of equations

q0(z) = q̃0(z) +
m∑

i=1

(
q̃i2(z) + q̃i1(z)

)
qi(z) = q̃i1(z) − q̃i2(z)

which relate the polynomials from (24) to the polynomials
occuring in (28). The general solution of these equations
is given by

q̃0(z) = q0(z) −
m∑

i=1

(
qi(z) + 2pi(z)

)
q̃i1(z) = qi(z) + pi(z) (29)

q̃i2(z) = pi(z)
where the pi(z), i = 1, . . . ,m are new free variables which
have to be determined to eventually fulfill the conditions
(28).

Note that while the qi(z) have to be quadratic forms,
the maximum degree of the pi(z) is unrestricted and also
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determines the maximum degree of the q̃ij(z), j = 1, 2. In
the following we assume that the pi(z) are quadratic forms.
Under this assumption we can derive the relaxation

G0(x)−
m∑

i=1

( Gi(x) + 2Pi ) > 0 (30)

Gi(x) + Pi > 0 , i = 1, . . . ,m (31)

Pi > 0 , i = 1, . . . ,m (32)
for (22). Here the Gi(x) and Pi are Gramian matrices for
the quadratic forms qi(x, z) and pi(z) and thus are sym-
metric. The Pi represent new additional decision variables
introduced by the relaxation.

The main advantage of this relaxation is that the number
of LMI conditions is reduced from 2m to 2m + 1 for the
price of some additional decision variables represented
by the matrices Pi. Due to this drastic reduction of the
number of LMI conditions, the stability problem (8) can
be solved with available LMI solvers for larger m. In the
following section we will give a benchmark example from
literature and will compute a realistic robustness bound
for this example.

4. EXAMPLE

The example in this section is widely used in literature as
a benchmark example, see e.g. Calafiore and Polyak [2001]
and the references cited there. The matrices Ā, S ∈ R3×3

(n = 3) defining the problem are given by

Ā =

(−2 −2 0
1 0 0
1 0 −2

)
and

S =

( 0.6510 0.9394 0.5691
0.2451 0.4727 0.1457
0.7004 0.4014 0.3141

)
and the problem to be solved is to determine the largest
r > 0 such that the interval matrix Ã given by the pair
Ā, rS is asymptotically stable. In Calafiore and Polyak
[2001], a stochastic approach is used to show 0.5 < r < 1
with very high probability.

Starting from the stability condition (8)
AT P + P A < 0 ∀A ∈ Ã

where Ã is defined by (19), we have to make the description
of Ã compliant to the box constraints (25). If we let
[A(δ)]ij denote the element (i, j) of the matrix A(δ), we
can accomplish that by introducing δij as

[A(δ)]ij = āij + δij r sij , −1 ≤ δij ≤ 1 , (33)
so that they parameterize the whole interval in each com-
ponent of Ã. The δij are then collected into the vector
δ = (δ11, δ12, . . . , δ1n, δ21, . . . , δnn). Replacing A ∈ Ã with
A(δ), δ ∈ ∆, we can write

AT(δ)P + P A(δ) < 0 ∀ δ ∈ ∆ , (34)

∆ = { δ | −1 ≤ δij ≤ 1 }
as a new condition equivalent to (8).

Defining the n× n matrices

Eij =
{

1 in component (i, j) ,

0 in all other components ,
(35)

and Ẽij = sijEij , as well as the notation∑
ij

= sum over all indices ij with i, j = 1, . . . , n

allows us to write

A(δ) =
∑
ij

Eij (aij + rδijsij) (36)

= Ā + r
∑
ij

sijEijδij (37)

= Ā + r
∑
ij

Ẽijδij . (38)

Thus, we get

AT(δ) P + P A(δ)

= ĀT P + P Ā + r
∑
ij

(
ẼT

ijP + PẼij

)
δij (39)

by using (38) in (34). After multiplying (39) by −1 to
invert the inequality relation, we can identify

G0(P ) =−
(
ĀT P + P Ā

)
and (40)

Gij(P, r) =−r
(
ẼT

ijP + PẼij

)
(41)

and so derive the LMI

G0(P ) +
∑
ij

Gij(P, r) δij > 0 ∀ δ ∈ ∆ (42)

which corresponds to (22).

Using the relaxation described in the previous section, we
get a set of LMIs

G0(P )−
∑
ij

(
Gij(P, r) + 2Pij

)
> 0 (43)

Gij(P, r) + Pij > 0 ∀ i, j (44)

Pij > 0 ∀ i, j (45)
which corresponds to (30)–(32). Note that the Pij are new
matrix decision variables introduced by the relaxation,
while P without indices is the original matrix decision
variable already present in (8) and (42).

The Gij are only linearly dependent on r and we also have
r > 0. Thus, we can now substitute

Gij(P, r)⇒ rG̃ij(P ) and also (46)

Pij ⇒ rP̃ij , (47)
as this does not change the solution set of (43)–(45).

We then get a final set of LMIs,
1
r
G0(P ) >

∑
ij

(
G̃ij(P ) + 2P̃ij

)
(48)

G̃ij(P ) + P̃ij > 0 ∀ i, j (49)

P̃ij > 0 ∀ i, j (50)

ĀT P + PĀ < 0 (51)

P > 0 (52)

P < I . (53)
This set of LMIs can be solved as a generalized eigen-
value problem (GEVP) with λ = 1

r by software such as
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the MATLAB Robust Control Toolbox (cf. Balas et al.
[2005]). The inequality (51) results from a constraint of the
MATLAB GEVP algorithm, which requires G0(P ) > 0 in
(48). This is no actual constraint, since (51) holds true if
(8) does. The last two inequalities, (52) and (53), come
from (4) and an attempt to be more numerically stable,
respectively.

For the given problem the solution of (48)–(53) with
GEVP results in r = 0.60253002735799, which is a guar-
anteed lower bound for the maximal r. Since this is a
small example, it was possible to also compute the exact
solution, r = 0.68743994643239, using the vertexization
method. The gap between our lower bound and the exact
solution is caused mainly by our restrictive assumption
about the maximum degree of the pi(z) in (29).

5. CONCLUSIONS AND OUTLOOK

In this paper we have presented a new relaxation for
robust LMIs with linear parameter dependence. These
new results have been applied to the robust stability of
a special class of nonlinear systems and a benchmark
problem from literature has been solved completely. The
exponential complexity of the exact reformulation through
vertexization has been avoided and replaced by a linear
complexity for the LMI relaxation. Due to this drastic
reduction of the complexity, the solution of problems
with n ≥ 4 will be possible using the Robust Control
Toolbox for MATLAB. Future research will concentrate
on introducing this method into controller design and on
using higher order relaxations in order to compute better
sufficient conditions.
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