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Abstract: In order that the nth-order Generalized Frequency Response Function (GFRF) for nonlinear 
systems described by a NARX model can be directly written into a more straightforward and meaningful 
form in terms of the first order GFRF and model parameters, the nth-order GFRF is now determined by a 
new mapping function based on a parametric characteristic. This can explicitly unveil the linear and 
nonlinear factors included in the GFRFs, reveal clearly the relationship between the nth-order GFRF and 
the model parameters, and also the relationship between the nth-order GFRF and the first order GFRF. 
Some new properties of the GFRFs can consequently be developed. These new results provide a novel and 
useful insight into the frequency domain analysis of nonlinear systems. 

 

1. INTRODUCTION 

It was showed by Boyd and Chua (1985) that nonlinear 
systems, which are causal and have fading memory, can be 
approximated in the neighbourhood of the zero equilibrium 
by a Volterra series of finite order. Based on a Volterra series 
approximation, the frequency domain analysis of nonlinear 
systems can be conducted (Bedrosian and Rice 1971, 
Brilliant 1958, Kotsios 1997, Rugh 1981, Volterra 1959).The 
nth-order Generalized Frequency Response Function (GFRF) 
of nonlinear Volterra systems was defined in George (1959). 
By applying the probing method (Rugh 1981), a recursive 
algorithm to compute the GFRFs for nonlinear Volterra 
systems described by a NARX model was derived in Peyton-
Jones and S. A. Billings (1989). These results play a 
fundamental role in many important results achieved latterly 
for the frequency domain analysis of nonlinear Volterra 
systems such as those in Billings and Lang (1996), Jing, et al 
(2007, 2008). Although significant results have been 
achieved, many problems still remain unsolved regarding 
how the frequency response functions are influenced by the 
parameters of the underlying system, and the connection to 
complex non-linear behaviours. The existing recursive 
algorithms in Peyton-Jones and Billings (1989) for the 
computation of the GFRFs can not explicitly reveal the 
analytical relationship between system time domain model 
parameters and system frequency response functions in a 
straightforward manner. In order to solve these problems, the 
parametric characteristics of the GFRFs for nonlinear 
Volterra systems described by a NARX model were studied 
in Jing et al (2006), which effectively builds up a mapping 
from the model parameters to the parametric characteristics 
of the GFRFs and provides an explicit expression for the 
analytical relationship between the GFRFs and the system 
time-domain model parameters. Based on the results in Jing 
et al (2006), an inverse mapping function from the parametric 

characteristics of the GFRF to the GFRF itself is established 
for nonlinear Volterra systems described by a NARX model 
in this study. The nth-order GFRF can directly be determined 
as an n-degree polynomial function of the first order GFRF 
according to its parametric characteristic by using this new 
mapping function. Compared with the existing recursive 
algorithm for the computation of the GFRFs, the new 
mapping function enables the nth-order GFRF for a NARX 
model to be determined in a more straightforward and 
meaningful structure in terms of the first order GFRF and 
model parameters without recursive relationship with the 
lower order GFRFs, and unveils some new properties of the 
nth-order GFRF. These results facilitate the frequency 
domain analysis and design of nonlinear systems based on 
the GFRFs.  

2.  BACKGROUND 

Nonlinear systems can be approximated by a Volterra series 
up to a maximum order N under certain conditions (Boyd and 
Chua, 1985). Consider nonlinear Volterra systems described 
by the following NARX model  
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where ym(t) is the mth-order output of the NARX model, 
p+q=m, ki=1,…, K, M is the maximum degree of nonlinearity 

in terms of y(t) and u(t), and ∑∑∑
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is referred to as the nonlinear degree of parameter )(⋅pqc , 
which corresponds to the (p+q)-degree nonlinear terms 
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)()( . c0,1(.) and c1,0(.) of degree 1 are 

referred to as linear parameters, and all the other model 
parameters are referred to as nonlinear parameters. A 
recursive algorithm to compute the nth-order GFRF for 
nonlinear Volterra systems described by A NARX model (1) 
is given in Peyton-Jones and Billings (1989). Let 

1)(0,0 =⋅H , 0)(0, =⋅nH for n>0, 0)(, =⋅pnH for n<p       (2a) 
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Then the recursive algorithm can be written as 
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where,  
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),,( 1 nn jjH ωω L is the nth-order GFRF for NARX model (1). 
Note that the terms for cross input-output nonlinearities in (4) 
are corrected (This should be compared with the original 
results in Peyton-Jones and Billings (1989)). From (2-6), it 
can be seen that, although ),,( 1 nn jjH ωω L can be effectively 
computed by this recursive algorithm, the relationship 
between ),,( 1 nn jjH ωω L and the model parameters is not 
straightforward, and it is not clear about how the nonlinear 
parameters, which define the system nonlinearity, and the 
linear parameters, which define the first order GFRF of the 
NARX model, affect the GFRFs. This inhibits the 
understanding of the frequency domain characteristics of the 
GFRFs, and their connection to complex nonlinear 
behaviours. To solve this problem, the parametric 
characteristic analysis of the GFRFs for NARX models was 
studied by the authors (Jing et al 2006). Thus the nth-order 
GFRF can be expressed into a polynomial form as 

( ) ),,(),,(),,( 111 nnnnnn jjjjHCEjjH ωωϕωωωω LLL ⋅=  
                          (7) 

where ),,( 1 nn jj ωωϕ L is a complex valued function vector 
with an appropriate dimension, which is a function of the 
frequency variables and )( 11 ωjH , and referred to as the 
correlative function of ( )),,( 1 nn jjHCE ωω L  in this paper; 

( )),,( 1 nn jjHCE ωω L is referred to as the parametric 
characteristic of ),,( 1 nn jjH ωω L , which can be recursively 
determined by 
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where =qpC ,  )],,(,),1,,0(),0,,0([ ,,, 43421LLLL
mqp

qpqpqp KKccc
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CE(.) is a novel coefficient extraction operator which has two 
basic operations “ ⊕ ” and “ ⊗ ”.The detailed definition and 
operation rules for CE(.) can be referred to Jing et al (2006, 
2008). Note that from (8), elements of 

( )),,( 1 nn jjHCE ωω L are monomial functions of the 
nonlinear parameters of degree from 2 to n.  

Equation (7) provides a straightforward insight into the 
analytical relationship between the GFRFs and the system 
time-domain model parameters, and facilitates the frequency 
domain analysis of the nonlinear system characteristics (Jing 
et al 2006). In this study, a mapping function from 

( )),,( 1 nn jjHCE ωω L  to ),,( 1 nn jjH ωω L is established in 
order to completely determine equation (7). Therefore, the 
complex valued correlative function ),,( 1 nn jj ωωϕ L  in (7) 
can directly be determined in terms of the first order 
GFRF )( 11 ωjH  based on the parametric characteristic 
vector ( )),,( 1 nn jjHCE ωω L . That is, the nth-order GFRF 
can directly be written into the parametric characteristic 
function (7) in its detailed and analytical form by using this 
mapping function, and consequently some new properties of 
the GFRFs are revealed. For further derivations, the 
following result is needed. 

Lemma 1 (Jing et al 2006). The elements of 
( )),,( 1 nn jjHCE ωω L  include and only include the 

nonlinear parameters in C0n and all the nonlinear parameter 
monomial functions in 

kk qpqpqppq CCCC ⊗⊗⊗⊗ L
2211

for 

20 −≤≤ nk , where the subscripts satisfy  
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Lemma 1 provides a sufficient and necessary condition for 
which nonlinear parameters and how these parameters are 
included in ( )),,( 1 nn jjHCE ωω L . ),,( 1, npn jjH ωω L  in (5) 
can also be written as  
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3. A NEW MAPPING FUNCTION 
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Definition 1. Let )(nSC  be a set composed of all the 
elements in ( )),,( 1 nn jjHCE ωω L , and let )(nS f  be a set 
composed of all the elements in ),,( 1 nn jjf ωω L . Then there 
is a mapping  

)()(: nSnS fCn →ϕ                              (11a) 
such that in njωω ,,1 L ,  

( ) ),,()),,(( 11 nnnnn jjjjHCE ωωϕωωϕ LL =    (11b) 

(11ab) define a new mapping function in the parametric 
characteristics of the nth-order GFRF, which will be 
determined in this section. From Lemma 1, a monomial in 

( )),,( 1 nn jjHCE ωω L  is either a single parameter coming 
from a pure input nonlinearity e.g. c0n(.), or a nonlinear 
parameter function of the form 

kk qpqpqppq CCCC ⊗⊗⊗⊗ L
2211

 satisfying (9), and the first 

parameter of 
kk qpqpqppq CCCC ⊗⊗⊗⊗ L

2211
must come 

from a pure output nonlinearity or input-output cross 
nonlinearity, i.e., cpq(.) with 1≥p and p+q>1.  

Definition 2. A parameter monomial of the form 
kk qpqpqppq CCCC ⊗⊗⊗⊗ L

2211
with k ≥ 0 and p+q>1 is 

effective for ( )),,( 1 nn jjHCE ωω L  if the involved nonlinear 
parameters satisfy p+q=n(>1) for k=0, or (9) is satisfied for 
k>0.  

All the parameter monomials in ( )),,( 1 nn jjHCE ωω L  are 
effective for ( )),,( 1 nn jjHCE ωω L .  

Lemma 2. For a monomial )()()(
1100

⋅⋅⋅
kk qpqpqp ccc L with k>0, 

then it is effective for the Zth-order GFRF if and only if there 
is at least one parameter cpiqi(.) with pi>0, where 

Z= kqp
k

i
ii −+∑

=0

)( . 

Proof. This follows directly from Definition 2. Z can be 
computed from Lemma 1. This completes the proof.   

Lemma 3. For a monomial )()()(
1100

⋅⋅⋅
kk qpqpqp ccc L with k>0, 

if there are l different parameters with pi>0, then there are l 
different cases in which this monomial is produced in the 

recursive computation of the ( kqp
k

i
ii −+∑

=0

)( )th-order 

GFRF. 

Proof. This can be concluded from the recursive algorithm 
(4). The proof is omitted.  

Definition 3. A (p,q)-partition of ),,( 1 nn jjH ωω L  is a 
combination )()()(

2211 pp rrrrrr wHwHwH L satisfying 

qnr
p

i
i −=∑
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, where 11 +−−≤≤ qpnri , and 
ir

w is a set 

consisting of ri different frequency variables such that 
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From (10), it can be obtained that 
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         (12) 
The parameter ),,( 1, qpqp kkc +L is the coefficient of 

),,( 1, npqn jjH ωω L−  in (4). From Definition 3, a (p,q)-
partition of ),,( 1 nn jjH ωω L  corresponds to a combination 
of )()()(

2211 pp rrrrrr wHwHwH L in (12), which also 
corresponds to an effective parameter monomial initialized 
by the parameter ),,( 1, qpqp kkc +L . Note that 

),,( 1, npqn jjH ωω L−  includes all the possible permutations 
of )()()(

2211 pp rrrrrr wHwHwH L , hence it includes all the 
(p,q)-partitions. 

Definition 4. A p-partition of an effective monomial 
)()(

11
⋅⋅

kk qpqp cc L is a combination 
pxxx sss L

21
of the involved 

parameters such that )()(
112

⋅⋅=
kkpi qpqpxxx ccsss LL , where 

ixs is a monomial of xi parameters in )()(
11

⋅⋅
kk qpqp cc L , 

kxi ≤≤0 , s0=1, and each non-unitary 
ixs is an effective 

monomial. 

Suppose that a p-partition for 1 is 1111 =⋅ 321L
p

. The sub-

monomial 
ixs in a p-partition of an effective monomial 

)()(
11

⋅⋅
kk qpqp cc L is denoted by ))()((

11
⋅⋅

kki qpqpx ccs L . 

Obviously, )()(
11

⋅⋅
kk qpqp cc L =sk( )()(

11
⋅⋅

kk qpqp cc L ).  

Lemma 4. If a monomial )()()(
11

⋅⋅⋅
kk qpqppq ccc L  is effective, 

and )(⋅pqc is the initial parameter directly produced in the 
Zth-order GFRF and p>0, then  (1) )()(

11
⋅⋅

kk qpqp cc L comes 
from (p,q)-partitions of the Zth-order GFRF, where Z= 

kqpqp
k

i
ii −+++ ∑

=1

)( ; (2) if additionally s0 comes from 

H1(.), then each p-partition of )()(
11

⋅⋅
kk qpqp cc L  corresponds 

to a (p,q)-partition of the Zth-order GFRF, and each (p,q)-
partition of the Zth-order GFRF produces at least one p-
partition for )()(

11
⋅⋅

kk qpqp cc L . 

Proof.  The results follow from Lemma 2 and Definition 3. 
The detailed proof is omitted.  

Lemma 5. )()()(
11

⋅⋅⋅
kk qpqppq ccc L  is an effective monomial 

for the Zth-order GFRF, and )(⋅pqc is the initial parameter 
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satisfying p>0, then the correlative function of 
)()(

11
⋅⋅

kk qpqp cc L are the summation of the correlative 
functions from all the (p,q)-partitions of the Zth-order GFRF 
which produces )()(

11
⋅⋅

kk qpqp cc L , and therefore are the 
summation of the correlative functions corresponding to all 
the p-partition of )()(

11
⋅⋅

kk qpqp cc L .  

Proof. It follows from Lemma 4. The detailed is omitted.  

From Lemma 5, all the (p,q)-partitions of the Zth-order 
GFRF which produce )()(

11
⋅⋅

kk qpqp cc L  are all the (p,q)-
partitions corresponding to all the p-partitions for 

)()(
11

⋅⋅
kk qpqp cc L .  

Proposition 1. For an effective nonlinear parameter 
monomial )()()(

1100
⋅⋅⋅
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The recursive computation stops at k=0 and 

)();1( 11 ii jH ωωϕ = or ));(( )()1(, qpllqpqp c ++ ⋅ ωωϕ L , where,  
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Moreover, 
pxx ss L

1
is a permutation of

pxx ss L
1

, 

))(()1( snll ωω L  represents the frequency variables involved in 
the corresponding functions, l(i) for i=1… )(sn  is a positive 
integer representing the index of the frequency variables. 

Proof. The recursive structure in (13) is directly followed 
from Lemma 3 and Lemma 5 based on the recursive Equation 
(4). The correlative function of )()(

11
⋅⋅

kk qpqp cc L are the 
summation of the correlative functions with respect to all the 
cases by which this monomial is produced in the same 

)(sn th-order GFRF. In each case it should include all the 
correlative functions corresponding to all the p-partition for 

)()(
11

⋅⋅
kkqpqp cc L , and for each p-partition of 

)()(
11

⋅⋅
kkqpqp cc L , the correlative function should include all 

the different permutations of sx1sx2…sxp, since the correlative 
function ));)((( ))(()1(2 1 qsnllpqxx csssf

p −⋅ ωω LL is different 
with each different permutation which can be verified by 
Equation (12). ));(),(( ))(()1(,1 snllqp sncf ωω L⋅  is a part of the 
correlative function for ),,( 1, qpqp kkc +L except for 

),,( )(1,)( qsnpqsn jjH −− ωω L , which directly follows from (4). 
));)((( ))(()1(2 1 qsnllpqxx csssf

p −⋅ ωω LL  is a part of the 
correlative function with respect to a permutation of a p-
partition ))((

1
⋅pqxx csss

p
L of the monomial )(⋅pqcs which 

corresponds to a (p,q)-partition for the )(sn th-order GFRF, 
and it is followed from (12). This completes the proof.  

Remark 1. Equation (13) is recursive. The terminating 
condition is k=0, which is also included in (13). For k=0, it 
can be derived from (13) that 
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if p=0 in (15). Note that in the derivation 

above, )(sn =p+q, and )(, ⋅= qpcs .  

Remark 2. Consider the three summation operations in (13). 
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satisfyingfor

partitions2theall
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pcss
s

pq

follows from Lemma 3, which includes l cases 

for a parameter monomial having l different parameters 
satisfying p>0. For example, for c1,1(.)c2,0(.)c1,1(.), this 
summation includes the following cases: 
s1(c1,1(.))s2(c2,0(.)c1,1(.)), s1(c2,0(.))s2(c1,1(.)c1,1(.)) 
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1
for the monomial )(⋅pqcs , and in a p-

partition ∑ ⋅

px1xsof
nspermutatiodifferent   theall

][

sL

includes all the different 

permutations of the involved parameters satisfying the p-
partition.  

Example 1. For a monomial c1,1(.)c0,2(.)c2,0(.) which is an 
effective monomial for the 4th-order GFRF, it can be obtained 
from Proposition 1 that  
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4. SOME PROPERTIES  

4.1 Properties of the mapping function nϕ  

));()()(( ))(()1()( 1100 snllqpqpqpsn kk
ccc ωωϕ LL ⋅⋅⋅ in Proposition 1 

is asymmetric. Different permutation of ))(()1( snll ωω L may 
result in different value. The symmetric result can be 
obtained by 
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Corollary 1. For an effective parametric monomial 
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The magnitude bound of (22a) can be evaluated by 
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Proof. The proof is omitted.   

Recalling Equation (7), Corollary 2 shows that, the nth-order 
GFRF ),,( 1 nn jjH ωω L  can be expressed as an n-degree 
polynomial function of the first order GFRF )(1 ijH ω   
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and its magnitude bound can be simply evaluated by  
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These results reveal how the first order GFRF, which 
represents the linear part of system model, affects the higher 
order GFRFs, together with the nonlinear dynamics. The 
conclusion in Corollary 2 can also be verified by Example 1.  
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4.2 Magnitude characteristic of the nth-order GFRF  

By using Lemma 1 and Proposition 1, Equation (7) can now 
be determined definitely. Let ))(( ⋅= nn HCECE , 
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Similarly, it also holds that  
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Denote )(AMλ to be the maximum eigenvalue of matrix A. 
The following result can be obtained.  

Proposition 2.  
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Proof. The proof is omitted.   

From Equations (18-19), it can be seen that the squared 
magnitude of the nth-order GFRF is proportional to a 
quadratic function of the parametric characteristic and also 
proportional to a quadratic function of the corresponding 
correlative function. These results demonstrate a new 
property of the nth-order GFRF, which reveals the 
relationship between the magnitude of ),,( 1 nn jjH ωω L  and 
its nonlinear parametric characteristic, and also the 
relationship between the magnitude of ),,( 1 nn jjH ωω L  and 
the correlative functions which include the linear (the first 
order GFRF) and the nonlinear behaviour. Proposition 2 also 
shows that the absolute integral of the nth-order Volterra 
kernel function in the time domain is bounded by a quadratic 
function of the parameter characteristic.  

5.  CONCLUSIONS 

A mapping function from the parametric characteristics of the 
GFRFs to the GFRFs is established, such that the nth-order 
GFRF can directly be written into a more straightforward and 
meaningful form in terms of the first order GFRF and the 
model parameters. The new mapping function enables the 
linear and nonlinear factors included in the GFRFs to be 
unveiled explicitly, thus some new properties of the GFRFs 
can be obtained, which reveals clearly the relationship 
between the nth-order GFRF and its parametric characteristic, 
and also the relationship between the nth-order GFRF and the 

first order GFRF. These results provide a novel insight into 
the frequency domain analysis and design of nonlinear 
Volterra systems described by a NARX model based on the 
GFRFs. 
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