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Abstract: We deal with the problem of computing maximal viability sets for nonlinear continuous or
hybrid systems. Our main objective is to beat the curse of dimensionality, that is, we wan to avoid the
exponential growth of required computational resource with respect to the dimension of the system.
We propose a randomized approach for viability computation: we avoid griding the state-space, and
use random extraction of points instead. This algorithm was implemented successfully to linear and
nonlinear examples. We provide comparison of our results with results of other method.
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1. INTRODUCTION

Because of their importance in applications ranging from en-
gineering to biology and economics, questions of reachability,
viability and invariance of sets have been studied extensively in
the dynamic and control literature. More recently, reachability
computation has gained attention in the context of safety prob-
lems, such as air traffic management Livadas et al. [2000] and
flight control Lygeros et al. [1999].

The characterization of viability concepts can be formulated
using optimal control or game theory problems Lygeros [2004],
and the solution can be characterized using variants of the
Hamilton-Jacobi-Bellman equations. Efficient algorithms de-
veloped to solve such PDE Mitchell et al. [2001] can then
be used to solve the reachability problem numerically. In the-
ory, these numerical tools are appropriate for systems of any
state dimension. However the computational cost of viability
analysis in higher than four dimensions is no practical option.
The main reason is the exponential increase in computing time
and resource requirements which clearly limits the use of these
tools. Some efforts have been done to extend the use of contin-
uous system reachability tools to six dimensions, thus making
them applicable to a number of interesting case studies in the
area of aeronautics Kitsios and Lygeros [2005], but we are still
limited in the dimension size of the problem to be treated.

Another approach to compute a viability set is based on non-
smooth analysis and viability theory Aubin [1991]. The basic
idea is to compute directly the viability kernel without solv-
ing a Hamilton-Jacobi-Belman’s equation. The development of
computational tools to support the numerous viability theory
concepts is an ongoing effort Cardaliaguet et al. [1999]. The
numerical tools based on set valued analysis used for viability
computations come with theoretical proofs of convergence and
numerical accuracy, but they also suffer of the curse of dimen-
sionality.

It is well known that, frequently, the complexity for comput-
ing the viability kernel is very high even for low state space

dimensions. Hence, it appears natural to seek approximate
method involving suitable discretization to facilitate computer
work. The computationally efficient full discretization of state
space has been a challenge for researchers for many decades.
To overcome this difficulty, for example Chow and Tsitsiklis
[1988] propose a multi-grid method adapted to a class of dis-
crete time, continuous state, discounted, infinite horizon dy-
namic programming problems to improve the computational
complexity for this class of system. Another method called
cell-mapping uses the basic idea of considering the state space
not as continuous but rather as a collection of large number of
state cells with each cell being taken as a state entity Hu and
Chiu [1986a,b]. This method has been successfully applied to
optimal control problem Bursal and Hsu [1989] by representing
all the admissible controls and their duration application as
finite set. Then, the process of extracting optimal control results
from the family of controlled mappings becomes a matter of
systematic search.

All these methods suffer from an exponential computational
complexity. Recently, new idea have emerged that could find
solution at ”most of time” for particular problem with ”high
confidence” that the candidate solution is the true solution.
Randomized algorithms are gaining popularity among control
theory community Ariola et al. [2003], and have been applied
successfully to compute a reachable set using neural networks
Djeridane et al. [2007] and to system identification of ARMA
Model Vidyasagar and Karandikar [2002]. Another application
is the identification of a piecewise affine system presented
in Prandini [2004].

In this paper, we present the initial steps of an approach mo-
tivated by learning theory Vidyasagar [1998] that aims to beat
the curse of dimensionality for viability kernel computation by
generating points randomly instead of gridding over the whole
state-space. Once we have all sample points, we start by order-
ing our sample points according to lexicographical scheme and
afterwards all our operations are based on this new represen-
tation of our points. With this scheme we took the advantage
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to be able to use efficient algorithms for searching inside a set,
such as list algorithm.

The paper is organized into sections as follows: Section 2 deals
with a problem statement and provides some background mate-
rial on the viability theory. Section 3 presents our randomized
algorithm used to compute the viability kernel. In section 4 we
show many results where our method has been applied success-
fully from linear to nonlinear system and finally we conclude
our paper with conclusion 5 and some directions for our future
research.

2. PROBLEM DESCRIPTION

Consider a continuous time control system,
ẋ = f (x,u) (1)

with x ∈Rn, u∈U ⊆Rm and f (·, ·) : Rn×U→Rn. We assume
that U is compact convex and that f is bounded and Lipschitz
continuous with respect to the first variable and continuous
with respect to the second variable. Under these assumptions,
for any t ∈ R+, x ∈ Rn and time-measurable u : R+ → U ,
system (1) admits a unique solution. We denote this solution
by x(·;x,u(·)).
Given a closed set of states K ⊆ Rn, the viability set we would
like to compute is the largest set of states x ∈ K for which there
exists a control input u(·) that keeps the solution x(·;x,u(·)) in
K. This can be rewritten as

Viab(K) = {x ∈ Rn| ∃u(·) ∈U,∀τ ∈ R+ x(τ; t,x,u(.))}.

In the literature, this set has been characterized indirectly,
using optimal control Lygeros [2004], and directly, using non-
smooth analysis tools Aubin [1991]. Here we adopt the latter
approach. Following Cardaliaguet et al. [1999] we reformulate
the dynamics (1) as

ẋ(t) ∈ F(x(t)),
where F : Rn→ Rn is the set-valued map defined by

∀x ∈ Rn, F(x) := { f (x,u),u ∈U}.

It has been proved in Cardaliaguet et al. [1999] that Viab(K)
can be computed as the limit of the non-increasing sequence of
closed sets defined by

Algorithm 1 Computation of the viability kernel: Partial dis-
cretization

K0
ε := K

K p+1
ε := {x ∈ K p

ε | [x+ εFε(x)]∩K p
ε 6= /0}

where Fε is an approximation of F which satisfies the following
properties:

(1) Fε is upper semi-continuous with convex compact nonempty
values.

(2) Graph(Fε)⊂Graph(F)+φ(ε)B where limε→0+φ(ε)=
0+

(3) ∀x ∈ X , ∪‖x−y‖≤Mε F(y)⊂ Fε(x)

where B is unit ball in Rn.
Remark 1. If the set-valued map F is bounded and Lipschitz in
K, namely if

∃M ≥ 0, ∀x ∈ K, ∀y ∈ F(x), ‖y‖ ≤M,

and if
∃l > 0, ∀(x1,x2) ∈ K2, F(x1)⊂ F(x2)+ l‖x1− x2‖B,

then a natural choice of approximation is
Fε(x) := F(x)+ εMlB.

Let us set
Ṽiabε(K) = ∩∞

p=0K p
ε .

We know from Cardaliaguet et al. [1999] that

lim
ε→0+

Ṽiabε(K) = Viab(K)

and that
∀ε > 0, Ṽiabε(K)⊂Viab(K)+MεB.

Therefore, in order to get a good approximation of Viab(K), it
is enough to compute a good approximation of Ṽiabε(K) for ε

small enough.

A natural idea if to use discrete approximations of the sets
K p

ε . For this purpose, let us introduce a finite state space
discretization Kh, where h > 0 is defined below, and let us
associate with Kh a finite approximation Fε,h : Kh → Kh of Fε .
Then the following algorithm terminates in finite time.

Algorithm 2 Finite computation for the approximation of the
viability kernel

K0
ε,h := Kh

K p+1
ε,h := {zh ∈ K p

ε,h :
[
zh + εFε,h(zh)

]
∩K p

ε,h 6= /0}

Let p̂ be such that

∀p≥ p̂, K p
ε,h = K p̂

ε,h.

We set
V̂iabε,h(K) = K p̂

ε,h +hB.

Then if the fully discrete approximation Fε,h has good proper-
ties, V̂iabε,h(K) is a good approximation of Viab(K).

In Cardaliaguet et al. [1999], the choice of Fε,h is based on
the projection of Fε on a fixed regular grid, which yields an
exponential growth of the size of the finite representation of the
state-space as a function of the dimension of the state. In the
next section, we present a choice for Fε,h based on randomized
techniques. Then the size of the finite state space can be fixed
arbitrarily. The price is a good approximation in average.

3. RANDOMIZED APPROACH

3.1 Viability kernel approximation

Instead of using a regular griding of the state space we ap-
proximate the set K using a finite number of points generated
randomly. Let {xi}i≤N denote these points. And we define the
state discretization index h. As usual with a numerical explicit
scheme, the space and time discretization steps are linked up.
Therefore the time-step ε is determined after the random sam-
pling of K in order to ensure consistency of the approximation.

The procedure for computing an approximation of the viability
kernel is relatively simple once you can check if a point is
locally viable in a set K, that is, if it has a successor in K.
The procedures for performing this test are provided below. The
overall viability kernel approximation procedure is summarized
in algorithm 3.

We should stress that when using the local viability test de-
scribed below, this algorithm provides an upper approximation
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Algorithm 3 Computation of the viability kernel
Generate randomly N points xi over K
Compute the state discretization index h
Initially set K0 = {xi : i ∈≤ N}
Initially set p = 0
repeat

for all i = 1 to N do
if xi is locally viable in K p then

Keep xi inside K p

else {xi is not locally viable in K p}
Remove xi from K p

end if
end for
M number of points xi removed from K p

N = card(K p)
p = p+1

until N = 0 or M = 0

of the viability kernel with a certain confidence. Indeed, our
approximation method guarantees that a point the successor
of which in inside the real kernel is not eliminated only if
our initial random sampling is good enough. Therefore, the
randomization of the methods loses the guarantee of over-
approximation of Cardaliaguet et al. [1999].

3.2 Local viability test

Computation of the successors of xi From Cardaliaguet et al.
[1999], the assumptions that must be satisfied by the finite ap-
proximation Fε,h when using a regular griding are the following

(1) Graph(Fε,h)⊂Graph(Fε)+ψ(ε,h)B where limε→0+, ε

h→0+
ψ(ε,h)

h =
0

(2) ∀x ∈ X , ∪‖xi−y‖≤h[Fε(y)+hB]∩Xh ⊂ Fε,h(xi)

where Xh denotes the grid. However, it is clear from the proof
of convergence that the second condition is only sufficient to
ensure that V̂iabε,h(K) is an over-approximation of Ṽiabε(K).
It leads to the following test for local viability of a point xi in a
set K p

ε,h:

[xi + εFε(xi)+(εl +2)hB]∩K p
ε,h 6= /0,

in which l denotes the Lipschitz constant of the dynamics F .
This condition can be rewritten as
∃z ∈ Fε(xi) such that ∃k ≤ N, ||xi + εz− xk|| ≤ (εl +2)h.

Now, we recall that F(x) =
⋃

u∈U f (x,u). Because of the con-
vexity of U and the continuity of f , we can assume that there
exists Uε ⊃U such that

∀x, Fε(x) =
⋃

u∈Uε

f (x,u).

In order to perform the local viability test, we use a finite
approximation Uε,h of Uε . Note that the number of points in
Uε,h is linked to h. Then the condition for local viability can be
written
∃u ∈Uε,h, ∃k ≤ N, ||xi + ε f (xi,u)− xk|| ≤ (εl +2)h. (2)

In the current implementation of the algorithm, we use a di-
chotomy method to determine Uε,h.

Membership test In order to test condition (2) for a given
value of u, a simple idea is to compute the distance between
this point xi and all the points which constitute the set K p

ε,h.

However this naive approach needs a huge amount of com-
puting resources if the number of sample points is large. In
order to handle this problem, we propose a technique based on
lexicographical ordering of the sample points and the use of
the infinity norm. The principle is explained in Figure 1 for the
two-dimensional case.

Fig. 1. Diagram showing how we check that xi belong to a Set

Using the sort function of Matlab c©, this is performed has
follows: First sort x1 in descent order

x1 = sort(x1,
′ descent ′)

Then compute the successor y j of x j, afterwards check if

[yi
1− (εl +2)h,yi

2 +(εl +2)h]∩ x1 = S1

if S1 is nonempty set with S1 = [xα1
1 ,xα2

1 , · · · ,x
αcard(S1)
1 ], then we

set xnew
2 as sub-vector of x2, where those elements are defined

by
x2[α1 : αcard(S1)]

And now, we do the same procedure for xnew
2 to check if it’s

belong to the set K or not. This procedure is formulated in the
following algorithm

Algorithm 4 Membership test of xi to K p

Compute the successor yi of the point xi

if [yi
1− (εl +2)h,yi

1 +(εl +2)h] ∈ x1 then
if [yi

2− (εl +2)h,yi
2 +(εl +2)h] ∈ xnew

2 then
· · ·
if [yi

n− (εl +2)h,yi
n +(εl +2)h] ∈ xnew

n then
xi belongs to K p

else {otherwise}
xi does not belong to K p

end if
· · ·
xi does not belong to K p

end if
xi does not belong to K p

end if

Sorting is highly desirable for searching in large quantities
of information, because it’s greatly improves the efficiency of
searching. For this reason we are sorting our data. There are
many sorting algorithm which could be used like: Heapsort,
Quicksort Radix Sort. In practice Quicksort is often the best
choice because it is remarkably efficient on the average running
time Cormen et al. [1990].
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4. RESULTS

To demonstrate the efficiency of our method, we have applied it
to linear and nonlinear system in 2D and 3D, and we compared
our results to results obtained using other computation methods.
We have performed all the computations on a Pentium 4, 3.2
GHz processor running on WindowsXP.

4.1 Linear system

We have double and triple integrator examples as test benches
for the computation methods.

2D example Consider the linear system defined by:
ẋ1 = x2
ẋ2 = u

subject to state constraints defined by
(x1,x2) ∈ K = [−1,1]× [−1,1]

and control constraint u ∈ [−1,1].

We have used the following parameters: h= 1√
(N)

, ε =
√

(h)

to compute approximate viability kernel using our randomized
algorithm.

Fig. 2. Viability set of 2D example computed with randomized
algorithm

3D example Consider the following linear system

ẋ1 = x2
ẋ2 = x3
ẋ3 = u

subject to state constraints
(x1,x2,x3) ∈ K = [−1,1]× [−1,1]× [−1,1]

and control constraint u ∈ [−1,1]. We have used the same
parameters as previously.

We summarize the results in the following table in which
Method 1 is Level Set Toolbox, Method 2 is our randomized
algorithm and we have compared them to ”exact” solution
which is also computed using level set toolbox but with higher
accuracy. We have performed computation using the two meth-
ods as mentioned for all our example and we have obtained the
following results:

2D 3D 4D 5D
Method 1 (5%) 549 103823 1874161 2476099
Method 2 (5%) 22000 65000 120000 350000

From this table it’s clear that our method is outperforming re-
garding to other method, because ours is growing polynomially

Fig. 3. Viability set of 3D example computed with randomized
algorithm

Fig. 4. Projection of a viability set of 3D example on the plane
(x1,x2)

Fig. 5. Projection of a viability set of 3D example on the plane
(x1,x3)

Fig. 6. Projection of a viability set of 3D example on the plane
(x2,x3)

respect the dimensions of the state space, which imply that our
method is independent from the state-space.

However, with the approach proposed in this paper, we are
loosing on the accuracy of our approximation and this the price
for random extracting samples from the state space, but the
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Fig. 7. Growth of the samples respect to the dimension of the
space

accuracy could be improved it by doing refinement principle
(Multi-grid approximation) to get better approximation. We
should note, that we have done sketch implementation of the
algorithm (2)and could significantly improved, for example we
could use an intelligent strategy of search through the state-
space, but with our approach we still have big advantage over
simple gridding of the state-space.

4.2 Nonlinear system

To proof the applicability of our method to nonlinear system.
Let us consider the following system

ẋ1 = x2
ẋ2 = u

subject to constraint K = [−1,1]× [−1,1] and U = [−1,1]. We
have compute an approximation of the viability kernel using
22000 points, and the results is shown in the figure 8

Fig. 8. Viability set of 2D nonlinear example computed with
randomized algorithm

5. CONCLUSION

The goal of this paper was to propose an approximation method
that circumvents the curse of dimensionality encountered in
viability computations. We have used our algorithm on a set
of different examples with good results. In current work we
are trying to extended this trial solution to more complicated
system. A direct advantage of our method is that the size of
the state space to be explored can be fixed in advance as the
number of points taken randomly in the initial set. We are

currently working on a multi-step refinement process to obtain
fine approximation with a limited number of points. The hope
is that the computation required to achieve a certain accuracy
will grow polynomially with the dimension of the system.

The real advantages introduced by our randomized method have
to be balanced with the loss of the guarantee of obtaining a
meaningful approximation. The probability that the output of
our algorithm is a bad approximation of the real viability kernel
is strictly positive. We are working on a convergence proof
in order to provide a statistical guarantee of convergence in
a confidence interval. The proof is rather challenging since it
requires mixing elements from randomized techniques together
with non-smooth analysis.

Another direction for future work is the improvement of the im-
plementation of our algorithm. In the current implementation,
the most time-consuming aspect is the test of membership of
a successor point to the approximation since we need to find
the closest point in a finite, but large, set of points. This is not
surprising since this test is the core of the direct computation
approach (as opposed to the level-set methods). In future work,
we shall focus on selecting appropriate algorithms for sorting
and parsing lists; tree search algorithms or graph search algo-
rithms could improve the performances of the membership test.
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