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Abstract: In this paper we present an infinite-dimensional Luenberger type observer for a class
of vibrating systems. We undertake numerical investigations of the observer based on the Euler-
Bernoulli model of elastic beam. The finite element method is adopted. The spatial interval is
subdivided into a finite number N of smaller intervals. On each small interval we use hermitian
shape functions of degree 3 to approximate the unknown function which is the solution of the
system under study. Numerical simulations are carried out to illustrate the convergence of the
designed observer.
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1. INTRODUCTION

An observer is an auxiliary dynamical system that recon-
structs the state of the original system on the basis of
its inputs and outputs. It produces an estimation of the
current state of the given system on past observations. The
observer construction is particularly important and useful
in the context of infinite-dimensional dynamical systems
because there is a challenge: the dimension of physical
observations is always limited and finite in practice, while
the state space is infinite-dimensional. For example, an at-
tractive stabilizing feedback law is proposed in Coron and
d’Andrea-Novel (1998) for a rotating body-beam system,
but in order to be applied, it needs full information of
the infinite-dimensional state. An attempt to implement
such a feedback law consists to construct an observer to
estimate the state and to feedback the estimated state
using the separation principle (see Curtain and Pritchard
(1978), Sontag (1990) and Gauthier and Kupka (1992)).
An observer has also its proper interest in process super-
vision or monitoring.

An infinite-dimensional Luenberger type observer has been
proposed in Celle et al. (1989) in the context of finite-
dimensional nonlinear systems. Then the observer has
been shown to be valid for infinite-dimensional dissipative
bilinear systems with regularly persistent inputs, see Xu et
al. (1995) and Gauthier et al. (1998). However, only weak
stability has been guaranteed for the observer, which is the
best to be expected. This is because by assumptions of the
continuity and finite dimension for the observer operator,
exponential stability, which is desirable for applications, is
not achievable.

In the present paper, under the assumption of exact
observability for the system, we propose a Luenberger

type observer which is exponentially stable with some un-
bounded observation operators (typically these are bound-
ary observations). In this sense our paper is an improve-
ment of the results of Curtain and Pritchard (1978), Celle
et al. (1989), Xu et al. (1995) and Gauthier et al. (1998)
in the construction of observers. Our observer design is
based on the results concerning the stabilization of systems
with collocated control and observation. The exponential
stability of such an observer is well-known in the finite
dimension case, however a high gain of correction may
cause exponential instability for an infinite-dimensional
observer. For this reason we require a careful analysis.

Our paper is organized as follows: after some preliminary
notions given in section 2, our main result will be presented
in section 3. We prove that our proposed observer is
exponentially stable if the gain of correction is small. Then
to illustrate the potential application of our observer we
work out a rotating body-beam system as an example in
section 4. In this example we show how to get an arbitrary
decay rate of the observer using a second step design. The
observer has a simple collocated actuator/sensor structure
so that it is applicable for many other vibrating systems,
for more details, see Guo and Shao (2005), Guo and Zhang
(2005), Curtain and Weiss (2006) and Weiss and Curtain
(2006). In section 5 we present some simulation results.

2. PRELIMINARIES

Let U,X and Y be Hilbert spaces.We consider the following
linear system on the state space X:







ẇ(t) = Aw(t) + Bu(t),

w(0) = w0,

y(t) = Cw(t),

(2.1)
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with A the generator of a C0 unitary group eAt on X,
w the state trajectory, u the input function on the input
space U , y the output function on the output space Y ,
B∈L(U ;X−1) and C ∈L(X1;Y ), where X−1 denotes the

completion of X with the norm ‖z‖−1= ‖(βI − A)
−1

z‖ and
X1 denotes D(A) with the norm ‖z‖1 = ‖(βI − A)z‖.
First we give some essential preliminary notions of regu-
larity of a linear system.

Let A be the generator of a C0 semigroup T on X.

Definition 1. A pair (A,B) is admissible if ∀ τ >0,

∫ τ

0

Tτ−tBu(t)dt ∈ X, ∀u∈L2
loc(R

+;U).

Then B is called an admissible control operator for T.

Definition 2. A pair (A,C) is admissible if ∀τ >0, ∃Kτ >0
such that the following estimation holds:

∫ τ

0

‖CTtw0‖2
Y dt ≤ Kτ ‖w0‖2

X , ∀w0∈D(A).

Then C is called an admissible observation operator for T.

Definition 3. The linear system (2.1) or the triple (A,B,C)
is regular if

i) (A,B) and (A,C) are admissible and

ii) for a D∈L(U ;Y ),

lim
s→+∞

G(s)u
def
= lim

s→+∞
Du + CΛ(sI − A)

−1
Bu

= Du, ∀u∈U,

where the transfer function G of the system (2.1) belongs
to H∞(Cα,L(U ;Y )), i.e. G is analytic and bounded in
some complex right half-plan Cα={s∈C | ℜ(s)>α}, with
α∈R

+ and CΛ is the Λ-extension of C defined by

CΛx
def
= lim

λ→+∞
Cλ(λI − A)

−1
x, x ∈ D(CΛ),

where D(CΛ) consists of all x∈X for which the limit exists.

Definition 4. A pair (A,C) is exactly observable (in time
τ) if it is admissible and there exist some positive constants
τ and kτ such that

kτ‖w0‖2
X ≤

∫ τ

0

‖CTtw0‖2
Y dt, ∀w0∈D(A).

These notions are quite well known since more than ten
years, for details, see Weiss (1994), Staffans and Weiss
(2000) and Curtain and Weiss (2006).

3. MAIN RESULT

Let X be an Hilbert space. With all the preliminary
definitions in the last paragraph, we introduce here a
main result concerning the stability of a Luenberger type
observer for the dynamical system (2.1) from Deguenon et
al. (2006).

The Luenberger type observer system they proposed is
governed by

{

˙̂w(t) = [A−κ C∗C ]ŵ(t)+Bu(t)+κC∗y(t), κ>0,

ŵ(0) = ŵ0,
(3.1)

where C∗ denotes the adjoint operator of C.

We need to define some stability concepts here.

Definition 5. The observer (3.1) is said stable if the error
ε(t) = ŵ(t)−w(t) between the trajectories of the estimated
state and the real state converges to zero in the state
space X as time t goes to infinity. We say that (3.1) is
exponentially stable if there exist some positive constants
M >0 and ω>0 such that

‖ε(t)‖X ≤ Me−ωt‖ε(0)‖X , ∀ t ≥ 0.

The supremum of ω > 0 such that the above inequality is
true is called the decay rate or convergence rate of the
observer.

The main contribution of Deguenon et al. (2006) is the
following result:

Theorem 1. Let A be the generator of a C0 unitary group
on X. Assume that (A,C∗, C) and (A,B,C) are regular
and (A,C) is exactly observable. Then the observer system
(3.1) on X is exponentially stable for 0<κ<1/Kmax, with

Kmax = sup
‖v‖Y =1

v∈Ran(CΛ)

lim
β→+∞

β ‖(βI − A)
−1

C∗v‖2

X .

Moreover, if some number κ > 1/Kmin is an admissible
feedback for the triple (A,C∗, C), then the corresponding
observer system (3.1) is exponentially unstable. Here

Kmin = inf
‖ṽ‖Y =1

ṽ∈Ran(CΛ)

lim
β→+∞

β ‖(βI − A)
−1

C∗ṽ‖2

X .

Remark 1. Theorem 1 is related to the collocated feedback
exponential stabilization studied in Slemrod (1974) and
the work Weiss and Curtain (1999), Curtain and Weiss
(2006). The proof of the theorem is inspired by the paper
Jurdjevic and Quinn (1978).

4. APPLICATION TO A ROTATING BODY-BEAM
SYSTEM

The rotating body-beam model that we consider consists
of a disk with a beam attached to its center and per-
pendicular to the disk plane. The disk can rotate freely
around its axe which is fixed. The beam is supposed
non extensible and is constrained to move in some fixed
plane perpendicular to the disk plane. The model presents
somewhat idealized situation in stabilizing the motion of
the spacecrafts.

Many authors have elaborated stabilizing feedback law for
similar models, see Bloch and Titi (1990), Xu and Baillieul
(1993), Xu and Sallet (1992), Morgul (1994), Coron and
d’Andrea-Novel (1998), Chentouf and Couchouron (1999),
Laousy et al. (1996) and Conrad and Pierre (1990). In
particular the feedback law in Coron and d’Andrea-Novel
(1998) is non local, hence for applications one needs
to measure all the state variables which are infinite-
dimensional and so physically non measurable. However
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the moment force and the lateral force of the beam on the
fixed end are physically measurable as well as the angular
velocity of the disk.

Hence an observer design is desirable to estimate all
the state variables from these measurements. Our future
objective is, by applying the separation principle suggested
in Gauthier and Kupka (1992), to cascade our observer and
the feedback law of Coron and d’Andrea-Novel (1998) in
order to achieve stabilization.

For this purpose we study a simplified model of rotating
body-beam with constant angular velocity. Some physical
coefficients as flexural rigidity, length and mass per unit
length of the beam are set to be 1. The dynamic of the
body-beam system is described by























wtt(x, t) + wxxxx(x, t) = ω2
∗w(x, t), t > 0, x ∈ (0, 1),

w(0, t) = wx(0, t) = 0, wxx(1, t) = wxxx(1, t) = 0,

w(x, 0) = w0(x), wt(x, 0) = w1(x),

y(t) = wxx(0, t),

(4.1)

where the angular velocity ω∗ is a real positive constant
(possibly null). For observer construction we assume that
ω∗ <

√
l1, which l1 indicates the smallest eigenvalue of

the differential operator D = ∂xxxx. Thus the system
(4.1) is skew-adjoint and we can apply Theorem 1 with
a Luenberger type observer as follows:























ŵ1t(x, t) = ŵ2(x, t) − κF (x){ŵ1xx(0, t) − y(t)},
ŵ2t(x, t) = −ŵ1xxxx(x, t) + ω2

∗ŵ1(x, t),

ŵ1(0, t) = ŵ1x(0, t) = 0, ŵ1xx(1, t) = ŵ1xxx(1, t) = 0,

ŵ(x, 0) = ŵ0(x), ŵt(x, 0) = ŵ1(x),

(4.2)

where κ>0 and F (x) is the unique solution of the following
differential equation:











F
′′′′

(x) − ω2
∗F (x) = 0,

F (0) = F
′′

(1) = F
′′′

(1) = 0,

F
′

(0) = 1.

(4.3)

Set H2
L = {f ∈ H2(0, 1) | f(0) = fx(0) = 0}. The state

space for systems (4.1) and (4.2) is the Hilbert space
X = H2

L × L2(0, 1) equipped with the inner product

<f, g>X =

∫ 1

0

[ f1xx(x) g1xx(x) + f2(x) g2(x)

−ω2
∗ f1(x) g1(x) ] dx.

The output space Y = R is equipped with the usual euclid-
ian scalar product.

By Theorem 1 we have the following results:

Theorem 2. Assume that the constant ω∗ <
√

l1. Then the
system (4.1) and the observer (4.2) have a unique solution
in C(R+;X2) for all initial conditions (w0, w1, ŵ0, ŵ1)∈X2.
Moreover there exist some positive constants M and α
such that

∥

∥

∥

(

ŵ1(·, t)
ŵ2(·, t)

)

−
(

w(·, t)
wt(·, t)

)

∥

∥

∥

X
≤ Me−αt

∥

∥

∥

(

ŵ0

ŵ1

)

−
(

w0

w1

)

∥

∥

∥

X
.

We prove that the observer is exponentially convergent.

Theorem 3. The observer (4.2) is exponentially stable for
every gain of correction κ > 0. Moreover its exponential
decay rate is determined by the spectral bound of the
generator Aκ = A−κC∗C. It can be made as fast as we

want, on replacing κ [F (x) 0]
T

by κ [F (x) 0]
T
+B(x) with

some appropriate κ and B(x).

5. SIMULATION RESULTS

In this section, we will apply the finite element method to
simulate the observer system.

5.1 Hermitian Shape Functions

We propose a semi-discrete scheme in space. Assume that
the interval E = [0, 1] is uniformly subdivided into N
elements Ei = [xi, xi+1], i = 0, . . . , N−1, we denote h the
length of step.

Our original system has high order derivative items (spa-
tial derivative of degree 4 in our beam example), further-
more the continuity of the first partial spatial derivative of
the solution (slope of the elastic curve) between adjoining
intervals is required as our solution should be in H2(0, 1).

Thus we need to introduce the hermitian interpolation
with the polynomial (so piecewise C1) functions defined
on Ei (they can be extended to E with prolongation by
zero on E \ Ei) as follows:







































Hi
1(x) =

1

4
(ξ3

i (x) − 3ξi(x) + 2),

Hi
2(x) =

h

8
(ξ3

i (x) − ξ2
i (x) − ξi(x) + 1),

Hi
3(x) =

1

4
(−ξ3

i (x) + 3ξi(x) + 2),

Hi
4(x) =

h

8
(ξ3

i (x) + ξ2
i (x) − ξi(x) − 1),

and

Hi
j |E\Ei

= 0, i = 0, . . . , N−1, j = 1, 2, 3, 4,

where

ξi(x)=
2x − xi − xi+1

xi+1 − xi

, ∀x∈ [xi, xi+1], i= 0,. . ., N−1,

are the local coordinates which allow to put all the oper-
ations into a standardized element [−1, 1]. It is convenient
to do these transformations since it simplifies the com-
putation of global system matrices by concatenating the
block matrices obtained on every standardized elements.

The hermitian shape functions satisfy the following condi-
tions:


























Hi
1(xi) = 1 and Hi

1x(xi) = Hi
1(xi+1) = Hi

1x(xi+1) = 0,

Hi
2x(xi) = 1 and Hi

2(xi) = Hi
2(xi+1) = Hi

2x(xi+1) = 0,

Hi
3(xi+1) = 1 and Hi

3(xi) = Hi
3x(xi) = Hi

3x(xi+1) = 0,

Hi
4x(xi+1) = 1 and Hi

4(xi) = Hi
4x(xi) = Hi

4(xi+1) = 0.

Now we define on E the following functions:
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φ0
1(x) = H0

1 (x),

φ0
2(x) = H0

2 (x);

where their supports are E0;

φi
1(x) = Hi−1

3 (x) + Hi
1(x),

φi
2(x) = Hi−1

4 (x) + Hi
2(x);

where their supports are Ei−1 ∪ Ei, i = 1, ..., N−1 and

φN
1 (x) = HN−1

3 (x),

φN
2 (x) = HN−1

4 (x),

where their supports are EN .

The set B= {φk
l , k = 0, ..., N, l = 1, 2} forms a basis of its

span Ṽh, which is a (2N +2)-dimensional discrete space
(included in H2

L).

5.2 Numerical Approximation

With the separation of variables, the approached solution
wh ∈ Vh that we look for can be written as

wh(t, x) =
N
∑

k=0

wk(t) φk
1(x) + w̃k(t) φk

2(x).

The boundary conditions w(0, t) = wx(0, t) = 0 of (4.1)
imply

w0φ0
1(0) + w̃0φ0

2(0) + w1φ1
1(0) + w̃1φ1

2(0) = 0,

w0φ0
1x(0) + w̃0φ0

2x(0) + w1φ1
1x(0) + w̃1φ1

2x(0) = 0,

then we get w0 = w̃0 = 0. Thus we can choose the space
Vh = span (φ1

1, φ
1
2, . . . , φ

N
1 , φN

2 ) ( which has dimension 2N)
as our discrete space.

Taking φk
l , k = 1, ..., N , l = 1, 2 as the shape functions,

we apply the usual L2-inner product to the discretized
original system. By integration by parts this gives

∫ 1

0

w1t(x)φk
l (x)dx =

∫ 1

0

w2(x)φk
l (x)dx,

∫ 1

0

w2t(x)φk
l (x)dx = −

∫ 1

0

w1xx(x)φk
lxx(x)dx

+ ω2
∗

∫ 1

0

w1(x)φk
l (x),

(5.1)

where w1 = wh and w2 = wht.

Thus our discretized problem consists to solve the follow-
ing dynamical system:

d

dt

(

W1

W2

)

=

(

0 I

−J 0

)(

W1

W2

)

,

where W1(t) = [w1(t), w̃1(t), . . . , wN (t), w̃N (t) ]
T

and

W2(t) = [w1
t (t), w̃1

t (t), . . . , wN
t (t), w̃N

t (t)]
T

denote the un-
knowns, I is the 2N -by-2N identity matrix and J =S−1R−
ω2
∗I with S and R, respectively, the mass matrix and the

rigidity matrix given by

Sp, q =

∫ 1

0

φk
l (x) φk′

l′ (x)dx,

Rp, q =

∫ 1

0

φk
lxx(x) φk′

l′xx(x)dx,

with p = 2k+ l−2 and q = 2k′+ l′−2, for k, k′ = 1, . . . , N ,
l, l ′ = 1, 2.

It is clear that S and R are both 2N -by-2N symmetric
pentadiagonal (sparse) matrices and R is invertible.

A similar computation gives the variational formulations
for the observer system as follows:

∫ 1

0

ŵ1t(x)φk
l (x)dx =

∫ 1

0

ŵ2(x)φk
l (x)dx −

∫ 1

0

F (x)φk
l (x)dx

· κ(ŵ1xx(0, t) − w1xx(0, t)),
∫ 1

0

ŵ2t(x)φk
l (x)dx = −

∫ 1

0

ŵ1xx(x)φk
lxx(x)dx

+ ω2
∗

∫ 1

0

ŵ1(x)φk
l (x).

(5.2)

Combing the variational formulations (5.1) and (5.2) cor-
responding to the original system and the observer, we can
rewrite our discretized problem as follows:

Find W1,W2, Ŵ1 and Ŵ2 ∈ Vh such that

d

dt











W1

W2

Ŵ1

Ŵ2











=









0 I 0 0

−J 0 0 0

K 0 −K I

0 0 −J 0



















W1

W2

Ŵ1

Ŵ2











(5.3)

with K = S−1P where the elements of P are given by

Pp, m =







κ φ1
mxx(0)

∫ 1

0

F (x)φk
l (x)dx, m=1, 2,

0, m=3,. . . ,N,

with p = 2k + l − 2, k = 1, . . . , N , l = 1, 2.

We notice that Pp, m = 0, m=3, . . . , N, which follows from

the facts that w1xx(0, t) = w1(t) φ1
1xx(0) + w̃1(t) φ1

2xx(0)

and ŵ1xx(0, t) = ŵ1(t) φ1
1xx(0) + ˜̂w1(t) φ1

2xx(0).

For determinating Pp, m, m = 1, 2, we need to compute
explicitly the solution F (x) of the differential equation
(4.3). If ω∗ = 0 it has a simple form F (x) = x. In the
case where ω∗ 6= 0, we have

F (x) = α(ch(
√

ω∗x) − cos(
√

ω∗x)) + βsh(
√

ω∗x)

+(−β +
1√
ω∗

)sin(
√

ω∗x),

where
(

α

β

)

=
1√

ω∗(2 + 2ch(
√

ω∗)cos(
√

ω∗))

·
(

ch(
√

ω∗)sin(
√

ω∗) − sh(
√

ω∗)cos(
√

ω∗)

(ch(
√

ω∗) − sh(
√

ω∗))sin(
√

ω∗) + 1

)

.
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Fig. 1. Parameter ρ verifying equation ch(ρ)·cos(ρ)+1=0;
curves C1: y=-1/ch(x); C2: y=cos(x).
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Fig. 2. Position vectors of the dynamical system (top)
and of the observer (bottom), respectively, in the case
where ω∗ = 0.
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Fig. 3. Evolution of the positions at the N -th point for the
dynamical system (dashed) and the observer (solid),
respectively, in the case where ω∗ = 0.

5.3 Simulation Results

We take spatial grid size N = 20 and time step dt = 0.02.
The parameters are set to κ = 0.5 and ω∗ = 1.1 in the case
where ω∗ 6= 0. The initial conditions are given as follows:

{

w(0, x) = −2γ[ch(ρx) − cos(ρx)] + 2(sh(ρx) − sin(ρx)),

wt(0, x) = 0,

where γ = −(sh(ρ) + sin(ρ))/(ch(ρ) + cos(ρ)) with ρ ≃
1.8751 (which satisfies ch(ρ)cos(ρ) + 1 = 0). (See Fig.1).

It is clear that with these initial conditions the oscillation
of our original system is a simple harmonic motion.

For the observer system, we take (ŵ0 ŵ1)
T

= 2(w0 w1)
T

as the initial conditions.

We use the subroutine ode15s in Matlab to solve the
dynamical system (5.1) with the above initial conditions.
The profiles w(t, x) and ŵ(t, x) represent, respectively, the
positions of the original system and the constructed Luen-
berger type observer in the case where ω∗=0 (respectively
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Fig. 4. Evolution of the observer error w − ŵ in the case
where ω∗ = 0.
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Fig. 5. Position vectors of the dynamical system (top)
and of the observer (bottom), respectively, in the case
where ω∗ 6= 0.
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Fig. 6. Evolution of the positions at the N -th point for the
dynamical system (dashed) and the observer (solid),
respectively, in the case where ω∗ 6= 0.
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Fig. 7. Evolution of the observer error w − ŵ in the case
where ω∗ 6= 0.
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ω∗ 6=0). They are illustrated in Fig.2 (respectively Fig.4).
In particular, Fig.3 and Fig.5 illustrate the error dynamics
of the observer at the N-th point of the interval [0, 1],
respectively, for the case where ω∗ = 0 and ω 6= 0. For
the error at each point of the interval [0, 1] two cases are
also represented, respectively, in Fig.4 and Fig.7. We note
that it takes more time for the observer to approach the
real state in the ω∗-nonzero case than in the ω∗-zero case.
We could improve the convergence rate by choosing better
gain parameters, it is part of our future investigation.

6. CONCLUSIONS

We have presented the Luenberger type observer designed
for a class of infinite-dimensional vibrating systems and
the numerical simulation results on a concrete application.
The future work is focused on extending the observer
construction to other vibration systems studied in Guo and
Shao (2005), Guo and Zhang (2005), Curtain and Weiss
(2006) and Weiss and Curtain (2006). Theoretically we
also wish to investigate the possibility of the construction
in a more general context as in Lasiecka (1989). As we
indicated in section 4, for the rotating body-beam system,
our objective is to cascade our observer and the feedback
law proposed in Coron and d’Andrea-Novel (1998) to
achieve stabilization. The decay rate of our observer can
be made as large as we want by a second step design
using the Riesz basis (cf. Rao (1997)). Moreover we prove
that the constructed observer is still valid for any time-
varying angular velocity provided that its distance to some
constant velocity is small in terms of L∞ uniform norm.
The observer is exponentially convergent for any angular
velocity ω(t) located in a small L∞ ball centered at a
constant ω∗.
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