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Abstract: We propose a novel approach to the computational investigation of reachability
properties for nonlinear control systems. Our goal is to combat the curse of dimensionality,
by proposing a mesh-free algorithm to numerically approximate the viability kernel of a given
compact set. Our algorithm is based on a non-smooth analysis characterization of the viability
kernel. At its heart is a neural network classifier based on Bayesian regularization, which operates
on a pseudorandom sample extracted from the state-space (instead of a regular grid). The
algorithm was implemented in Matlab and applied successfully to examples with linear and
nonlinear dynamics.
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1. INTRODUCTION

The viability set of dynamic system is the set of states
from which trajectories start that and remain within a
set under the system’s prescribed dynamic. Calculating a
viable sets for continuous dynamic systems is a challenge
because the set involved contain an uncountable number
of states. Furthermore, existing algorithms for viability
are complex enough that their implementations must be
carefully validated against known examples.

The question of viability set for nonlinear can be for-
mulated as optimal control problem, whose solution can
be characterized using variants of the Hamilton-Jacobi-
Bellman equation [8]. The formal link between the solution
to the partial differential equation and reachability prob-
lem is usually established in the framework of viscosity
solutions. The main advantage of this approach is an
numerical Toolbox [10] is already developed to solve the
this particular form of PDE [11].

Alternative approach to deal with viability set computa-
tion, is to address the problem by viability theory [1]. This
approach is based on geometrical characterization of the
viability set, provide an approximation of the viability set
by discretization both in time and in space, and pointwise
convergence of a numerical scheme. The development of
computational tools to support this approach is not avail-
able [3].

These both approach suffer from exponential complexity.
It is for these reasons that we accept approximate solution
to provide us with certain guarantees in such viability
problem. This is when sampling methods come into picture
to try and remedy the ”complexity of solution” prob-
lem by drawing samples a sample space, and providing
approximate solution [13]. Then instead of griding use
samples from state space and compute viability kernel

by using viability theory [Djeridane et al.]. And we have
used 1-nearest neighborhood method to find out the viable
samples, this strategy require the entire training data set
to be stored, leading to expensive computation if the data
set is large, the complexity of this problem can be reduced
by constructing tree-based search structures to allow near
neighborhood to be found efficiently without doing an
exhaustive search of the data set, but still expensive in
resources required.

It well known that Neural Networks are good classifier [2].
Since we are interested to classify the samples in two set:
”viable” samples and ”not viable” samples, then neural
networks seem like ideal candidate to approximate the
viable set. To the best of our knowledge, this approach
is novel and no prior works on viability set using neural
networks as classifier. This approach provide us an analyt-
ical approximation with fewer parameters and number of
samples point necessary to compute viability grow poly-
nomially with dimension of the state space.

The paper is organized as follows. Section 2 briefly de-
scribes the problem of viability computation, while 3 in-
troduce Neural Networks classifier, method used to gener-
ate samples and the proposed algorithm to compute the
viability set and their results are presented and discussed
in 4. Section 5 concludes.

2. PROBLEM FORMULATION

Consider the controlled system

ẋ(t) = f(x(t), u(t)) (1)

with u ∈ U this classical formulation of the system (1) can
be represented by the following differential inclusion

ẋ(t) ∈ F (x(t)) (2)

where F : X → X is the set-valued map defined by
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∀x ∈ X,F (x) := {f(x, u), u ∈ U}

The systems (1) and (2) have continuously differentiable
functions. Let us consider a closed nonempty set K ⊂ X .
We shall say that a solution to (1) (or equivalently to (2))
is viable in K if and only if x(t) ∈ K for any tgeq0. In
other words, the viability kernel of K for F is the set [3]

V iabF (K) := {x0 ∈ K|∃x(.) ∈ SF (x0), x(t) ∈ K, ∀t ≥ 0}

with SF (x0) is denote continuous solution of (2) from
x0 starting at t = 0. For computing V iabF (K) without
computing trajectory, we need to characterize V iabF (K)
in geometrical way. We first replace the initial differential
inclusion system by a finite difference inclusion system
(semi-discrete scheme). Secondly, we replace the state
space X by an integer lattice Xh of X (fully discrete
scheme). Finally we apply refinement principle.

2.1 Discrete-time Viability Kernel

Let us consider Fǫ an approximation of F and define

Gǫ = x+ ǫFǫ(x) (3)

The choice of Fǫ depends on the regularity of the dynamic
F . The discretized dynamic correspond to Euler scheme is

xk+1 ∈ Gǫ = x+ ǫFǫ(x) (4)

And the viability discrete set D could be defined as: for
x0 ∈ D there exists at least a finite sequence (xk)k solution
to the recursive inclusion (4) stay belonging to D for any
k ≥ 0. We compute it as follow:

Algorithm 1 Semi-discrete Viability Kernel Algorithm

i = 0
K0 = K
repeat
Ki+1 = {x ∈ Ki|G(x)

⋂

K 6= ∅}
i = i+ 1

until Ki+1 = Ki OR Ki+1 = ∅
V iabG(K) =

⋂∞
k=0K

i

Under the following fair assumptions [3]

• F is bounded
• Fǫ is upper semi-continuous with convex compact

nonempty values
• Graph(Fǫ(.)) ⊂ Graph(F (.))+φ(ǫ)B where limǫ→0+ φ(ǫ) =

0+

• ∀x ∈ X,
⋃

‖y−x‖≤Mǫ F (y) ⊂ Fǫ(x)

for any ǫ > 0, we can approach V iabF (K) by discrete
kernels V iabGǫ

(K)

V iabF (K) ⊂ V iabGǫ
(K)

and

lim
ǫ→0

V iabGǫ
(K) = V iabF (K) ⊂ V iabGǫ

(K)

2.2 Fully discrete viability kernel algorithm

To implement this algorithm we have to associate with Gǫ
suitable finite set-valued maps defined on finite sets. Now
we are dealing with systems which are not only discrete
on time but finite on state too.

With any closed set K we associate its ”projection onto
the grid” defined by

Kh := (K + hB) ∩Xh

Then the algorithm (1) will be as follow for this case

Algorithm 2 Fully discrete Viability Kernel Algorithm

i = 0
K0
ǫ,h = Kh

repeat
Ki+1
ǫ,h = {zh ∈ Ki

ǫ,h|Γǫ,h(zh)
⋂

Ki
ǫ,h 6= ∅}

i = i+ 1
until Ki+1

ǫ,h = Ki
ǫ,h OR Ki+1

ǫ,h = ∅

V iabΓǫ,h
(Kh) = Ki

ǫ,h

Under the same assumptions as previously stated for the
case of discrete-time viability kernel, in addition we assume
also that Γǫ,h is a good approximation of Gǫ

Graph(Γǫ,h()) ⊂ Graph(Gǫ(.)) + ψ(ǫ, h)B

where limǫ→0,h
ǫ
→0

ψ(ǫ,h)
ǫ

= 0 holds. Moreover this con-

dition express the compatibility between time and space
steps discretization.

Then,

V iabF (K) ⊂ V iabΓǫ,h
(Kh) + hB

and

V iabF (k) = lim
ǫ0,h

ǫ
→0

V iabΓǫ,h
(Kh)

2.3 Our settings

When F is a Lipschitz set-valued map, we can construct
the set-valued map Γǫ,h as follows. Let us recall that

Gǫ = x+ ǫF (x) +Mlǫ2B

and setting

Γǫ,h(xh) =
[

xh + ǫF (xh) + (2h+ lǫh+Mlǫ2)B
]

∩Xh

where M is upper bound of F

∃M ≥ 0, ∀x ∈ X, ∀y ∈ F (x), ‖y‖ ≤M

yields approximation which satisfies the previous assump-
tions. In practice we can choose l an upper bound of the
derivative of f(x, u) for all u ∈ U and ǫ2 = h.
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3. VIABILITY COMPUTATION

3.1 Generating sampling points

Assume that we are trying to minimize a function over
the unit cube ([0, 1]d), and the minimum point is exactly
at the center of the hypercube. Also consider a smaller
hypercube inside of the original one with sides equal to
1 − ǫ

2 . Now, extract a random point inside the hypercube
according to an uniform distribution probability, then the
results in the probability of sampling inside the smaller
cube is

(1 − ǫ)d

where d is the dimension of the hypercube [12]. Then,
the probability of the sampling inside the smaller cube
tends to zero as d goes to infinity, hence the clustering
effect on the surface is observed as we go into higher
dimensions. We would like to replace the random samples
required for computing a viability set with deterministic
samples that posses certain regularity condition, i.e. they
are regularly spread within the sampling space. This
method is also independent of the sampling space. It has
shown its superiority over classic Monte Carlo methods in
the calculation of certain integrals [5] and robust control
problem [7].

There are many sequences in the literature used to gen-
erate a sampling points, which include the property of
”evenly distributed”, such as Halton , Hammersley , Sobol
sequences. In this paper, we are interested in Hatlon se-
quence which has low discrepany sequence (measure of
how the samples set is equi-distributed within integra-
tion domain) and efficient computation technique. Based
on prime numbers, these pseudo-random distribution is
uniform and irregular, but lack point in close proximity,
i.e., they have a minimum resolution that increases as
the number of points in the sample increases. The gives
the algorithm for computing Halton points in up to ten
dimension. The function, p2(n, d), takes the number of
points and parameter as input and returns a (rational)
number belonging to the interval [0, 1). [14]

Algorithm 3 Algorithm for Generating Halton

prime = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29}
choose p1 from prime
p2 = p1

φ = 0
repeat
a = n mod p1

φ = φ+ a
p2

n = int( n
p1 )

p2 = p2p1

until n ≤ 0

where int(x) returns the integer part of x.

Figure (1) compares the uniform random Halton distribu-
tion in two dimension. The Halton distribution is more
even, but the random distribution displays a wider range
of difference vector magnitudes.
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Fig. 1. 500 points distributed with random uniform dis-
tribution (left) and according to a two-dimensional
Halton point set (right)

Fig. 2. Neural Networks Architecture

3.2 Neural Network Classification

General presentation Neural Network are closely re-
lated to the Bayesian probabilities. They may be used for
unsupervised learning (density estimation problem), and
mainly, supervised learning problems (regression, classi-
fication) [6]. Density estimation is not the scope of our
paper, so we will not detail it. The aim of regression is to
find a statistical model producing an output y from input
variables (let us denote them by y), so that the output
y is as close as possible to a target variable, which we
shall denote by t. In the case of classification problems,
the target variables represent class labels, and the aim is
to assign each input vector x to a class which is the scope
of the paper.

We will use a specific class of neural networks, referred
to as feed-forward networks. In such networks, the units
(neurons) are arranged in fully-connected layers: an input
layer, one or several hidden layers, and an output layer.
Figure xx shows an example of such a network.

For a network with one hidden layer, the output vector
y = (y1, · · · , yk, · · · , yq)T is expressed as a function of the
input vector x = (x1, · · · , xi, · · · , xp)T as follows:

yk = Ψ





q
∑

j=1

wjkΦ

(

p
∑

i=1

wijxi + w0j

)

+ w0k
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where the wij and wjk are weights assigned to the connec-
tions between the input layer and the hidden layer, and
the output layer, respectively, and where w0j and w0k are
biases. Φ is an activation function, applied to the weighted
output of the preceding layer, and Ψ is a function applied,
by each output unit, to the weighted sum of activations
of the hidden layer. This expression can be generalized to
network with several hidden layers.

The output error - i.e. the difference between the target
values t and the output y computed by the network -
will depend on the parameters w (weights and biases).
The training aims at choosing these parameters, so as to
minimize a chosen function of the output error.

In the case of classification problem, it is recommended
to consider a log-likelihood function. The network is then
design with one output unit per class. When the output
of such unit is 1, the input x is assigned to the class
corresponding to the unit, and when the output is 0, it
is not. Let us consider a problem with 2 classes. The sum
of squares error function minimized during training is the
following:

ED(w) =
1

2

n
∑

i=1

2
∑

k=1

(yik − tik)
2

where ti and yi are the ith target and output vectors,
respectively. The set of weights w for which the error
function ED(w) is minimum, is obtained through back-
propagation of the error through the network. The training
with backpropagation consists in computing small mod-
ifications of the weights, for successive layers, starting
from output layer, and considering the influence of each
weighted connection in the output error variations. Several
backpropagation methods which are basically optimiza-
tions techniques, are proposed in the literature and in ex-
isting software: gradient methods, or global optimizations
methods.

Neural networks applied to our problem For our prob-
lem, we have chosen three-layers feed-forward networks,
denoted IpHqO in the rest of the paper, with p units in
the input layer, q units in the hidden layer and 1 unit in the
output layer (because we are dealing with two classes). The
input variables are normalized, by subtracting the mean
value and dividing by standard deviation. There are many
possible choices for the function Ψ and Φ, depending on the
problem being addressed. A common choice for Φ is logistic
function Φ(z) = 1

1+e−z . This is the activation function that
was used in our experiments. As we address a classification
problem - assign each input vector to a class representing
the point (viable or not) - we have chosen to minimize the
cross entropy function. Therefore, the transfer function Ψ
applied to the output layer, must be the logistic function
Ψ(z) = 1

1+e−z .

A well-known problem, when using neural network (or
other regression methods), is overfitting: with enough pa-
rameters and enough training cycles, it is always possible
to find a good fit for a given data set. So one may find per-
fect fit for chosen data simple, and then feel disappointed
when trained network lakes wrong predictions on fresh
data. So, we will systematically proceed as follows: train

the network on a randomly chosen data sample (called
train), then check the results, first on the same data,
and second on a fresh data sample (called test), that was
not used for the training. We may use the fit criterion
but it does not reflect the influence of the number of
weights (and biases) in the neural network. It is known
that a network with too few weights may not able to
capture all the variations of the response to the input
x, whereas a network with too many weights will more
likely be subject to ”over fitting”. However, with objective
functions E(w) = βED(w)+αEW (w) where Ew is the sum
square of the network weights and α is objective function
parameters. If α << β, then the training algorithm will
drive the errors smaller. If α >> β, training will em-
phasize reduction at the expense of the network errors,
thus reducing a smoother network response. The main
challenge to optimize E is setting the correct values for
the objectives function parameters. In [4] have developed
technique to compute α and β based on the application
of Bayes’ rule to neural network training and optimization
regularization. In this approach, the weights and the biases
of the network are assumed to be random variables with
specified distribution. To deduce the optimal values of
these parameters, the Bayesian framework of [9] is applied.
In it the weights of the network are considered random
variables. Assuming that both the noise in the data set
and the prior distribution for the weights are Gaussian, it
can found that, as detailed in [4], the optimal values of
α = γ

2Ew
, β = n−γ

2ED
where γ = N−2αtr(H−1) is called the

effective number of parameters, N is the total number of
parameters in the network, n is the number of examples in
the data set, andH is the Hessian of the objective function.

Once the error index to minimize is fixed, a suitable mini-
mization method must be selected to perform the network
training. A usual choice is the Levenberg-Marquardt algo-
rithm.

3.3 Computation techniques

In this subsection, we introduce a randomized approach
for computing the viability kernel. As pointed out in the
introduction, many pessimistic results on the complexity
theoretic barriers of classical computation of the viability
set have simulated research in the direction of finding
alternative solutions. One of these solutions, which is the
main objective of this paper, is first to shift the meaning of
representing a set from its unusual deterministic sense to
probabilistic one. In this respect, we accept the risk that
viability set computed being violated by a set of points
of K having small probability measure. Such viability set
can be viewed as being almost accurate approximation.

We now study the computation of viability set problems
previously discussed by introducing two sets, denoted as
the ”good set” and the ”bad set”. These are subsets of K
and represent, respectively, collection of all ”points” which
satisfy or violate the viability property under attention.
These sets are constructed so their union coincides with
the set K and their intersection is empty. Formally, we
define KG = {x ∈ K|y ∈ K},KB = {x ∈ K|y /∈ K}

An iterative approach is used to compute the viability
kernel: we shall first used samples points as input to the
neural network. The E criterion is used to select which
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samples are outside the viability kernel (called ”bad sets”)
and inside the viability kernel (called ”good sets”).

The randomized algorithm for computing viability kernel
is presented as follow:

Algorithm 4 RA for computing a viability kernel

i = 0
Choose n
Generate samples points over K using halton sequence
Train the neural network on samples
Initialize KG = {x ∈ K}, K0 = K and KB = {x /∈ K}
repeat

Compute y = x+ ǫF (x) with x ∈ KG

Use NN to find out the bad point R
KG = KG/R
KB = KB ∪R
train NN on the set Ki+1 = KG ∪KB

until Ki+1 = Ki OR Ki+1 = ∅
V iabG(K) = Ki+1

Now we comment on how we compute y (successor of x).
In the algorithm is stated that

y = x+ ǫFǫ(x)

where F (x)ǫ = F (x) +MlǫB with l = supx
f(x,u)
x

∀u ∈
U , M = supx f(x, u)∀u ∈ U and B is a ball. We use
dichotomy technique to find out the appropriate control
u in U .

4. EXAMPLES

To validate the algorithm presented in this paper, we
have worked on linear system and nonlinear systems and
we have compared our results with Level set Toolbox
developed in [10]. We have perform all the computations
on the a Opteron 64 processor running on Linux with 4
GB memory.

4.1 Linear system

We have applied our approach to linear system with
canonical controllability form. And we have compared our
approach to Level Set Toolbox method.

2D example Consider the double integrator

ẋ1 = x2

ẋ22 = u

with u ∈ U = [−1, 1] and x ∈ K = [−1, 1] × [−1, 1].

3D example
ẋ1 = x2

ẋ22 = x3

ẋ23 = u

with u ∈ U = [−1, 1] and x ∈ K = [−1, 1]3.

To compare, first we have computed the ”exact” solution
for our example using level set toolbox with high accuracy,
and afterward we have used the technique developed
(Method 1) in this paper with tolerance of 5% of error
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Fig. 3. Viability set for 2D

Fig. 4. Viability set for 3D
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Fig. 5. Growth of number points respect the dimension

from the exact solution. And also we have computed the
viability set with less accuracy (Method 2)within 5% of
error using level set toolbox

2D 3D 4D 5D

n Method 1 16000 25000 50000 200000
q Method 1 12 18 25 55
n Method 2 549 103823 1874161 2476099
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Fig. 6. Viability set for Nonlinear system

The neural network was trained with n as shown in the
table for each system extracted using Halton distribution
and K ”bloated” by 10% in all directions, hence NN could
learn ”bad” and ”good” set at the initialization.

4.2 Nonlinear system

To show that our technique works too for the case of
nonlinear system, we have worked in simple nonlinear
system defined as follow

ẋ1 = x2
2

ẋ2 = u

with u ∈ U = [−1, 1] and x ∈ K = [−1, 1] × [−1, 1].

We have computed an approximation of the viable set
using 15 neurons and 17000 samples within 5% error from
the ”exact” solution. Which make clear that our method
perform well in linear case as well in nonlinear case.

5. CONCLUSION

The aim of this paper was to propose an analytical ap-
proximation method that circumvent the cruse of dimen-
sionality encountered in viability computations. We have
used our algorithm on a set of different examples with
good results. In current work we are trying to extended
this proposed technique to more complicated system. A
direct advantage of our method is provide us an analytical
solution of the viability kernel. We are currently working
to improve the structure of our neural networks to obtain
better solution with less points.

The advantage introduced by the randomization technique
have to be balance with the loss of the guarantee to
obtaining exact solution. We are working on the conver-
gence proof in order to provide statistical guarantee of
the convergence. The proof is mix of uniform convergence
empirical means and viability theory. We investigate to
reduce computation time, we believe that jut better coding
(e.g. programming in C) can bring down the computation
time substantially.
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