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Abstract: This paper presents a receding-horizon leader-follower (RH-LF) controller for addressing 
the formation control problem of multiple nonholonomic mobile robots. The issues to be investi-
gated include separation, bearing, and orientation deviation control between the leader and the fol-
lowers, where the orientation deviation control is especially important to control precision. After the 
leader-follower formation problem is posed to a formation tracking problem, a receding-horizon 
formation tracking controller is proposed, which guarantees asymptotic convergence of the forma-
tion tracking error to zero. Simulations are performed to verify the effectiveness of the proposed 
control strategy.  Copyright © 2002 IFAC 
 
Keywords: Mobile robots; Formation control; Receding-horizon control; Leader-follower Strategy. 

 
 
 
 
 

1. INTRODUCTION 
 
Control and coordination of multiple mobile robots have 
been considerably done during the past ten years. It is gener-
ally accepted that multiple mobile robots, if cooperatively 
work under high efficient organization and principles, can 
behave as a whole, and also guarantee the robot team with 
fault tolerance and robust properties (Liu and Wu, 2001). 
Mobile robot team can perform tasks that are difficult for one 
single robot, for example, group hunting (Cao et al., 2006), 
large area exploration (Burgard et al., 2005), surveillance 
(Tang and Ozguner, 2005), object transportation (Yamashita 

et al., 2003; Berman et al., 2004), and spacecraft interfer-
ometry tasks (Beard et al., 2001). 
Robot formation control has received much attention in 
multi-robot coordinations, since robots moving in formation 
can “reduce the system cost, increase the robustness and effi-
ciency of the system” (Chen and Wang). The formation con-
trol approaches can be roughly categorized into three (Chen 
and Wang; Lawton et al., 2003; Beard et al., 2001): behav-
iour-based, leader-follower, and virtual structure methods. In 
behaviour-based formation, a group behaviour (or mission) 
comprised of some low-level actions (or sub-tasks), is con-
structed to achieve the global objective, where the individual 
robot needs to perform low-level actions to make the group 
behaviour accomplished (Balch and Arkin, 1998; Berman et 
al., 2004; Long et al., 2005). In leader-follower formation, 
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one robot is designated as the leader, whose motion defines 
the group bulk motion, and the other robots are controlled to 
follow their respective leader with given separations and 
bearings (Desai et al., 2001; Das et al., 2002; Tannder et al., 
2004; Huang et al., 2006). In virtual structure formation, ro-
bots behave like particles embedded in a rigid virtual struc-
ture, and this method is usually applied in high precision 
formation tasks (Lewis and Tan, 1997; Ren and Beard, 2004). 
In leader-follower formation strategy, one leader “leads” the 
group and the followers “follow” their respective leaders to 
maintain desired geometric relationship. Traditionally, 
leader-follower controller concentrates on the explicit control 
of the separation and bearing between robots, and orienta-
tions of the followers are treated as internal dynamics, which 
makes the robot group move on the same direction. However, 
formation tasks such as switch between formations and 
curved path tracking usually require the follower to hold an 
orientation deviation with respect to the leader. 
In this paper, a framework to deal with nonholonomic mobile 
robot formation problems is investigated, which investigates 
the issues of separation, bearing and orientation deviation 
control between the leader and follower. After transforming 
the leader-follower formation problem to a formation track-
ing problem, receding-horizon (RH) controllers are applied, 
which guarantees the formation tracking error asymptotically 
converged under a suboptimal strategy. 
Receding-horizon (RH) method is also known as model-
predictive-control (MPC), and has been frequently applied in 
industry. RH controller mainly concentrates on solving opti-
mization problems of a predictive control horizon with input 
and state constraints (Keerthi and Gilbert, 1988). Due to the 
use of predictive horizon, the stability of the open loop sys-
tem becomes the main problem. It was shown that when ap-
plying an infinitive control predictive horizon, the stability 
can be guaranteed for even nonlinear systems (Keerthi and 
Gilbert, 1988), but infinitive predictive horizon is not appli-
cable in practice. The stability can also be guaranteed by add-
ing a terminal state constraint to the system, e.g. force the 
terminal state equal to zero (Rawlings and Muske, 1993), but 
this approach is time consuming (Gu and Hu, 2005). Further 
researches shown that the system stability can be guaranteed 
by converting the terminal state equality into an inequality, 
e.g. a terminal state penalty function (cost function), which 
should be larger than the cost function of the linear feedback 
controller applied to the system when entering the terminal 
state region (Chen and Allgower, 1998; De Nicolao et al., 
1998). The recent works suggest that the terminal state linear 
feedback controller was not necessary, and the system stabil-
ity could be guaranteed as long as the terminal state inequal-
ity constraint was met. Thus receding horizon control was 
applied to solve the nonholonomic point-wise stabilization 
problem (Fontes, 2001; Gu and Hu, 2005). 
The paper is organized as follows. Section 2 will propose the 
new leader-follower formation strategies: separation-bearing-
orientation control (SBOC) and separation-separation-
orientation control (SSOC), also in this section we transform 
the formation problem to a formation tracking problem, 
which will be solved in section 3 using receding-horizon con-
trollers. Simulations will be performed in section 4 to verify 
the effectiveness of the proposed control strategy. Conclu-
sions of this work will be given in section 5. 

2. LEADER-FOLLOWER FORMATION 
 
2.1 Formation Problem Definition 
 
We first give some necessary assumptions regarding to the 
robot group as follows: 
Assumption A1: The robots are assumed labelled at the very 
beginning, and the robot whose motion defines the group 
bulk motion is designated as the group leader 1R . 
Assumption A2: Robot’s configuration and velocity are 
measurable. 
Assumption A3: Every robot owns an embedded obstacle 
avoiding program, which should be triggered by sonar sen-
sors when the robot is too close to an obstacle or another 
robot. 
Define )(tF  as the reference formation for the robot group at 
time t , which should be determined by the following forma-
tion parameters: 

1. The configuration of the group leader GLp . 
2. An interaction graph )...3,2(),( niGG iLF =  , which de-

fines the desired relationship between every leader-
follower pair. n  is the number of robots, and 

))(( 1+→= iiji RRRLFG , where jR  denotes the fol-
lower and )( 1+ii RR  the leader. 

3. A kinematic graph )( iLF vv , which defines the desired 
velocity for every formation robot, including both the 
linear and angular velocities. 

 

 
Fig. 1. An example of )(tF . 
 
Fig. 1 illustrates the reference formation of a group of six 
robots. The formation problem can be formulated as follows. 
Leader-Follower Formation Problem: Suppose a group of n  
robots, randomly placed at the beginning, are driven to track 
desired formation trajectory )(tFT . )(tFT  is comprised of 
k  curved paths ))(),((),( 0 tytxttl llfi = , )...2,1( ki = , where 

),( 0 ftt  denotes the time interval that the group are desired 
to move on il , and il  defines the group bulk motion, i.e. the 
path travelled by the leader. During the tracking, the robots 
are required to form and maintain the desired time-varying 
formation shape denoted by )(tF .  
The robots here are typical nonholonomic mobile robots, 
with the following kinematics described by a unicycle model: 
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where ),( yx  is the position of the centre point of the robot 
wheels, θ  is the robot orientation, v  and ω  are the robot 
linear and angular velocity inputs. Denote  Tyxp ),,( θ=  as 
the robot configuration. The nonlinear system is subject to a 
constraint that the robot wheels must roll without slipping on 
the lateral direction 

0cossin =− θθ yx &&                              (2) 
Since (2) is non-integratable, the constraint cannot be con-
verted into an explicit geometric form, which makes (1) has 
more state variables than control inputs. The nonholonomic 
system cannot be stabilized to the origin by continuous time-
invariant feedback laws (Brockett, 1983). However, since the 
accessibility rank condition is globally satisfied 

3)],[( 2121 =ggggrank                      (3) 
where ],[ 21 gg  is Lie bracket of 1g  and 2g , the non-
holonomic system can be stabilized using nonlinear or time-
variant controllers (Bloch et al., 1992). 
 
2.2 Leader-Follower Formation Strategies:  SBOC & SSOC 
The follower robots are controlled with given separation, 
bearing, and relative orientation deviation to the leader. Two 
formation control strategies, Separation-Bearing-Orientation 
Controller (SBOC) and Separation- Separation -Orientation 
Controller (SSOC), will be proposed in the following. Note 
that the robot which is the closest to the leader, denoted by 

2R , can only be controlled using SBOC. 
Consider a two robot formation problem as shown in Fig. 2. 
Under the leader-follower control strategy SBOC, jR  fol-
lows iR  with a desired separation jil ,  and bearing ji,ψ , and 

jR  is required to maintain a desired relative orientation 
jiji θθβ −=,  with respect to iR , where iθ  and jθ  are the 

orientation of iR  and jR , respectively. Note that the refer-
ence configuration of the follower robot is precisely defined 
at every time instant. 
SSOC concerns the three robot formation problems as shown 
in Fig. 3. Under SSOC, the third robot jR  is required to 
maintain a desired separation pair jil ,  and jil ,1+  to iR  and 

1+iR  respectively, and meanwhile jR  has to maintain a de-
sired relative orientation jiji θθβ −=,  with respect to iR . 
Both SBOC and SSOC can be used to solve the formation 
tracking problem for each robot. As in Fig. 2, the desired 
position of the follower jR  is given by 
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where d
jil , , d

ji,ψ  and d
ji,β  are the desired separation, bearing 

and relative orientation between iR  and jR , ip  is the pos-
ture of the leader. The formation tracking error of the robot 

jR  can be defined as (Kanayama, 1990) 
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where jp  is the posture of the follower. The control objec-
tive of SBOC for jR  is to stabilize the tracking error e

jp  
towards zero. 
 

 
Fig. 2. Formation tracking of SBOC 

 
Fig. 3. Formation tracking of SSOC 
 

3. RECEDING-HORIZON LEADER-FOLLOWER 
FORMATION CONTROLLER 

 
3.1 Robot path tracking and control framework 
 
From (1) and (5), the robot tracking error can be expressed as 
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where rv  and rω  are the predefined reference linear and 
angular velocities. Rewrite (6) as a nominal nonlinear plant 

))(),(,()( tutqtftq ee =&                            (7) 
where )()( tptq e

e =  and )(tu  are the n  dimensional track-
ing error state vector and m  dimensional input vector, re-
spectively. f  is assumed to be a continuous function. The 
input vector is constrained in a compact and convex set 

mRU ∈∈0 . 
 The RH strategy is performed with the steps as shown in 
Fig. 4. Suppose that the RH controller uses a predictive hori-
zon length T . The following procedures will be used: 

(1) Measure the plant state at time instant it . 
(2) Compute the input )(:)( Tttttu ii +≤≤  under an op-

timal strategy. 
(3) Apply )(:)()( δ+≤≤= ii ttttutu  to the plant. (Note 

that δ  is much smaller than T , and the remaining 
)(:)( Tttttu ii +≤≤+ δ  is discarded.) 

(4) Repeat (1) to (3) at the next time instant δ+=+ ii tt 1 . 
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Fig. 4. General receding-horizon framework 
 
Applying an input vector to the plant over a period 

),( δ+ii tt , the state vector at δ+it  can be predicted as  
)),(()),(),(,( δττττ +∈= iiee ttuqfq&               (8) 

where )()0( iee tqq = , and Uu ∈)(τ . 
During the predictive horizon, the tracking error state should 
be optimized. Define the terminal state cost function meas-
ured during a period of T  as 

τττ dutqLTtqgtutqtJ
Tt

t
eee ))(),(,())(())(),(,( ∫

+
++=    (9) 

where )()()()())(),(,( tRututQqtqtutqtL T
e

T
ee +=  is the 

state and input cost function measured during the predict 
horizon, Q  is a positive symmetric weight matrix, and 

0=R  since the input energy cannot be minimized as long as 
the reference velocity does not tend to zero, which usually 
occurs in the formation task. ))(( Ttqg e +  is the terminal 
state penalty function which is continuous and different-
tiable, and 0)0( =g , 0))(( >tqg e  if 0≠eq . Define the 
open loop optimal problem (OP) at time t , which concen-
trates on the terminal state cost function, as 

                      ))(),(,(min tutqtJ eu
                              (10) 

Note that (10) is subject to (8) and the input constraints. 
3.2 RH convergent properties and control parameters de-

sign 
 
It is also a requirement that the input sequence of the RH 
controllers drive eq  towards zero. It was proved that the 
system stability can be guaranteed if a terminal state penalty 
term is added to the cost function and a terminal state ine-
quality constraint can be satisfied (Fontes, 2001; Gu and Hu, 
2005). As stated above, ))(( Ttqg e +  is the terminal state 
penalty term and the terminal state inequality constraint is 
given by 

0))(),(,())(( ≤+ tutqtLtqg ee&                    (11) 
Theorem 1: Consider the optimal control problem presented 
in (10). If the input )(tu  satisfies (11), the RH controller can 
asymptotically stabilize the system, i.e. 0)( →tqe  as time 

∞→t  (Fontes, 2001). 
The proof of Theorem 1 can be found in Fontes (2001). We 
now design the feedback input parameters. 
Define ))(( tqg e  as a Lyapunov-like function of the predicted 
state 
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Note that )0,0,0( 321 >>> qqq  are the weight factors of 
the state errors. We design the applied feedback velocity in-
put as 
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Substituting (6) and (12~14) into (11), the stability condition 
becomes 
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To make (15) satisfy the inequality condition (11), we choose 
the following inequality constraints for the feedback parame-
ters 
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In the actual implementation of the formation task, ey  is 
usually much smaller than ex . However, critical conditions 
may occur when ex  converges much faster than ey , and 
thus makes 1k  too big, but under this situation, we can 
switch to a linear feedback controller. Suppose εxxe ≤  and 

εyye ≥ , where εε xy >>  and both of them are predefined 
boundary parameters, we then apply following feedback pa-
rameters ee xyk /1 ω−= , 02 >rvk  and 03 >k , which gener-
ate 0=ex&  and 
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It is easy to verify that as soon as 0≠rv , ey  and eθ  are 
exponential convergent. Thus we can hold ex , converge ey  
and eθ  first and switch back to RH-LF then. 
We now consider the terminal state region of the RH control-
ler. Note that the input constraints must be satisfied when 
performing the RH-LF, i.e. Uu ∈ , 

⎩
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Substituting (14) into (17) yields the terminal stated region 
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Since πθπ ≤<− , the terminal state region can be defined 
as 
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Remark 1: From (14), it is easy to verify if the RH-LF con-
troller guarantees asymptotical stability, i.e. )(teq  go to zero 
as time t  goes to infinity, the robot velocity will finally con-
verge to the reference velocity to maintain the desired geo-
metric relationship with the leaders. 
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In the terminal state region constraints (19), the condition of 
the orientation error is easy to satisfy. The robot reference 
velocity should be properly designed to meet the robot kine-
matic limitations. Otherwise the terminal state region does 
not exist, and the RH-LF controller cannot be applied. 
 
3.3 Feasible RH solutions and suboptimality 
In the above discussions, only stability properties of the pro-
posed control approach are concerned, while the optimal con-
trol is not considered. It is stated in Scokaert (1999) that the 
feasible RH controllers can also guarantee the system subop-
timal properties as well. We now discuss the suboptimal 
conditions of the proposed RH-LF controller. 
Define ∫

+
++=

Tt

t
eee duqLTtqgtqtV ττττ ))(),(,())(())(,(  as 

the RH value function. From (12) and (13), it is easy to ver-
ify 

))(())(,( tqtqtV ee α≥                           (20) 
where α  is a K-function. From (20), Condition 1 of Theo-
rem 1 in Scokaert (1999) holds. The proof of Condition 2 of 
Theorem 1 in Scokaert (1999) is too complex and the inter-
ested readers should refer to Scokaert (1999). As a result, the 
robot velocities converge to their reference values finally, 
and hence, 
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where σ  is a K-function. Eq. (21) demonstrates the validity 
of the Condition 3 of Theorem 1 in Scokaert (1999). There-
fore, the proposed RH-LF controller guarantees the asymp-
totic convergence of the formation tracking system as well as 
the suboptimal solutions. 
 

 
4. SIMULATIONS 

In this section, simulations of using the RH-LF controller are 
presented. The simulation was performed on the formation 
task as shown in Fig. 5, where the three robots were required 
to switch from a collateral formation to a sequential forma-
tion, bypass the garden corner and then reform back to a col-
lateral formation. Note that when applying leader-follower 
strategy here, the control of the relative orientation deviation 
between every follower and their respective leaders are espe-
cially important. A precise formation geometric shape must 
be maintained when the robot group switches from one for-
mation to the other. 
 

 
Fig. 5. The target formation tasks 

 
Fig. 6. Simulation results applying RH-LF controller 
The straight path has a length of 9m, and the circular path has 
a radius of 2m. Every robot is subject to following velocity 
constraints 
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The constraints must be satisfied when designing the refer-
ence formation motions. 
In the simulation, is was assumed that robots were randomly 
placed at the beginning with the initial postures of 

)5.0,0,1(),5.1,3,0(),0,1,1( ππ mmmmmm . 
The objective is to control the group to track the reference 
formation shapes. Weight factors 21, qq  and 3q  were chosen 
as 1.021 == qq , 05.03 =q . To satisfy (16), the feedback 
parameters were chosen as 
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Simulation results applying the proposed RH-LF controller 
are shown in Fig. 6. The initial postures of robots are de-
picted by the ellipse on the left, while the ellipse on the right 
depicts the robots postures when the group finished tracking 
the first path. 
Fig. 7 shows the formation geometric condition for the 
leader-follower pairs. The upper figure illustrates the SBOC 
condition between 1R  and 2R , where separation-12, bear-
ing-12 and orientation deviation-12 denote the separation, 
bearing and orientation deviation conditions between 1R  and 

2R . The below figure illustrates the SSOC condition for 1R , 
2R  and 3R , which shows the separation between robot pair 
1R  and 3R , 2R  and 3R , and the orientation deviation be-

tween 1R  and 3R . The solid lines of Fig. 7 show the leader-
follower formation geometric conditions when applying the 
proposed RH-LF controller, and the dashed lines represent 
the desired formation geometric relation-ships. Fig. 8 shows 
the errors between the desired and RH-LF applied formation 
parameters. From these figures we conclude that the desired 
leader-follower formation objective can be achieved. 
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Fig. 7 SBOC & SSOC formation conditions 
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Fig. 8. RH-LF formation tracking errors. 
 

 
5. CONCLUSIONS 

 
This paper presents a RH-LF controller for multiple non-
holonomic mobile robots in formations. A new leader-
follower strategy concerning separation, bearing and orienta-
tion deviation between the leader and follower, is discussed 
first. Then both controllers of SBOC and SSOC are proposed 
with investigations of formation error tracking conditions for 
each robot in the team. It is shown that the proposed RH-LF 
controller guarantees asymptotic stability of the robot system. 
The proposed control strategy also ensures that the velocity 
input generates suboptimal solutions to the formation track-
ing system. Finally, simulations are performed to demon-
strate the effectiveness of the proposed RH-LF formation 
controller. 
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