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Abstract: We consider Discrete Event Systems (DES) involving tasks with dependability
requirements in the form of real-time constraints. We seek to control their processing times so as
to satisfy these constraints while also minimizing a given cost function. When tasks are processed
by a single resource, it has been shown that there are structural properties of the optimal state
trajectory for this problem that lead to a very efficient Critical Task Decomposition Algorithm
(CTDA). For a DES with multiple resources, we consider a multi-layer network where each
layer contains multiple nodes, each node may have multiple inputs and multiple outputs, and
tasks are processed so that the real-time constraints apply on an end-to-end basis. Extending
earlier results (where each layer contained a single node), we derive structural properties of the
optimal solution that lead to the idea of introducing “virtual”deadlines at each node (except
for the last layer) and decouple nodes so that the CTDA for single-node problems can be used.
We prove that an appropriately constructed sequence of solutions of these simpler problems
converges to the global optimum of the original problem and hence obtain an efficient scalable
Multi-Layer Virtual Deadline Algorithm (MLVDA). We illustrate the efficiency of the MLVDA
through numerical examples.

1. INTRODUCTION

A large class of Discrete Event Systems (DES) involves
the control of resources allocated to tasks according to
certain operating specifications. In designing dependable
DES, a key dependability requirement is that tasks must
be executed within given real-time constraints. However,
such dependability comes at a cost, giving rise to a
fundamental dependability-efficiency trade-off. Examples
arise in manufacturing systems, where the operating speed
of a machine can be controlled to trade off between energy
costs and requirements on timely job completion (Pepyne
and Cassandras [2000]), or in wireless networks where
severe battery limitations call for new techniques aimed
at minimizing energy consumption while still providing
performance guarantees (Miao and Cassandras [2006],
Gamal et al. [2002]). Thus, if the cost of guaranteeing real-
time constraints is so high as to exhaust the batteries of
a wireless system, then this system is obviously no longer
dependable. This trade-off leads to a class of optimization
problems where a cost function must be minimized subject
to the usual DES dynamics in max-plus form for task
completion times along with real-time (dependability)
constraints imposed on these completion times.

A single-resource DES can be modelled as a single-input
single-output (SISO) single-server queueing system as in
Fig. 1, whose dynamics are given by the well-known max-
plus equation
? Supported in part by NSF under Grants DMI-0330171 and EFRI-
0735974, by AFOSR under grants FA9550-07-1-0213 and FA9550-
07-1-0361, and by DOE under grant DE-FG52-06NA27490.

xi = max(xi−1, ai) + si(ui) (1)
where ai is the arrival time of task i = 1, 2, . . . , xi is the
time when task i completes service, and si(ui) is its service
time which is controllable through its processing rate ui.
Real-time constraints imposed on tasks are represented
through xi ≤ di where di is a given “deadline” associated
with task i. In order to meet such constraints, one typi-
cally has to incur a higher cost associated with si (since
the server must operate at higher speed). This class of
problems has been extensively studied, mostly in the com-
puter science literature: preemptive tasks are considered,
for example, in Yao et al. [1995], Aydin et al. [May 2004],
nonpreemptive periodic tasks in Jeffay et al. [1991], and
nonpreemptive aperiodic tasks in Gamal et al. [2002], Miao
and Cassandras [2006], Mao et al. [June 2007]. The latter
case is of particular interest in wireless communications
where nonpreemptive scheduling is necessary to execute
aperiodic packet transmission tasks which also happen to
be highly energy-intensive. In a broader context, we are
interested in studying optimization problems of the general
form

min
u1,...,uN

∑N

i=1
θi

(
ui

)
(2)

s.t. xi =max(xi−1, ai) + si(ui) ≤ di, i = 1, ..., N

where θi(ui) is the cost of operating the resource at a high
enough rate to complete task i within si and guarantee
that xi ≤ di. In general, the controls u1, ..., uN may be
time-varying. However, as shown in Miao and Cassandras
[Sep. 2005], when θi(·) is monotonically increasing and
convex and all ai, di are known, then the optimal control of
each task is constant during the processing time si(ui). We
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will consider such cases and also assume that si(ui) ≥ 0 is
monotonically decreasing in ui for all i = 1, ..., N .

Problem (2) is generally a hard nonlinear optimization
problem, complicated by the inequality constraints xi ≤ di

and the nondifferentiable max operator involved. Although
the max operator can be removed by introducing auxiliary
variables wi, i = 1, ..., N , and adding the constraints
xi = wi + si(ui), wi ≥ xi−1, wi ≥ ai, we note that this
makes the problem even more inefficient to solve since
it doubles its dimensionality and also introduces 2N in-
equality constraints. Despite these difficulties, it has been
shown in Mao et al. [June 2007] that the Critical Task De-
composition Algorithm (CTDA) provides a highly efficient
solution procedure which reduces a complex optimization
problem to a simple procedure for identifying a set of
“critical tasks”. Numerical examples show that standard
nonlinear programming software fails to produce solutions
to problems for N > 400. In contrast, CTDA is scalable in
N and gives exact solutions extremely fast (compared to
specialized convex programming solvers). Speed and scala-
bility are particularly crucial for applications where small,
inexpensive, often wireless devices are required to perform
on-line computations with minimal on-board resources.
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Stage 1
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Fig. 1. A single-resource system

In the case of a multi-resource DES where tasks must be
sequentially processed over a number of stages as in Fig.
2, each stage is characterized by dynamics of the max-plus
form coupled to those of its neighboring stages (1), i.e.,
tasks at the first stage satisfy

xi,1 = max(xi−1,1, ai) + si,1(ui,1) (3)
and at the following stages j = 2, ..., M :

xi,j = max(xi−1,j , xi,j−1) + si,j(ui,j), l = 2, ..., M (4)
In addition, the real-time constraints apply on an end-to-
end basis, i.e., only tasks at the last stage satisfy the con-
straints xi,M ≤ di. This problem is much more complicated
and cannot be dealt with by merely extending the CTDA
because the decomposition properties characterizing an
optimal sample path of (2) no longer hold and the coupling
in (4) significantly complicates any solution methodology.
Incidentally, the same complications arise even in the
absence of real-time constraints: extending such single-
stage problems solved in Cho et al. [2001] even to two
stages becomes significantly more difficult Gokbayrak and
Cassandras [2000], Cassandras et al. [1999]. Nonetheless,
exploiting structural properties of the optimal solution,
we have developed a highly efficient Virtual Deadline
Algorithm (VDA) Mao and Cassandras [2006] to solve
this problem. The main idea is to introduce a “virtual”
deadline at each stage 1, ..., M − 1, so that the M -stage
problem is replaced by

∑M
l=1 Vl single-stage problems of

the form (2), which we know can be very efficiently solved
through the CTDA in Mao et al. [June 2007].

In this paper, we study a more general multi-layer network
environment as shown in Fig. 3, where each resource is
represented by a node which may have multiple inputs
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Stage 1 Stage M
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Task 
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Stage 1 Stage M

Fig. 2. A multi-resource system with M sequential stages

and multiple outputs (queues are included in the nodes but
are omitted from the figure). Examples arise in assembly
and/or disassembly manufacturing systems, or in some
clustering-based protocols for wireless sensor networks,
such as LEACH (Heinzelman et al. [2002]). In such multi-
layer systems, each node may have multiple outputs (e.g.,
disassembled parts, packet copies) each one routed to a
specified downstream node. A node may also have multiple
inputs so that the time when the ith task can be initiated
is a function of the departure times of the ith task at
all its predecessor nodes; in particular, we consider this
function to be the the maximum value of these departure
times, which corresponds to applications such as assem-
bly operations in manufacturing systems or computations
requiring multiple data in computer systems. The main
contribution of the paper is the construction of a sequence
of solutions to much simpler single-resource (i.e., single-
node) problems, a proof that this sequence converges to
to the global optimum of the multi-layer problem, and the
development of an efficient algorithm (which results from
this analysis) to solve this problem.

The paper is organized as follows. In Section 2, we for-
mulate the M -layer problem with strict end-to-end real-
time constraints. In Section 3, we establish two structural
properties of the optimal solution extending results from
multi-stage systems as in Fig. 2. These lead, in Section
4, to the construction of a single-node problem solution
sequence and a proof that this sequence converges to the
global optimum of the multi-layer problem. We present
a multi-layer VDA in Section 5, followed by numerical
examples in Section 6, and conclude with Section 7.

2. MULTI-LAYER PROBLEM FORMULATION

We consider a multi-layer DES, as illustrated in Fig 3,
where there are M layers with Vl nodes in the l-th layer
for l = 1, ..., M . Let (l, n) denote the n-th node in the l-th
layer. Node (l, n) can only receive tasks from the (l-1)th
layer and send tasks to the (l+1)th layer; communication
among nodes in the same layer is not allowed. There is a
sequence of N tasks arriving at known times 0 ≤ a1,n ≤
· · · ≤ aN,n at each node (1, n) in the first layer with
known hard end-to-end deadlines d1,n, . . . , dN,n for each
node (M, n) in the last layer.

Let Pl,n denote the set of predecessors of node (l, n). For
example, in Fig 3, P2,1=

{
(1, 1), (1, 2), (1, V1)

}
. Since the

predecessors of node (l, n) must be in the (l-1)th layer, we
can simplify Pl,n by removing the layer index, e.g., rewrite
P2,1 as P2,1=

{
1, 2, V1

}
. Similarly, we define Bl,n as the set

of successors of node (l, n); for example, B1,1=
{
1, 2

}
.

The dynamics of the multi-layer system are significantly
different from the single and multi-stage systems in Figs. 1,
2. In the latter, we are dealing with single-input and single-
output nodes, while the nodes in the multi-layer system
generally have multiple inputs and multiple outputs. In
the multi-stage system, each node only has one predecessor
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Fig. 3. A multi-layer system (each node includes queues
for incoming tasks which are not shown)

so that the time when a task becomes available to that
node is simply the departure time of the previous stage.
In the multi-layer system we consider (which is not an
arbitrary tree structure), each node may have more than
one predecessor so that the time when a task becomes
available for processing at some node (often referred to
as its “release time”) is a function of the departure times
of this task at its predecessors. As mentioned in the in-
troduction, we consider this function to be the maximum
value of the departure times of the task at predecessor
nodes. Let si,l,n and xi,l,n denote task i’s service time
and departure time at node (l, n) respectively and de-
fine Sl,n=[si,l,n]∀i, Sl=[Sl,n]∀n, S=[Sl]∀l, Xl,n=[xi,l,n]∀i,
Xl=[Xl,n]∀n, X=[Xl]∀l, An=[ai,n]∀i, A=[An]∀n, Dn =
[di,n]∀i and D=[Dn]∀n, where the notation [·]∀i is short-
hand for a vector or matrix whose entries correspond
to all possible values of i. In what follows, inequalities
and max operators involving vectors or matrices should
be understood to apply componentwise. For notational
consistency, let X0=A and P1,n={n} for n=1, ..., V1. Then,
the dynamics of the multi-layer system can be written as

xi,l,n = max
(
xi−1,l,n,maxh∈Pl,n

(xi,l−1,h)
)

+ si,l,n

To simplify notation, we define
X̂i,l,n =

[
xi−1,l,n, [xi,l−1,h]∀h∈Pl,n

]
(5)

Assuming si,l,n(ui,l,n) for all i, l, n are known monotoni-
cally decreasing functions of ui,l,n, we will concentrate on
controlling directly si,l,n (ui,l,n can then be recovered) for
all i, l, n. We can formulate the multi-layer problem as:

min
S

{
J(S) =

∑M

l=1

∑Vl

n=1

∑N

i=1
θi,l,n(si,l,n)

}

s.t. xi,l,n = max
(
X̂i,l,n

)
+ si,l,n, ∀i, l, n;

XM ≤ D, S ≥ 0; x0,l,n = −∞, ∀l, n.

(6)

The functions θi,l,n(·) are assumed to be continuously dif-
ferentiable, strictly convex and monotonically decreasing,
which is consistent with most applications of interest. The
problem in (6) reflects the trade-off between guaranteeing
the dependability requirements expressed through xM ≤
D and the costs θi,l,n(si,l,n) of operating nodes at rates
resulting in processing times given by si,l,n. Intuitively, we
seek the lowest possible processing rates (hence, low cost)
that can guarantee the real-time constraints for all tasks.

3. OPTIMALITY PROPERTIES

3.1 Virtual Deadline Property

The first structural property we identify is one leading to
a partial decoupling of the

∑M
l=1 Vl nodes by introducing

a “virtual” deadline for tasks at all nodes in layers l < M
and show that we can replace (6) by a set of much simpler
problems with a weaker form of coupling among nodes.

We transform (6) into an equivalent problem below by
setting the control variables in S to be the entries of
X and incorporating the dynamics into the objective
function. In what follows, we will omit the subscripts i, l, n
from the function θi,l,n(·) only to simplify the unavoidable
notational burden necessitated by indexing tasks, layers,
and nodes. It will be seen that this causes no loss of
generality, as all subsequent results do not depend on any
differences among cost functions associated with tasks or
nodes, as long as all such functions remain convex and
monotonic. The transformed problem (6) becomes:

min
X

{
J(X) =

M∑

l=1

Vl∑
n=1

N∑

i=1

θ
(
xi,l,n −max(X̂i,l,n)

)}

s.t. XM ≤ D; x0,l,n = −∞, ∀l, n;

xi,l,n −max(X̂i,l,n) ≥ 0, ∀i, l, n.

(7)

Its optimal solution will henceforth be denoted by X∗.

We can see that all nodes are strongly coupled because of
the end-to-end real time constraints. Now, imagine that
there exist virtual deadlines for all tasks at each node
(l, n) for l < M , denoted by ∆l,n = [δi,l,n]∀i, and that
every node can independently optimize its control to meet
these virtual deadlines. Then, the multi-layer problem (7)
would be reduced to

∑M
l=1 Vl single-node problems of the

form studied in Mao et al. [June 2007], where the release
time vector at node (l, n), denoted by Rl,n = [ri,l,n]∀i, can
be written as Rl,n = maxh∈Pl,n

(
Xl−1,h

)
. Define

L
(
Xl,n

∣∣Rl,n

)
=

∑N

i=1
θ
(
xi,l,n −max(xi−1,l,n, ri,l,n)

)
(8)

Let ∆M,n = Dn, n = 1, ..., VM for notational consistency
and formulate a single-node problem for each (l, n):

minXl,n∈Φ(Rl,n,∆l,n) L
(
Xl,n|Rl,n

)
(9)

where the feasible space Φ(Rl,n,∆l,n) is defined as
Φ(Rl,n,∆l,n) =

{
Xl,n|Xl,n ≤ ∆l,n, . . .

xi,l,n −max(xi−1,l,n, ri,l,n) ≥ 0,∀i.} (10)

Thus, in (9) we fix the vector Rl,n with all release times
at node (l, n) and control Xl,n. Since these single-node
problems can be efficiently solved by the CTDA, solving∑M

l=1 Vl separate single-node problems is much easier than
solving the multi-layer problem (7). If we can obtain
the optimal solution of (7) by solving these single-node
problems above, then the complexity of solving (7) will
be greatly reduced. We show that this may be possible
through Theorem 1. (All proofs in this paper are omitted;
full versions can be found in Mao and Cassandras [2007].)
Theorem 1. Let X∗ denote the optimal solution of Prob-
lem (7) and X∗

0 = A. If
R∗l,n = maxh∈Pl,n

(
X∗

l−1,h

)
, ∀i, l, n (11)

∆∗
l,n = X∗

l,n1[l<M ] + Dl1[l=M ], ∀l, n (12)
then X∗

l,n = arg minXl,n∈Φ(R∗
l,n

,∆∗
l,n

) L(Xl,n|R∗l,n),∀l, n.

Based on Theorem 1, it is possible that the whole multi-
layer system reaches optimality when each node reaches
its own optimality by setting virtual deadlines to ∆l,n =
X∗

l,n. However, for arbitrary ∆l,n, the optimality for each
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node does not correspond to the optimality of the whole
multi-layer system. Thus, this decomposition applies only
at the optimal point X∗, making the theorem of little
apparent use. However, we will see that combining this
result with an additional property discussed in the next
section leads to an efficient iterative process which still
reduces the solution of the original problem to solving∑M

l=1 Vl partially coupled single-node problems.

3.2 Q-Chain Property

In this section, we will revisit what we refer to as the
Q-Chain Property, introduced in Mao and Cassandras
[2006], which can decompose the multi-layer problem into
a sequence of partially coupled problems, referred to as
Q-Problems. This property leads to the main result of this
section, Theorem 2.

To fully understand the Q-Chain property, we begin with
the simple single-node problem, a special case of the multi-
layer system with M = 1 and V1 = 1, where X ≡
[xi]i=1,...,N and xi is the departure time of task i:

minX J(X) =
∑N

i=1
θ
(
xi −max(ai, xi−1)

)

s.t. xi −max(ai, xi−1) ≥ 0, i = 1, ..., N ; X ≤ D
(13)

Introduce the Q-Problem for this simple scalar case:
minxi

{
Q(xi|xi−1, xi+1) ≡ θ (xi −max(ai, xi−1))

+ θ (xi+1 −max(ai+1, xi))
}

s.t. xi −max(ai, xi−1) ≥ 0,

xi+1 −max(ai+1, xi) ≥ 0, xi ≤ di.

Observe that in the Q-Problem above xi is controllable
while xi−1 and xi+1 are treated as fixed. There is a total of
N such Q-Problems. Each one is a small piece of the single-
node problem (13) and is only coupled to its two neighbor-
ing Q-Problems, Q(xi−1|xi−2, xi) and Q(xi+1|xi, xi+2).
We refer to all these Q-Problems collectively for i =
1, . . . , N as the “Q-Chain”.

Let DY J(X) denote the directional derivative of J(X)
at X along a feasible direction Y = [yi]i=1,...,N and let
Dyi

Q(xi|xi−1, xi+1) denote the directional derivative of
Q(xi|xi−1, xi+1) at xi along a feasible direction yi. It can
be easily verified that

DY J(X) =
∑N

i=1
Dyi

Q(xi|xi−1, xi+1) (14)

Optimality for a convex programming problem (see Theo-
rem 4.3.2 in Giorgi et al. [2004]) such as (13) means that
for any feasible direction Y at X∗:

DY J(X∗) ≥ 0
Suppose we can obtain solutions to all Q-Problems and
define a vector X∗ = [x∗i ]∀i such that

DyiQ(x∗i |x∗i−1, x
∗
i+1) ≥ 0, for all i = 1, ..., N

Then, combining this condition with (14), we have

DY J(X∗) =
∑N

i=1
Dyi

Q(x∗i |x∗i−1, x
∗
i+1) ≥ 0

which implies that X∗ is also the optimal solution of
the single-node problem (13). Each Q-Problem above is
a scalar problem which is much easier than solving (13).
This relationship provides an opportunity to obtain the
optimal solution of a large-scale problem by solving a set
of much simpler Q-Problems.

Based on this analysis, we see that the key to establishing
the equivalence between the optimality of Q-Problems
and (13) is the summation form in (14) satisfied by the
directional derivative DY J(X). If we can similarly express
the directional derivative of the multi-layer problem (7) as
the summation of the directional derivatives of cost func-
tions for some properly defined Q-Problems, then we can
establish a similar equivalence of the multi-layer problem
and a set of simpler Q-Problems. A direct extension of
the Q-Problem defined above to the multi-stage system
of Fig. 2 (a special case of our multi-layer problem) is to
vary [xi,j ]∀j by fixing [xi−1,j ]∀j and [xi+1,j ]∀j where j is
the stage index. Unfortunately, this can be easily shown
to violate a relationship similar to (14). This failure is due
to the presence of the function max(xi−1,j , xi,j−1) which
introduces a coupling between xi−1,j and xi,j−1 for any
i, j. To satisfy a summation form as in (14), we have to
include both xi−1,j and xi,j−1 as controllable variables
when defining the Q-Problem (see Mao and Cassandras
[2006]). With this motivation in mind, in the multi-layer
case we define X̃i = [xi−l,l,n]∀l,n and, recalling X̂ in (5),

Q
(
X̃i

∣∣ X̃i−1, X̃i+1

)
=

M∑

l=1

Vl∑
n=1

(
θ
(
xi−l,l,n −max(X̂i−l,l,n)

)

+ θ
(
xi−l+1,l,n −max(X̂i−l+1,l,n)

))

We then formulate the following Q-Problem for i =
2, ..., M + N :

minX̃i∈Ψ(X̃i−1,X̃i+1)
Q

(
X̃i

∣∣X̃i−1, X̃i+1

)
(15)

where the feasible set Ψ(X̃i−1, X̃i+1) is defined as

Ψ(X̃i−1, X̃i+1) = {xi−M,M,n ≤ di−M,n, ∀n; . . .

xi−l+1,l,n −max(X̂i−l+1,l,n) ≥ 0, . . .

xi−l,l,n −max(X̂i−l,l,n) ≥ 0, ∀l, n.}
Note that there exist some xi,l,n, di,n and ai,n such that
i < 1 or i > N in the definition of the Q-Problem
(15), which are “dummy variables” because xi,l,n, di,n

and ai,n are only defined for i = 1, ..., N . In order to
eliminate the influence of these dummy variables, we set
di,n = min(a1,1, ..., a1,V1) for i < 1 and let xi,l,n be
arbitrary constants smaller than min(a1,1, ..., a1,V1) for all
i such that i < 1; that is, we force all “dummy” tasks
before task 1 to leave before the smallest arrival time of
task 1 so as to decouple them from 1, ..., N . Similarly, we
set ai,n and xi,l,n to be arbitrary constants larger than
max(dN,1, ..., dN,VM

) for all i > N , that is, we force all
tasks after N to arrive after the largest deadline of task N
so as to decouple them from tasks 1, ..., N .

In what follows, Lemma 1 shows that the definition of the
Q-Problem in (15) satisfies a summation form condition
similar to (14) established for single-node systems. Let
Y = [yi,l,n]∀i,l,n and Ỹi = [yi−l,l,n]∀l,n such that yi,l,n = 0
for any i < 1 or i > N or l < 1.
Lemma 1.

DY J(X) =
∑M+M

i=2
DỸi

Q(X̃i|X̃i−1, X̃i+1).

Lemma 1 can only guarantee local optimality for the multi-
layer problem (7). To establish global optimality, we need
to ensure the convexity of (7) and (15), as shown below.
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Lemma 2. The multi-layer problem (7) is strictly convex
in X and the Q-Problem (15) is strictly convex in X̃i.

Using Lemmas 1 and 2, we can finally obtain the following
necessary and sufficient condition for global optimality.
Theorem 2. Let X∗ = [x∗i,l,n]∀i,l,n and X̃∗

i = [x∗i−l,l,n]∀l,n.
X∗ is the unique global optimum of the multi-layer prob-
lem (7) if and only if
X̃∗

i = arg minX̃i
Qi

(
X̃i

∣∣X̃∗
i−1, X̃

∗
i+1

)
, for i = 2, ..., N + M.

Theorem 2 provides a way to determine the optimality of
the multi-layer problem (7) by solving a set of

∑M
l=1 Vl-

dimensional convex optimization problems. The final re-
maining question is how to exploit this property in order
to efficiently determine X∗.

4. CONVERGENCE ANALYSIS OF SINGLE-NODE
SOLUTION SEQUENCES

As shown in the previous section, we can partially de-
compose the original multi-layer problem into single-node
problems or Q-Problems. Although the optimal solution
X∗ of the multi-layer problem still cannot be directly
obtained by solving these two types of problems, together
they can be utilized to solve the multi-layer problem
through a sequence of single-node problem solutions. We
will describe next how to construct such a sequence and
prove that it monotonically converges to X∗.

Consider a sequence of single-node problems of the form
(9) with solutions defined by
Xk

l,n = arg minXl,n∈Φ(Rk
l,n

,∆k
l,n

) L(Xl,n|Rk
l,n), ∀l, n (16)

This gives rise to a sequence {Xk}, k = 1, 2, . . . with
Xk = [Xk

l,n]∀l,n and Xk
l,n dependent on the virtual deadline

vector ∆k
l,n. Let us initialize this vector so that

∆1
M = D, ∆1

l,n = minh∈Bl,n
∆1

l+1,h, ∀ l < M.

Define ∆̃k+1
i = [δk+1

i−l,l,n]∀l,n to be the solution of the Q-
Problem and let X̃k

i = [xk
i−l,l,n]∀l,n, so that for all i

∆̃k+1
i = arg minX̃i∈Ψ(X̃k

i−1,X̃k
i+1)

Q(X̃i|X̃k
i−1, X̃

k
i+1). (17)

We construct ∆k+1 = [∆k+1
l,n ]∀l,n, where ∆k+1

l,n = [δk+1
i,l,n]∀i is

obtained from [δk+1
i−l,l,n]∀l,n for any given i, l, n. This process

is illustrated in Fig. 4 where we see that Xk is the input
to a collection of Q-Problems and ∆k+1 consists of the
solutions of these problems, which are then input to single-
node problems with virtual deadlines given by ∆k+1.

Single Stage Problem

Q Problem

1k

1Initialize  k
X

Update Virtual Deadline

Single Stage Problem

Q Problem

1k

1Initialize  k
X

Update Virtual Deadline

Fig. 4. Generating the sequence of Xk for k = 1, 2, . . .

In the following, we show that Xk → X∗ as l → ∞.
We begin with some auxiliary results, i.e., Lemma 3
and Lemma 4, which establish monotonicity properties
satisfied by the solutions of the single-node virtual deadline
problems and the solutions of the Q-Problems respectively.

Lemma 3. Let
X1

l,n = arg minXl,n∈Φ(R1
l,n

,∆1
l,n

) L(Xl,n|R1
l,n) (18)

X2
l,n = arg minXl,n∈Φ(R2

l,n
,∆2

l,n
) L(Xl,n|R2

l,n). (19)

If R1
l,n ≤ R2

l,n and ∆1
l,n ≤ ∆2

l,n, then X1
l,n ≤ X2

l,n.
Lemma 4. Let

X̃1
i = arg minX̃i∈Ψ(X̃1

i−1,X̃1
i+1)

Q(X̃i|X̃1
i−1, X̃

1
i+1) (20)

X̃2
i = arg minX̃i∈Ψ(X̃2

i−1,X̃2
i+1)

Q(X̃i|X̃2
i−1, X̃

2
i+1) (21)

If, for any i = 2, . . . , N + M , X̃1
i−1 ≤ X̃2

i−1 and X̃1
i+1 ≤

X̃2
i+1, then X̃1

i ≤ X̃2
i .

Before getting to the main convergence result regarding
the sequence {Xk}, we establish one more monotonicity
property which applies to the sequence {∆k}, k = 1, 2, . . .

Lemma 5. The sequence {∆k}, k = 1, 2, . . ., is monotoni-
cally nonincreasing.
Theorem 3. The sequence {Xk}, k = 1, 2, . . ., is monoton-
ically nonincreasing and limk→∞Xk = X∗.

5. MULTI-LAYER VIRTUAL DEADLINE
ALGORITHM

From above, the Multi-Layer Virtual Deadline Algorithm
(MLVDA) in Table 1 is a direct implementation of the
sequence construction in (16)-(17) also illustrated in Fig.
4. The MLVDA provides a computationally efficient way
to obtain X∗ by exploiting the fact that each single-node
problem in Step 2 can be very efficiently solved with the
CTDA in Mao et al. [June 2007] (or its generalized ver-
sion GCTDA Miao and Cassandras [2006]), while solving
each Q-Problem in Step3, an

∑M
l=1 Vl-dimensional convex

optimization problem, is a relatively simple task. Theorem
3 guarantees that the MLVDA will converge to the global
optimum for our original problem.

Table 1. MLVDA

Step 1: k = 1, ∆1
M = D, ∆1

l,n = minh∈Bl,n
∆1

l+1,h for
l < M ;

Step 2: Xk
l,n = arg minXl,n∈Φ(Rk

l,n
,∆k

l,n
) L(Xl,n|Rk

l,n), ∀l, n;

where Rk
l,n = maxh∈Pl,n

(Xk
l−1,h), ∀l, n;

Step 3: ∆̃k+1
i = arg minX̃i∈Ψ(X̃k

i−1,X̃k
i+1) Q(X̃i|X̃k

i−1, X̃k
i+1),

∀i;
Step 4: if ‖Xk+1 −Xk‖ > ε, then k = k + 1, goto Step 2;
Step 5: X∗ = Xk.

6. NUMERICAL RESULTS

We apply the MLVDA to an assembly system in Fig. 5
(another simple example can also be found in Mao and
Cassandras [2007]) and test the complexity of the MLVDA
in terms of CPU time compared to CVX, an efficient
convex programming solver (Grant et al. [2006]). In these
tests, the MLVDA was programmed using Matlab 7.0 on
an Intel Pentium4 3.06GHz, 1.0 GB RAM machine. We
tested cases where N varied from 400 to 4000 in increments
of 400. We randomly generated 10 samples for each N .
For each case, we recorded the elapsed CPU time, finally
averaging them to obtain the corresponding performance.
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Fig. 5. A three-layer system

Figure 6 shows the average CPU time (in seconds) as
a function of the number of tasks N , where solid line
and dash line represent the results of CVX and MLVDA
respectively. We observe that the MLVDA complexity
scales with N while CVX does not possess this property
because MLVDA only needs to solve

∑M
l=1 Vl-dimensional

(
∑M

l=1 Vl = 6 in this example) convex optimization prob-
lem no matter what N is and the CTDA utilized in
MLVDA also scales with N .
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Fig. 6. MLVDA vs. CVX

7. CONCLUSIONS

We have considered DES consisting of multiple resources
grouped in sequential layers so as to process tasks with
dependability requirements in the form of end-to-end real-
time constraints. The processing times of tasks at different
resources are controlled so as to satisfy these constraints
while also minimizing a given cost function. We have ex-
tended earlier work for the case where each layer contains
a single node and derived structural properties of the so-
lution of the constrained optimization problem of interest.
Based on these properties, we have constructed a sequence
of solutions of simpler problems and proved that this
sequence converges to the global optimum of the original
problem. This has led to an efficient scalable Multi-Layer
Virtual Deadline Algorithm (MLVDA). This approach can
further be extended to a network environment with a
general tree structure, since we can always convert it to
a multi-layer system by introducing appropriate “virtual
nodes”. Future work is targeting problems where the ar-
rival times of tasks are not known in advance, in which case
one must proceed by repeatedly solving the problem as
new arrival information is obtained, by estimating future
arrivals, or by relying on stochastic optimization tech-
niques making use of distributional information regarding
the arrival process.
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