
Improving large-sized PLC programs

verification using abstractions ⋆

V. Gourcuff ∗ O. de Smet ∗ J.-M. Faure ∗

∗ LURPA, ENS de Cachan
61, avenue du Président Wilson
94 235 Cachan cedex - FRANCE

{gourcuff,de smet,faure}@lurpa.ens-cachan.fr

Abstract: This paper proposes a formal representation of logic controllers programs that
is aiming at improving scalability of model-checking techniques, when verifying controllers
extrinsic properties. This representation includes only the states which are meaningful for
properties proof and minimizes the number of variables that feature each state. Comparison
with previously proposed representations, on the basis of three increasing complexity examples,
validates this representation and quantifies its efficiency.

1. INTRODUCTION

In order to improve dependability and safety of critical
automated systems, several industrial standards address
the development of the Programmable Logic Controllers
(PLCs) which are included in these systems. We can quote
in particular the IEC 61508 standard (IEC [2000]) that
deals with functional safety. This standard recommends
the use of formal methods for the programmable devices of
high SIL (Safety Integrated Level) systems. This explains
why the companies which design logical controllers for
critical systems are really interested in these methods, and
especially in formal verification by model-checking.

In parallel, many researches have been undertaken since
several years in order to provide formal timed (Zoubek
[2004], Bel Mokadem et al. [2005]) or not timed (Moon
[1994], Rausch and Krogh [1998], Jiménez-Fraustro and
Rutten [2001], de Smet and Rossi [2002], Huuck [2005])
models of PLC programs, which can be verified with well-
known model-checkers, like UPPAAL (Behrmann et al.
[2004]) or SMV (McMillan [1999]).

However, formal verification is not at all used during the
development of industrial PLC programs up to now (John-
son [2007]). Several reasons can explain this situation:
difficulty for automation engineers to write formal proper-
ties in temporal logic, absence of automatic translators to
formal language in the PLCs development environments,
not understandable counterexamples, and, above all, too
long, and even infinite, verification time, owing to the
classical problem of state space explosion.

The aim of this work is to tackle out (or to limit) state
space explosion by proposing a compact formal representa-
tion of the behavior of PLC programs. This representation
is obtained by using two abstractions: interpretation ab-
straction, which reduces the number of states, and data
abstraction, which lessens the number of the variables

⋆ This work was carried out in the frame of a research project
which was funded by Alstom Power Plant Information and Control
Systems, Engineering tools Department.

which characterize each state. In both cases, the abstract
model will keep all the information that are useful for
verification. The first results of this research, which were
related only to the reduction of the number of states,
have been presented in Gourcuff et al. [2006]. This paper
presents the overall results and shows the benefits of the
two abstractions.

This paper is organized as follows. The next section de-
scribes the context of this work: model-checking of in-
dustrial PLC programs. The principles which are retained
for the construction of the formal model are described in
section 3. This allows, in section 4, to expose the method
of construction of this compact formal model from a PLC
program. The effectiveness of this formal representation is
quantified in section 5 on the basis of three examples.

2. CONTEXT

PLCs are automation components which receive informa-
tion from the process which must be controlled, via their
inputs, and send orders via their outputs. Their software
is composed of an application program and a scheduler
(figure 1). The program is written in one of the languages
specified by the IEC 61131-3 standard (IEC [1993]) and is
controlled by the scheduler that performs a scanning cycle
with three phases: input reading, program treatment and
output updating.

inputs

Input reading

Program treatment

Output updating

Initialization

Program Scheduler

O1 := I1 OR I2;

O2 := I3 AND I4;

IF O1

THEN

O3 := I3 AND NOT(I4);

END_IF;

I1

I2

I3

Outputs

O1

O2

O3

O1

O2

O3

Fig. 1. Structure of a PLC

In the rest of this paper, it will be assumed that the
programs respect the following hypotheses:

Hypothesis 1. no use of unlimited loop (while, repeat, for)
no jump instruction (goto, break, . . . ).

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 5101 10.3182/20080706-5-KR-1001.1584



Hypothesis 2. only boolean variables are used.

Hypothesis 3. only the textual languages of the IEC
61131-3 standard (ST and IL) are authorized.

Hypothesis 4. multiple assignments of the same variable
are possible.

The first hypothesis comes from the good practices of
PLCs programming: unlimited loops can indeed lead to
too long execution times, which do not fit response time
constraints. Only the textual languages are considered in
this paper, for room reasons; however, the programs in
graphical languages (SFC, FBD and LD) can be easily
translated into equivalent ones in textual language (see
for instance Machado et al. [2006] for the translation of
SFC). The last point, although not advised in certain
programming guides, rises from the industrial practice of
re-use of parts of codes.

Model-checking of logical controllers is a formal verifica-
tion that can be integrated in existing PLC program de-
velopment environment, in opposition to formal synthesis
that requires to modify completely the development pro-
cess. Model-checking can be carried out by many methods
presented and classified in Mader [2000], Frey and Litz
[2000]. According to those classifications, this paper is
limited to non-timed model-checking, without modeling of
the controlled process but taking into account the scanning
cycle of the controller.

Unformalized

Extrinsic properties

Model-checker (NuSMV)

Formalization

AG(APB→AF ~horn)

AG(~d1→AF ~lig)

Formal properties

in Temporal Logic

(LTL, CTL, …)

Properties satisfied 

or diagnostic if not satisfied 

PLC program

O1 := I1 OR I2;

IF O1

THEN

O3 := I3 AND NOT(I4);

END_IF;

Next(O1) := next(I1) | next(I2)

Next(O3) := case

next(O1): O3;

1: next(I3) & !next(I4);

esac;                       

Abstractions

Efficient representation

for model-checking

Paper Focus 

Fig. 2. Objective of the work

This work (illustrated figure 2) is aiming at producing
formal models in NuSMV syntax (Cimatti et al. [2002])
which is based on a General Transition System language.
Hence, a formal NuSMV model is defined as a transition
system which allows to compute the future (or next) state
from the current state. In this paper, the current value
(i) of a variable Vj will be noted Vj,i and the future value
(i + 1) will be noted Vj,i+1.

Last, it matters to highlight that focus is put in this paper
only on extrinsic properties proof. Two kinds of properties
of PLC programs may indeed be verified:

Intrinsic properties , such as absence of deadlock, no
blocking state,. . . , which refer to the behavior of the
controller independently of its environment;

Extrinsic properties which refer to the behavior of in-
puts and outputs, e.g. commission of outputs for a given
combination of inputs, always forbidden combination of
outputs, expected sequences of inputs-outputs. . .

As focus is put on extrinsic properties, it becomes possible
to construct compact formal models of PLC programs by
using the two abstraction techniques which are presented
in the next section.

3. ABSTRACTIONS FOR VERIFICATION

3.1 Interpretation abstraction

In the context of formal verification, the overall objective
of this abstraction is to reduce the number of states of
the formal model which represents the system which must
be checked or the number of interactions between states,
by keeping only those which are necessary for proving.
Several techniques, such as cones of influence (Berezin
et al. [1998]), static and dynamic program slicing (Tip
[1994]) (Korel and Laski [1988]) have been proposed to
reach this objective. For all these approaches, state space
reduction is made once the property to prove is given. This
implies that as many abstract formal models as properties
to prove must be constructed.

The novelty of our approach is to build only one abstract
model which will be used for verification of all extrinsic
properties. A detailed description of the method which was
developed to construct this model from a PLC program
will be given in section 4 but an intuitive presentation will
be proposed using the example of Figure 3a).

I1=1, I2=0, I3=1, I4=0,

O1=0, O2=1, O3=0, O4=0,O5=1

Input reading

Output updating

Initialization

I1=0, I2=0, I3=1, I4=0

O1=0

O2=0

I1=1, I2=0, I3=1, I4=0,

O1=1, O2=0, O3=0, O4=1,O5=0

O4=1

O5=0

O1=1

O1 := I1 OR I2;

O2 := I3 AND I4;

IF O1

THEN

O3 := I3 AND NOT(I4);

END_IF;

O4:= RS(R1:= O5, S:= I1)

O5 := O2 AND O4;

O1 := NOT(I2 OR I4);

I1

I2

I3

I4

O1

O2

O3

O4

PLC program

O5

Three-phases scheduler

O1 := I1 OR I2;

O2 := I3 AND I4;

IF O1

THEN

O3 := I3 AND NOT(I4);

END_IF;

O4:= RS(R1:= O5, S:= I1)

O5 := O2 AND O4;

O1 := NOT(I2 OR I4);

I1

I2

I3

I4

O1

O2

O3

O4

PLC program

O5

Three-phases scheduler

b)a)

Fig. 3. PLC program example and one possible execution
trace

As proposed by de Smet and Rossi [2002], each execution
of this ST PLC program can be described as a sequence of
states (Figure 3b)), where one state represents the values
of the variables after the execution of one program line. In
this figure, only the value of the variable that is modified
is displayed for each state. It must be noted that the value
of the input variables can change only during the input-
reading phase.

If only formal verification of extrinsic properties is consid-
ered, it becomes obvious that this representation includes
two categories of states:

relevant states (grayed on figure 3b)), states which are
meaningful for the proof of extrinsic properties (initial-
ization and output updating),

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

5102



not relevant states, which are the other states.

Checking extrinsic properties requires indeed considering
the values of the input/output variables only at the end
of the scanning cycle, because this kind of properties
focuses on the real values of input and output signals and
not on their software representation. The sequentiality of
calculation, taken into account in work of Zoubek [2004],
de Smet and Rossi [2002], Huuck [2005] can be abstracted
in the case of verification of extrinsic properties.

Hence, the principle of the interpretation abstraction that
will be adopted in what follows is to represent each
scanning cycle by one and only one state which is the
relevant state of this cycle. Not relevant (or intermediate)
states will not appear in the abstract formal model and
one PLC cycle will be treated in one computation step
of the model-checker. It can be noted that Moon [1994]
mentions the usefulness of this principle for a subset of
the Ladder Diagram language (only relays and contacts
were considered), but unfortunately does not propose any
sound method to apply this principle so as to construct
compact representations of PLC programs. This gap will
be filled in Section 4.

3.2 Data Abstraction

This abstraction is aiming at decreasing the number of
variables which characterize each state of the formal
model. Clarke et al. [1994] describes several data abstrac-
tions which can be used for reducing the size of formal
models to be checked. Several of them focus on abstraction
of integer data and then are out of scope of this paper.

For PLC programs with only logic variables, it will be
proposed a novel data abstraction which relies on identifi-
cation of two kinds of variables:

• variables whose current and future values must be
kept in the formal model;

• variables whose current value is not necessary.

The variables of the first category will be named R-
variables because they are involved in the Recurrence
statements that define the transition system. They are
formally defined as follows.

Definition 5. A variable Vi of a model M is a R-variable
if and only if it respects the following property:

∃Vj ∈ M, Vj,k+1 = f(. . . , Vi,k, . . .)

where f is a logic function whose one of the arguments is
Vi,k.

The variables of the second category will be named NR-
variables because they are N ot involved in Recurrence
statements that define the transition system.

According to definition 5, we can note that the variables
O1 and O2 of the example are NR-variables. At each cycle,
the values of these two variables are computed from the
values of the inputs at the beginning of this cycle (first two
lines). The condition in the IF structure refers to the value
of O1 but, as O1 was previously assigned, only the values
of the two inputs I1 and I2 for this cycle are necessary
to compute this condition, and not the value of O1 at
the previous cycle; then O1 will not be involved in the

formal statement which will define O3. In a similar way,
only the values of the two inputs I3 and I4 for this cycle
are necessary to compute the value of O5 (eighth line), and
not the value of O2 at the previous cycle; therefore O2 will
not be involved in the formal statement which will define
O5. To sum up, only the future value of these two variables
O1 and O2 can be kept in the formal model.

On the other hand, two values of each one of variables O3,
O4 and O5 must appear in the formal model because these
three variables are R-variables. Analysis of the example
and in particular of the conditional structure and the
assignment of O3 shows indeed that:

• O3,k is mandatory to compute O3,k+1 (if the condition
in the IF structure is false, O3,k is assigned to O3,k+1);

• O4,k is mandatory to compute O4,k+1 (O4 is the
output of a reset dominant memory (RS) function
block and if the two arguments of this block are false,
O4,k is assigned to O4,k+1);

• O5,k is mandatory to compute O4,k+1 (O5 is an argu-
ment of the RS function block and, as the assignment
of O5 stands after the assignment of O4, O4,k+1 is
computed from O5,k).

This discussion leads to propose the following practical
definition, which permits to find out the R-variables when
analyzing a PLC program.

Definition 6. A variable is a R-variable if it is used before
being assigned, e.g. O5 in the example, or if it is an
argument of its own assignment, e.g. O3 and O4.

The two abstractions which have been proposed (relevant
states and R-variables) permit an efficient representation
of PLC programs that keeps all the necessary informa-
tion for verification of extrinsic properties. The following
section presents the method which was developed, on the
basis of these two abstractions, to obtain automatically
from a PLC program a formal model which can be checked.

4. FORMAL MODEL CONSTRUCTION

PLC program

Static dependencies

Analysis of the static dependencies

Model generationModel generation

NuSMV Model

List of R-variables 

and temporal dependencies

Temporal dependency

relations construction

Fig. 4. Translation method

During this research, a software tool was developed to
translate automatically PLC programs into compact for-
mal models in the syntax of the model-checker. The al-
gorithms which underlie this translation tool are exposed
in this section. It is reminded that the selected model-
checker is NuSMV; hence the translation tool will have to
yield a set of recurrence equations that models a transition
system. Figure 4 shows an overview of the translation

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

5103



method; its three steps are detailed in the following sub-
sections.

4.1 Analysis of the static dependencies

This analysis is aimed at obtaining, from the PLC pro-
gram, the static dependency relations between the vari-
ables. Each static dependency relation means that a vari-
able is computed from other ones. Those relations are
ranked according to the execution order of the program
(from top to bottom). Figure 5a) presents the static de-
pendency relations of the example of the figure 3a). On
this figure, an arrow from a variable X to a variable Y
indicates that Y depends on X, i.e. that X is present in
the expression of Y.

I1 O1

I2

I3 O2

I4

O1

O3

I4

I3

O3

O4I1

O4

O5

O2 O5

O4

I2 O1

I4

I1,i+1 O1

I2,i+1

I3,i+1 O2,i+1

I4,i+1

O3,i+1

I4,i+1

I3,i+1

O3,i

O4,i+1I1,i+1

O4,i

O5,i

I3,i+1

O5,i+1

O4,i+1

I2,i+1 O1,i+1

I4,i+1

I1,i+1

I2,i+1

I4,i+1

a) b)

I1 O1

I2

I3 O2

I4

O1

O3

I4

I3

O3

O4I1

O4

O5

O2 O5

O4

I2 O1

I4

I1 O1

I2

I3 O2

I4

O1

O3

I4

I3

O3

O4I1

O4

O5

O2 O5

O4

I2 O1

I4

I1,i+1 O1

I2,i+1

I3,i+1 O2,i+1

I4,i+1

O3,i+1

I4,i+1

I3,i+1

O3,i

O4,i+1I1,i+1

O4,i

O5,i

I3,i+1

O5,i+1

O4,i+1

I2,i+1 O1,i+1

I4,i+1

I1,i+1

I2,i+1

I4,i+1

a) b)

Fig. 5. a) Static and b) temporal dependency relations for
the program figure 3a)

Industrial PLC programs often include function blocks
(FB), like the RS function block in the example. Each
one of the output variables of a given FB may depend
not only on the arguments of this FB but also on its
internal variables. The static dependency relations of the
FB output variables shall account these two types of vari-
ables (arguments and internal variables). This implies that
detailed models of the FBs which are encompassed in the
programs would be developed prior to static dependency
relations construction. During this study, all the standard
IEC 61131-3 FBs were modeled.

4.2 Temporal dependency relations construction

At the beginning of this step, R-variables and NR-variables
are detected using definition 6. Then, an unordered set
of temporal dependency relations is obtained from the
ordered set of static dependency relations. Each temporal
dependency relation is derived from one static dependency
relation by replacing the assigned output variable and
the input variables by their future values; the value of
an output variable at cycle j + 1 is computed indeed

only from values of input variables at this same cycle.
The value of the output variables that are used to define
other output variables are determined by algorithm 1.
This algorithm replaces each R-variable which an output
depends on by either its current value, or its future
value, or its later dependency relation according to its
previous assignment. NR-variables are replaced by their
later dependency relation.

foreach static dependency relation of the variable Ok do

foreach variables Oj which Ok depends on do

if Oj is a R-variable then

if its previous assignment :

case does not exist
Replace Oj by its current value Oj,i

case was the last one
Replace Oj by its future value Oj,i+1

otherwise
Replace Oj by its later dependency relation

else if Oj is a NR-variable then
Replace Oj by its later dependency relation

Algorithm 1. Transform Dependencies(static dependencies) →
temporal dependencies

Last, useless dependency relations, i.e. relations that come
from assignments which are superseded by other ones dur-
ing the program execution (case of multiple assignments of
the same variable), are removed from the set of temporal
dependency relations.

Figure 5b) shows the result of this step for the example
figure 3a). It can be noted that the first dependency re-
lation of O1 allows constructing the temporal dependency
relation of O3, but is not kept at the end; only the last
dependency relation of O1 is preserved. This figure shows
also that O3, O4, O5, R-variables (grayed on figure 5b))
according to definition 6, respect definition 5: their current
values are used to compute future values of variables.

4.3 Model generation

Once the final set of temporal dependency relations ob-
tained, the NuSMV model that represents, in an abstract
fashion, the PLC program is constructed as sketched in
what follows.

• Each PLC program statement (assignment or condi-
tional structure) that defines a R-variable gives rise
to one NuSMV assignment. This later assignment
describes formally the behavior of the statement and
includes variables values that are given by the tem-
poral dependency relation that corresponds to the
statement.

• The statements that define NR-variables are not
translated into NuSMV assignments. They are put
aside as expressions to be used when a property to
prove contains these variables. Hence NR-variables
will be replaced by their expressions in properties.

• Function-blocks calls are replaced by instances of
formal generic models of the corresponding FBs.
These generic models are stored in a FBs library
which was filled in beforehand. For instance, the
generic form of the RS function block, with two input

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

5104



variables S and R1 and one output variable Q, is:
Next(Q) :=!R1 & (S | Q);.

Figure 6 presents the result of the translation method for
the example. Due to limited place, only the core of the
model, the output definition, is presented in this figure.
Variables declarations and initialization are not given. It
matters to underline the reduced size (3 statements) of the
NuSMV formal model.

NuSMV model of the PLC program:
Next(O3) :=case

Next(I1) | Next(I2) : Next(I3) & !(Next(I4));
!(Next(I1) | Next(I2)) : O3;

esac;
Next(O4) :=!Next(I1) & (O5 | O4)
Next(O5) := Next(I3) & Next(I4) & Next(O4);

Expressions to be used for properties:
O2 := Next(I3) & Next(I4);
O1 :=!(Next(I2) | Next(I4));

Fig. 6. Formal model of the example

5. REPRESENTATION EFFECTIVENESS
EVALUATION

This section presents the results of three case studies whose
overall objective is to quantify the effectiveness of the pro-
posed representation and evaluate its benefits for formal
verification of large-sized PLC programs. The first two case
studies are aiming at comparing the representation which
is described in this paper with those proposed in de Smet
and Rossi [2002] (without abstraction) and Gourcuff et al.
[2006] (with only interpretation abstraction), according to
several criteria (state space size, time required to prove
properties, . . . ). The last case study focuses on the appli-
cability of this representation to real industrial programs.

5.1 First case study

This study is based on the simple example of figure 3a).
From the example, three formal models were automatically
constructed by means of a software tool which used either
no abstraction, or only the interpretation abstraction or
the two abstractions. A behavior-equivalence analysis was
performed between these three models and was positive:
whatever the inputs sequence, the three models emit the
same outputs sequence.

Representation given in
Reachable

states
Modeling
variables

System
diameter

de Smet and Rossi [2002]
314 out
of 14336

7 22

Gourcuff et al. [2006]
21 out
of 512

5 3

This paper
20 out
of 128

3 3

Table 1. Comparison of three representations
for the example of figure 3a)

The following features of the three models are displayed
in table 1:

Reachable states: I out of J means that I states are
really reachable among the J possible ones (combination
of all the possible states of the variables).

Modeling variables: number of variables (except in-
puts) that the model-checker must memorize at each
evolution. As seen in section 4, these variables are the
R-variables when using data abstraction.

System diameter: number of evolutions necessary to
explore the whole reachable state space. This feature
impacts the maximum size of counterexamples.

These results show clearly that interpretation abstraction
reduces significantly the size of the state space, that is
roughly divided by 15, and the system diameter. This
abstraction allows also slightly lessening the number of
modeling variables because the variables which modeled
the execution of the program in de Smet and Rossi [2002]
are no more helpful.

As it could be easily forecast, data abstraction reduces the
number of modeling variables; only the three R-variables
are necessary, as explained above. Reducing the number of
modeling variables leads to a (weak for this toy example)
reduction of the number of reachable states. The number
of initial states decreases indeed when the number of
modeling variables is reduced.

Last, it can be pinpointed that the two abstractions will
allow shorter counterexamples (the maximum size of a
counterexample is related to the system diameter) that will
ease analysis in case of negative proof. This is an indirect,
but positive, consequence of states and modeling variables
numbers reduction.

5.2 Second case study

The objective of this second case study is to compare
the time and memory performances of the three repre-
sentations when checking safety and liveness properties.
This experimentation is based on the system presented
and checked in de Smet and Rossi [2002]: a controller
of Fischertechnik system. The same proofs were made by
using the model-checker NuSMV, version 2.3.1, on a PC
P4 3.2 GHz, with 1 GB of RAM, under Windows XP.

Representation given in
liveness

properties
safety properties

de Smet and Rossi [2002] 5h / 526MB 20min / 200MB

Gourcuff et al. [2006] 2s / 8MB 2s / 8MB

This paper 0.3s / 8MB 0.3s / 8MB

Table 2. Time and memory required for
properties verification

The benefits of the two abstractions are significant. In-
terpretation abstraction alone allows reducing the dura-
tion of a proof by a factor 4000 to 60000 and the nec-
essary memory size by a factor 40 to 60, compared to
the representation of de Smet and Rossi [2002]. As the
minimum memory size to run NuSMV in the conditions of
this experiment (8 MB) is already reached with only the
interpretation abstraction, the benefit of data abstraction
for memory size reduction cannot be shown; however this
later abstraction still improves the time performances by
one order of magnitude.

5.3 Third case study

This third case study focuses on the real control system
of a power plant which includes 175 networked PLCs. The

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

5105



main objective of this experimentation was to determine,
for each one of these PLCs, whether the model-checker was
able to compute the size of the reachable state space of the
formal model obtained by using the translation method of
section 4. If it is possible to compute the whole reachable
state space, then it is also possible to check most of
the properties on the formal model without encountering
combinatory explosion. Table 3 synthesizes the results.

Number of inputs max: 50 min: 2 sum: 2317

Number of outputs max: 47 min: 1 sum: 1822

Number of R-variables max: 18 min: 1 sum: 238

Size of the reachable state space
max: 8.1028 min: 105

mean: 5.1026

Whole state space exploration
time

1 sec for 175 programs

Table 3. Statistics obtained for a set of 175
industrial PLC programs

The first two lines define the industrial constraints by
giving the maximum, minimum and overall number of
input and output variables of the programs. The third
line shows that data abstraction divides the number of
modeling variables of the formal model roughly by 8 (only
238 R-variables are necessary compared to the 1822 output
variables that would require a formal model which would
not use this abstraction). The maximum, minimum and
mean size of the state spaces are given at the fourth line;
it matters to underline that the model-checker was able
to explore all the formal models obtained from the 175
PLCs, that is not possible when no abstraction is used.
Last, the time to explore the whole set of these state spaces
is displayed at the fifth line; this small value leads to plan
short verification time for these industrial programs.

Those three case studies show clearly the effectiveness of
the representation based on the two abstractions, com-
pared to previous ones, and its usefulness when dealing
with real cases.

6. CONCLUSION

Formal verification of PLC programs can strongly con-
tribute to improve safety and dependability of automated
systems. However, transferring these formal methods to
the industrial world requires methods that deliver formal
models whose size is small enough to avoid combina-
tory explosion and permit verification in reasonable times,
when large-sized programs are dealt with.

This paper proposes such a method for verification of
extrinsic properties, a major concern in industry. This
method is based on interpretation and data abstractions
and provides models which contain all the useful informa-
tion for verification. The efficiency of the proposed repre-
sentation of PLC programs, compared to previous ones,
has been assessed and the ability to translate industrial
programs into compact formal models has been shown.

On-going works address formal verification of industrial
controllers that do not only perform logic control tasks.
This will lead to investigate abstraction techniques for
hybrid systems.

REFERENCES

IEC Standard 61131-3 : Programmable controllers - Part
3, 1993.

IEC Standard 61508 : Functional safety of elec-
trical/electronic/programmable electronic safety-related
systems, 2000.

G. Behrmann, A. David, and K.G. Larsen. A tutorial on
uppaal. LNCS, 3185:200–236, September 2004.

H. Bel Mokadem, B. Bérard, V. Gourcuff, J.-M. Roussel,
and O. de Smet. Verification of a timed multitask system
with Uppaal. In ETFA’05, pages 347–354, Catania,
Italy, September 2005.

S. Berezin, S. Campos, and E. M. Clarke. Compositional
reasoning in model checking. LNCS, 1536:81–102, 1998.

A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia,
M. Pistore, M. Roveri, R. Sebastiani, and A. Tacchella.
NuSMV Version 2: An OpenSource Tool for Symbolic
Model Checking. In Proc. CAV 2002, volume 2004 of
LNCS, Copenhagen, Denmark, July 2002. Springer.

E.M. Clarke, O. Grumberg, and D.E. Long. Model check-
ing and abstraction. ACM Transactions on Program-
ming Languages and Systems (TOPLAS), 16(5):1512–
1542, 1994.

O. de Smet and O. Rossi. Verification of a controller for
a flexible manufacturing line written in ladder diagram
via model-checking. In ACC’02, pages 4147–4152, An-
chorage (USA), May 2002.

G. Frey and L. Litz. Formal methods in PLC program-
ming. In Proceedings of the IEEE SMC 2000, pages
2431–2436, October 2000.

V. Gourcuff, O. de Smet, and J-M. Faure. Efficient
representation for formal verification of PLC programs.
In WODES’06, pages 182–187, July 2006.

R. Huuck. Semantics and Analysis of Instruction List
Programs. In SFEDL’2004, pages 3–18, January 2005.

F. Jiménez-Fraustro and É. Rutten. A Synchronous Model
of IEC 61131 PLC Languages in SIGNAL. In ECRTS,
pages 135–142, 2001.

T.L. Johnson. Improving automation software depend-
ability: A role for formal methods? Control Engineering
Practice, 15(11):1403–1415, 2007.

B. Korel and J. Laski. Dynamic program slicing. Infor-
mation Processing Letters, 29(3):155–163, 1988.

J. Machado, B. Denis, J.-J. Lesage, J.-M. Faure, and J. C.
L. Ferreira Da Silva. Logic controllers dependability
verification using a plant model. In DESDes’06, pages
37–42, Rydzyna (Poland), September 2006.

A. Mader. A classification of PLC models and applications.
In WODES’2000, pages 239–247, August 21-23 2000.

K. L. McMillan. The SMV Language. Cadence Berkeley
Labs, 1999.

I. Moon. Modeling programmable logic controllers for logic
verification. In Control Systems Magazine, IEEE, pages
53–59. IEEE Comp. Soc. Press, 1994.

M. Rausch and B. Krogh. Formal verification of PLC
programs. In American Control Conference, pages 234–
238, PA, USA, June 1998.

F. Tip. A Survey of Program Slicing Techniques. Centrum
voor Wiskunde en Informatica, 1994.

B. Zoubek. Automatic verification of temporal and timed
properties of control programs. PhD thesis, University
of Birmingham, 2004.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

5106


