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Abstract: In this paper we aim at polynomial synthesis of a two-degree-of-freedom (2DoF)
controller with integral action for a coupled tank system using the Polynomial Toolbox. The main
advantage of the proposed 2DoF controller is in computational savings compared to classical
feedback design. It will be shown that the procedure leads to solving of two spectral factorizations
where the closed loop poles are assigned with respect to given optimization weights. This
makes the controller easy to tune. Moreover, experimental results show that desired tracking
performance is fulfilled.
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1. INTRODUCTION

Linear techniques are undoubtedly well-established con-
trol approaches with strong theoretical background. Their
application is not only limited to linear systems but they
can be extended to nonlinear systems as well. The most
natural way of such extension is the linearization of the
nonlinear system around the operating point. If the model
is obtained in this way, then the validity of the linear model
is limited to some neighborhood of the operating point and
the control policy has to take this into account. There are
also another important aspects to be considered. Possible
external disturbances as well as measurement noise might
cause unwanted performance loss. To be able to cope
with these issues, traditionally, the controller must provide
integral action.

One method of including integral action is to incorporate
derivatives of control variables into the objective func-
tional of state optimal control problem instead of standard
control variables. This approach has been investigated by
Dostál et al. [1994] and it leads to an optimal control
synthesis where the augmented state vector contains 2n
elements. Another option of embedding the integration
property to control is to include integrators only on the
states of interest. By this way the dimension of the aug-
mented state becomes n + nd where nd is the number
of desired integrators. Since the dimension of the aug-
mented state is reduced, this approach offers potential
computational savings. Moreover, as pointed by Kučera
[1981], if the polynomial algebra is applied, the approx-
imate total amount of operations is 30(n + nd)

3 which
contrasts to 75(n + nd)

3 operations estimated for solving
Riccati equations. Therefore, the main result of this paper
is a polynomial design of computationally effective state
optimal controller with observer which includes integral
action.

In this paper we aim at 2DoF controller design and its
implementation to a coupled tank system, which exhibits
nonlinear behavior. Several publications are devoted to
this narrow area, more specifically contributed by Grimble
[2002, 1988], where theoretical background is explained in
more details and close relations with H2 optimization are
given.

Whilst the theory of polynomial 2DoF control is suf-
ficiently covered in the literature, there is still lack of
practical implementations. Some examples include adap-
tive polynomial control [Bobál et al., 2004, Kubalč́ık and
Bobál, 2002, Kubalč́ık et al., 2005], polynomial control of
time-delay systems [Dostál et al., 2002] or H2 control [Mik-
leš et al., 2005]. In this contribution we implement the
2DoF controller with integral action in Matlab’s Real
Time Workshop (RTW) environment and furthermore, the
overall procedure will be tested on a laboratory equipment
consisting of a quadruple coupled hydraulic tank system.

The paper has the following structure. In the second sec-
tion a description of the physical setup for the pneumatic-
hydraulic system is given and moreover, modeling issues
are discussed. The section three focuses on polynomial syn-
thesis of the 2DoF controller with integral action. Finally,
the controller synthesis using Polynomial Toolbox and its
on-line implementation using the Real Time Workshop is
given in section four and experimental results are pre-
sented in the section five.

2. DESCRIPTION OF THE PLANT

2.1 Physical setup

The plant consist of interconnected four water tanks, one
storage reservoir and two pumps. A front view of the plant
is depicted in Fig.1 whereas the sketch of the system is
illustrated in Fig. 2. In between the water tanks there is
an air tank with orifice at the bottom. It represents the
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Figure 1. A front view of the quadruple tank system.

Figure 2. Scheme of the coupled tank system.

air-path between the tanks because the air is pushed out
of this tank if the levels increase. Manipulating signal is a
voltage supplied to the left and right pump located at the
bottom tank which serves as a storage reservoir. Measured
signals are the levels of the water in left lower and right
lower tanks, provided by a differential-pressure indicator.
Upper tanks do not have a measurement sensor. Water can
be pumped only into a tank located just above that pump
since there is no water connection between the left and
right side. Because air spaces above the water levels are
connected, this influences the dynamical behavior of the
system. If required, this influence can be totally turned off
by closing a valve in the air-path.

More detailed construction issues, as well as insights of the
signal properties are addressed in Macháček et al. [2004].
Practically the user communicates with the plant via a
personal computer with installed Matlab’s RTW and an
input/output (I/O) card. Signals from the I/O card are
transferred to a control unit of the plant which has two
inputs and two outputs.

2.2 Nonlinear model of the plant

General model of the quadruple tank system as depicted in
Fig. 2 can be derived from the mass and energy conserva-
tion laws. In the equations we will refer to the locations of
the respective tanks using the following subscript notation:

LU = left upper RU = right upper

LL = left lower RL = right lower.

The mathematical model was inferred by Macháček et al.
[2005] and we will use only the final version. We denote by
h the level of the liquid in the tank, hmax is the maximum
allowed tank level, p corresponds to the pressure above

Figure 3. The plant is identified in a continuous time do-
main as a linear system with two inputs two outputs.

the level of the liquid, pA is the ambient pressure, ρ the
mass density of the liquid, TA the ambient temperature,
S the cross-section area of the tank, S0 the cross-section
area of the air orifice, V0 the volume of the air tank, g the
acceleration of gravity, k the discharge coefficient, k0 air
discharge coefficient and R is the gas constant.

The time derivatives are given as

ḣLU =−
kL

ρS

√

hLUρg + pH − pL +
1

ρS
QL

ḣLL =
kL

ρS

√

hLUρg + pH − pL −
kL

ρS

√

hLLρg + pL − pA

ḣRU =−
kR

ρS

√

hRUρg + pH − pL +
1

ρS
QR

ḣLL =
kR

ρS

√

hRUρg + pH − pL −
kR

ρS

√

hRLρg + pL − pA

ṗH =
pHS

ψH

(

ḣLU + ḣRU

)

−
k0S0RTA(pH − pA)

ψH

ṗL =
pLS

ψL

(

ḣLL + ḣRL

)

−
k0S0RTA(pL − pA)

ψL

where

ψH = 2Shmax − ShLU − ShRU + V0

ψL = 2Shmax − ShLL − ShRL + V0

The manipulating variables QR and QL are the liquid flows
generated by the pumps and they depend polynomially
on the input voltage signals uR and uL. Measured signals
are the levels of the liquid in the bottom tanks and
their conversion to voltage outputs yL and yR is an
affine function. To avoid possible numerical problems,
input variables uL, uR and output variables yL, yR are
normalized in the scale [0, 10] V.

2.3 Linearized model of the plant

Since the full model of the plant exhibits several non-
linearities and some parameters of the plant are tedious
to obtain, we use an approximate linearized model by
employing continuous identification. Here the structure
and dimensions of nonlinear model will be exploited as
a hot start for recursive least square method Kulhavý and
Kárný [1984]. An effective tool for performing continuous
identification is IDTOOL Toolbox [Čirka et al., 2006] for
Matlab which implements an improved version of the LD-
DIF algorithm, which was originally proposed by Kulhavý
and Kárný [1984].

The plant is considered as a two input two output (TITO)
system, as illustrated in Fig. 3, which can be modeled by
the following transfer function

G(s) =

[

G1(s) G2(s)
G3(s) G4(s)

]

. (1)
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Figure 4. Comparison between the linearized model and
the set of measurement data.

The identification is performed around the operating point

us
L = 4V, us

R = 4V, ys
L = 5.05V, ys

R = 5.16V (2)

which corresponds to the water levels approximately in the
middle. Consequently, by defining deviation variables as

u =

(

uL − us
L

uR − us
R

)

, y =

(

yL − ys
L

yR − ys
R

)

(3)

the linearized model obtained by IDTOOL can be ex-
pressed using the partial transfer functions as

G1(s) =
1.9

2.7s3 + 62.8s2 + 73.9s + 1
(4a)

G2(s) =
1.2s − 0.31

2.1s3 + 16.3s2 + 19.8s + 1
(4b)

G3(s) =
0.66s − 0.22

1.6s3 + 12.3s2 + 11.7s + 1
(4c)

G4(s) =
1.77

2.2s3 + 33.0s2 + 104.0s + 1
(4d)

2.4 Model validation

In order to validate the effect of linearization we compared
the differences between the linearized model and the collec-
tion of measurements data. As it can be seen from Fig. 4,
the approximated linear model posses similar dynamics as
the original nonlinear plant but the steady state gain is
not exactly captured. This is the main drawback of the
linearization approach because the approximated model
is valid only near the selected operating point. However,
the controller must provide satisfactory tracking properties
despite these inaccuracies. To attain this goal we embed
an integrator in the closed loop and in the next section the
2DoF controller will be derived.

3. 2DOF CONTROL WITH INTEGRAL ACTION

3.1 Derivation of the 2DoF controller

In this section, the derivation of the 2DoF controller is
based on the idea of the state-space solutions to the
H2 problem, originally published by Doyle et al. [1989]
and the polynomial matrix solutions, given by Hunt et al.
[1991]. It was shown by Kwakernaak [2000] that under mild
assumptions the H2 problem can be reduced to an LQG
setup. Here we formulate similar assumptions under which
the problem can be solved by two spectral factorizations.

We assume the input-state-output model of the plant,
which corresponds to the real plant depicted in Fig.2, of
the form

ẋ(t) = Ax(t) + B1v(t) + Bu(t)

z(t) = C1x(t) + D11v(t) + D12u(t) (5)

y(t) = Cx(t) + D21v(t) + D22u(t)

where A, B, B1, C, C1, D12, D21 are matrices of appropri-
ate dimensions and x(t) is the state vector, u(t) denotes a
vector of manipulated inputs, v(t) is an exogenous input
signal, not manipulated by the controller, y(t) denotes
the measurable outputs, and z(t) corresponds to vector
of performance variables. Since the controller must provide
integral action, we embed this property by augmenting the
state space model by adding new states

˙̄x = w − y (6)

which add an integrator on the output errors. Here, w
denotes the reference (setpoint) signal. By doing this, the
augmented state becomes x̃ = [x, x̄]T and the general
input-state-output model of the plant is given by

˙̃x(t) = Ãx̃(t) + B̃1v(t) + B̃u(t),

z̃(t) = C̃1x(t) + D̃11v(t) + D̃12u(t), (7)

y(t) = C̃x̃(t) + D̃21v(t) + D̃22u(t).

where the matrices are given in a compact form

Ã B̃1 B̃

C̃1 D̃11 D̃12

C̃ D̃21 D̃22

=

A 0 B1 0 0 B
−C 0 0 0 0 0
Q0.5 0 0 0 0 0

0 Q̄0.5 0 0 0 0
0 0 0 0 0 R0.5

C 0 0 0 D̄21 0

(8)

Here, Q, Q̄, and R are performance tuning matrices which
correspond to the vector of performance variables z̃(t)
in (7). The 2DoF design procedure then requires following
assumptions to hold:

(A1) The system ˙̃x(t) = Ãx̃(t) + B̃ũ(t) is stabilizable.
(A2) The system ẋ(t) = Ax(t) + Bu(t), z(t) = C1x(t) is

detectable.
(A3) The system ẋ(t) = Ax(t) + B1v(t), y(t) = Cx(t) is

stabilizable and detectable.
(A4) The matrix D̃T

12
D̃12 is nonsingular.

(A5) The matrix D21D
T
21

is nonsingular.

(A6) The equalities D̃T
12

C1 = 0 and B1D
T
21

= 0 are
satisfied.

Define matrix transfer functions as

(sI − Ã)−1B̃ = B̃Rs(s)Ã
−1

R (s) (9)

where ÃR, B̃Rs are right coprime polynomial matrices of
Ã, B̃, with ÃR being column reduced, and

C(sI − A)−1 = A−1

L (s)BLs(s) (10)

with AL, BLs being left coprime polynomial matrices of C,
A where AL is row reduced. Then the following theorem
gives expressions for the 2DoF controller.

Theorem 1. If assumptions A1–A6 are met, the 2DoF
control law as depicted in Fig. 5 exists and is given by

u = Rb(s)y + Rf (s)w (11)

where the feedback and feedforward transfer functions can
be expressed, respectively, as
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Figure 5. 2DoF control configuration.

Rb(s) =−K̃(sI − Ãk)−1Bb (12a)

Rf (s) =−K̃(sI − Ãk)−1Bf . (12b)

where the matrices in equations (12) are constructed as

K̃ =
[

K K̄
]

, Ãk =

[

A − LC − BK −BK̄
0 0

]

,

Bb =

[

L
−I

]

, Bf =

[

0
I

]

.

The matrix K̃ is determined via

K̃ = X̃−1

L ỸL, (13)

and X̃L, ỸL are a solution of the Diophantine equation

X̃LÃR(s) + ỸLB̃Rs(s) = F̃R(s) (14)

where the term F̃R(s) is obtained by solving the following
spectral factorization

F̃T
R (−s)F̃R(s) =ÃT

R(−s)(D̃12D̃
T
12

)ÃR(s)+

B̃T
Rs(−s)(C̃T

1
C̃1)B̃Rs(s). (15)

Subsequently, K̄ is determined by decomposing the matrix
K̃ as

K̃ = [K K̄] (16)

such that the parts K, K̄ correspond to x and x̄ respec-
tively. The observer gain L is obtained from

L = YRX−1

R (17)

where XR, YR are a solution of the Diophantine equation

AL(s)XR + BLsYR = OL(s). (18)

and the spectral factor OL(s) is given as a solution of

OL(s)OT
L(−s) =AL(s)(D21D

T
21

)AT
L(−s)+

BLs(s)(B1B
T
1

)BT
Ls(−s). (19)

Proof : Since assumption A1 is satisfied and by now w = 0
then there exist a control law

u = −K̃x̃ (20)

which stabilizes the closed loop system

˙̃x = (Ã − B̃K̃)x̃
(

ẋ
˙̄x

)

=

(

A − BK −BK̄
−C 0

)(

x
x̄

)

(21)

and minimizes the LQ criterium

I =

∫

∞

0

(x̃T C̃T
1

C̃1x̃ + uT D̃12D̃
T
12

u) dt (22)

where A6 eliminates the cross product and A4 underlines
feasibility. Following Kučera [1981] and Mikleš and Fikar

[2007] the matrix K̃ can be obtained from (13), (14) and
leads to spectral factorization (15) which places the closed
loop poles optimally in the left half plane of the imaginary

axis. Decomposing the matrix K̃ as in (16) and considering
w 6= 0 from the closed loop system (21) we obtain the
relation between plant outputs and reference signal w
given as

(

ẋ
˙̄x

)

=

(

A − BK −BK̄
−C 0

) (

x
x̄

)

+

(

0
I

)

w (23a)

y = (C 0)

(

x
x̄

)

(23b)

with gain equal the identity matrix. Hence, the plant
outputs will always reach their respective setpoints such
that the transition energy given by (22) is minimized.
Because a perfect state-feedback (20) is not possible, a
Kalman filter is employed

˙̂x = Ax̂ + Bu + L(y − Cx̂). (24)

and assumptions A2, A3, and A5 presume that such
matrix L exists. Consequently, as described in Kučera
[1981] and Mikleš and Fikar [2007] the observer gain L
can be determined from (17), (18) which leads to spectral
factorization (19). The output feedback law can be now
expressed as

u = −Kx̂ − K̄x̄ (25)

and by plugging (25) into (24) we obtain

˙̂x = (A − LC − BK)x̂ − BK̄x̄ + Ly. (26)

Due to the definition of x̄ in (6), the closed loop sys-
tem (26) can be written in the form
(

˙̂x
˙̄x

)

=

(

A − LC − BK −BK̄
0 0

)(

x̂
x̄

)

+

(

L
−I

)

y +

(

0
I

)

w

(27)
which can be further simplified to

ξ̇ = Akξ + Bby + Bfw (28a)

u =−K̃ξ (28b)

where ξ = [x̂, x̄]T and (12) are the transfer functions of
the system (28). 2

Remark 2. The augmentation form (7) determines the
number of integration terms to be included in the 2DoF
controller. By this way the dimension of the augmented
state becomes n + ny, where n is the dimension of the
state x and ny usually stands for the number of mea-
surable outputs, but it can be modified to only include
outputs of interest. Therefore, the proposed procedure is
computationally more efficient.

In summary, the 2DoF control problem can be recast
as a pole placement problem in which the closed loop
dynamics is determined by two spectral factors F̃R(s) and

OL(s). Matrices D̃12, C̃1, D21, and B1 can be considered
as weighing parameters and their relation to plant outputs
will be explained in the next section.

3.2 Tuning the 2DoF controller

Equation (15), when represented in a state space form, is
associated with a solution to the algebraic Riccati equation
which stems from minimizing the infinite horizon control
problem (22) and is equivalent to

I =

∫

∞

0

(xT Qx + x̄T Q̄x̄ + uT Ru) dt (29)
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Figure 6. Control loop in Simulink.

where, besides the states x and inputs u, also the integral
of output errors x̄ is being penalized. By an appropriate
choice of Q, Q̄ and R one can influence the behavior of
the 2DoF controller with straightforward consequences on
the outputs. For instance if one requires fast tracking, then
the Q̄ weight for output errors shall be increased and R
lowered.

Selection of the matrices D21 and B1 can be similarly
related to the theory of Kalman filtering whereas in this
case these matrices account for the spectral intensities of
the white noise signal v.

4. CONTROLLER SETUP

All polynomial calculations related to this work have
been performed by the Polynomial Toolbox for MATLAB,
available at www.polyx.com. An excellent demonstration
of the recent version is given for instance given by Hromč́ık
and Kučera [2007]. The state-feedback gain as well K̃
as the observer gain L, which are both parts of the
controller (11), can be found e.g. by following the Matlab
scripts introduced in [Mikleš and Fikar, 2007, Mikleš et al.,
2005, 2006]. In the second step, the control loop has to be
drawn in Simulink, for instance as illustrated in Fig. 6.
The subroutines under the block “observer” are coded as
given in (24) and the RTW blocks are hidden inside the
block named “system”. Subsequently, in order to control
the plant in real-time, the I/O card has to be properly
configured and connected to the device. An excellent
tutorial for this experimental setup is given by Dušek et al.
[2006].

Before proceeding to the last section with experimental
results, we shall first test the 2DoF controller in a simula-
tion scenario. Since the controller is based on a linearized
model (4), the scenario will start from the steady state
point (2). Reference signal w is kept piecewise constant
and it corresponds to dashed lines in Fig. 7. Simulation
results indicate that the desired tracking of the varying
reference is achieved and controller is suitable for real-time
application.

5. EXPERIMENTAL RESULTS

We have applied the 2DoF controller with integral action
to a real coupled tank system using the RTW environment.
The sampling time was selected as one second and ini-
tial conditions for the observer were generated randomly.
The acquired experimental data are depicted in Fig. 8.

Figure 7. Simulation results for the 2DoF controller.

Although the experiment starts from a steady state point,
one can clearly notice that in the first 10 minutes the
trajectories differ significantly from the setpoints. This
is due to the initialization phase of the observer where
the estimated states recover from the startup error. After
the initial period of ten minutes, the observer provides
satisfactory estimates of the states and desired tracking
is achieved. In the period between 40 and 50 minutes
after the start the plant is manually driven far from the
linearized point, which results in noticeable overshoots in
the control profile. The integral action of the controller
compensates these effects and the setpoints are reached
after 5 minutes. Comparing to simulation results in Fig.
7 one can conclude that although integration property is
present, the expected control performance is valid only for
some neighborhood of the operating point. If the setpoints
are driven away, the controller spends more effort to com-
pensate the model/plant mismatch as to tracking errors
and the overall performance degrades. Thus, a possible
approach how to achieve better control performance is to
instantaneously supply the information about the process
model using the IDTOOL Toolbox [Čirka et al., 2006] and

recalculating the gains K̃, L on-line. Since the polynomial
approach is computationally effective, the on-line compu-
tational demand would not be problematic.

Figure 8. Experimental results for the 2DoF controller.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

8670



6. CONCLUSIONS

In this paper we have shown 2DoF control design with in-
tegral action applied to the quadruple tank system within
the RTW environment. The synthesis is performed via
the polynomial approach where the problem of adding
integrator poles is efficiently treated using the Polyno-
mial Toolbox. We have applied the identification toolbox
IDTOOL to obtain a linearized model of the quadruple
tank process and we have compared this model with the
measured data. Although the gains in the model are not
exact, the selected 2DoF structure is able to cope with this
mismatch. Experimental results obtained with 2DoF con-
troller show that adding the integration property provides
satisfactory treatment of the model uncertainty while sup-
pressing the measurement noise and moreover, satisfactory
reference tracking is achieved. Despite this fact, further
improvements of the proposed 2DoF control structure are
possible which can help increase the performance for dif-
ferent operating regions.
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