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Abstract: We define a lossless autonomous system as one having a quadratic differential form
associated with it called an energy function, which is positive and which is conserved. We define
an oscillatory system as one which has all its trajectories bounded on the entire time axis. In
this paper, we show that an autonomous system is lossless if and only if it is oscillatory. Next
we discuss a few properties of energy functions of autonomous lossless systems and a suitable
way of splitting a given energy function into its kinetic and potential energy components.

1. INTRODUCTION

In most of the work done so far in the area of lossless
systems, characterisation of losslessness is done assuming
a given supply rate or the rate at which external work is
done. An example for such a characterisation is the one
by Willems [1972], in which losslessness was defined with
respect to a given supply rate. The system is called lossless
if the given supply rate is the derivative of another func-
tion, known as the storage function, along the trajectories
of the system.

A lot of research has been carried out in the area of
characterisation of lossless systems in the state-space.
Weiss et al. [2001] and Weiss and Tucsnak [2003] have
given algebraic characterizations of energy preserving and
of conservative linear systems based on a state space
description of the system. Here, a system is called energy
preserving if the rate of change of a positive definite
function defined on its state space, is equal to the difference
between an incoming power and an outgoing power, which
are respectively assumed to be the square of the norms
of the input signal u and the output signal y. Note that
in the sense of Willems [1972], if a system is energy
preserving, then it is lossless with respect to the difference
between the incoming and outgoing power. For a given
energy preserving system, a related system known as its
dual is defined by Weiss et al. [2001]. Here, a system is
called conservative if both the system and its dual are
energy preserving. In addition, Weiss et al. [2001] also give
results about the stability, controllability and observability
of conservative systems and illustrate these with the help
of a model of a controlled beam.

The purpose of this paper is to give a definition of linear
lossless systems which agrees with the basic intuition,
derived from physics, that the external work done on such
a system is equal to the difference between the final and
initial values of the total energy for the system. We also
make use of the fact that the total energy of such a system
is a quadratic functional in the system variables and their
derivatives that is positive for all infinitely differentiable
non-zero trajectories.

An autonomous system is a system with no inputs or free
variables. For such a system, the future of every trajectory
is completely determined by its past. We characterize
autonomous lossless systems based on the observation that
the external work done on such a system is zero, because
of the absence of inputs and hence total energy of such a
system remains a constant.

The main aim of this paper is to give a characterisation of
higher order autonomous lossless systems. We now explain
this using an example of a mechanical system.
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Fig. 1. A mechanical example

Example 1. Consider two masses m1 and m2 attached
to springs with constants k1 and k2. The first mass is
connected to the second one via the first spring, and the
second mass is connected to the wall with the second spring
as shown in Figure 1. Denote by w1 and w2, the positions of
the first and the second mass respectively. We first obtain
the equations of motion of the two masses as

m1
d2w1

dt2
+ k1w1 − k1w2 = 0 (1)

−k1w1 + m2
d2w2

dt2
+ (k1 + k2)w2 = 0 (2)

Assume that in this case, we are interested only in the
evolution of w1. Via the process of elimination, we can
lump equations (1) and (2) to obtain the differential
equation governing w1 as

r

(
d

dt

)
w1 =

d4

dt4
w1 +

(
k1 + k2

m2
+

k1

m1

)
d2

dt2
w1

+
(

k1k2

m1m2

)
w1 = 0
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The above is a first principles model for the system. Note
that mathematical modeling of a system in general, does
not automatically lead to first order equations or a state
space model for the system. A state space model, in many
cases needs artificial construction of states from the given
model. This calls for a need to deduce the properties of a
system using its higher order governing differential equa-
tions. In the case of our example, we obtain a fourth order
governing differential equation. Can we deduce directly
from the higher order governing differential equations,
whether the system is lossless or not? Can we obtain
expressions for the total energy of the system, and its
kinetic and potential energy components directly from the
higher order governing differential equations of a lossless
system? These are some of the questions that we answer
in this paper.

We assume that the reader is familiar with the calculus of
quadratic differential forms (QDFs), and with the behav-
ioral framework, and we refer to respectively Willems and
Trentelman [1998] and Polderman and Willems [1997] for
a thorough exposition of the concepts and mathematical
techniques.

The structure of the paper is as follows: In section 2, we
discuss properties of oscillatory systems and the notions
of conserved quantities for oscillatory systems and of B-
canonicity and positivity of QDFs. In section 3, we prove
the equivalence of autonomous lossless and oscillatory
systems.

The notation used in this paper is standard: we denote the
space of n dimensional real and complex vectors by Rn and
Cn respectively, the space of m × n real matrices by Rm×n

and the space of m × n symmetric real matrices, by Rm×n
s .

Whenever one of the two dimensions is not specified, a
bullet • is used; so that for example, R•×n denotes the set
of real matrices with n columns and an unspecified number
of rows. In order to enhance readability, when dealing with
a vector space R• whose elements are commonly denoted
with w, we use the notation Rw (note the typewriter font
type!). The ring of polynomials with real coefficients in the
indeterminate ξ is denoted by R[ξ]; the set of two-variable
polynomials with real coefficients in the indeterminates
ζ and η is denoted by R[ζ, η]. The space of all n × m
polynomial matrices in the indeterminate ξ is denoted
by Rn×m[ξ], and that consisting of all n × m polynomial
matrices in the indeterminates ζ and η by Rn×m[ζ, η]. We
denote with C∞(R, Rq) the set of infinitely differentiable
functions from R to Rq. R+ denotes the set of positive real
numbers. 0p×q denotes a matrix of size p × q consisiting
of zeroes. If L1 and L2 are matrices having the same
number of columns, then col(L1, L2) denotes the matrix
obtained by stacking the matrix L1 over L2. Re(λ) and
Im(λ) denote the real and imaginary parts of a complex
quantity λ. diag(a1, . . . , an) denotes the diagonal matrix
whose diagonal entries are a1, . . . , an in the given order.

2. PRELIMINARIES

In this section, we illustrate the basic definitions and
concepts of Rapisarda and Willems [2005] necessary to
understand the results illustrated in this paper.

2.1 Oscillatory systems

Definition 2. A behavior B is a linear differential behavior
if B is the set of solutions of a system of linear constant-
coefficient differential equations

R

(
d

dt

)
w = 0, R ∈ R•×w[ξ];

We denote the class of linear differential behaviors with w
external variables by Lw.
Definition 3. A behavior B defines a linear oscillatory
system if

• B ∈ Lw.
• Every solution w : R → Rw is bounded on (−∞,∞).

From the definition, it follows that an oscillatory system is
necessarily autonomous: if there were any input variables
in w, then those components of w could be chosen to be
unbounded.

In the following, the case of multivariable (w > 1) oscil-
latory systems will be often reduced to the scalar case
by using the Smith form of a polynomial matrix. Conse-
quently, we now examine in more detail the properties of
scalar oscillatory systems and of their representation.

It was proved in proposition 2 of Rapisarda and Willems
[2005] that any behavior B is oscillatory if and only if
every non-zero invariant polynomial of B has distinct and
purely imaginary roots. Consequently, if r ∈ R[ξ] then
B = ker

(
r( d

dt )
)

defines an oscillatory system if and only
if all the roots of r are distinct and on the imaginary axis.
From this it follows that r has one of the following two
forms.

r(ξ) = (ξ2 + ω2
0)(ξ2 + ω2

1) . . . (ξ2 + ω2
n−1) or

r(ξ) = ξ(ξ2 + ω2
0)(ξ2 + ω2

1) . . . (ξ2 + ω2
n−1)

where ω0, . . . , ωn−1 ∈ R+. Recall from Polderman and
Willems [1997], p. 69 that the dimension of ker

(
r( d

dt )
)

as a linear subspace of C∞(R, R) equals the degree of
the polynomial r and that the roots of r are called the
characteristic frequencies of ker

(
r( d

dt )
)
.

In the following, a polynomial matrix will be called os-
cillatory if all its invariant polynomials have distinct and
purely imaginary roots.

2.2 Quadratic differential forms (QDFs)

Consider the set of bilinear functionals acting on an
infinitely differentiable trajectory w of the form

QΦ(w) =
N∑

h,k=0

(
dhw

dth

)>
Φh,k

(
dkw

dtk

)
(3)

where Φh,k are w × w-dimensional real matrices, and N
is a non-negative integer. Such a functional is called a
quadratic differential form (QDF). With the QDF given
by equation (3), we associate a two-variable polynomial
matrix Φ(ζ, η), which is given by

Φ(ζ, η) =
N∑

h,k=0

Φh,kζhηk
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2.3 B-canonicity of QDFs

Consider a behavior B ∈ Lw. Consider the equivalence
relation between QDFs QΦ, QΨ (Φ,Ψ ∈ Rw×w

s [ζ, η]),
defined by

QΦ
B∼ QΨ ⇔ QΦ(w) = QΨ(w) ∀w ∈ B

It is easy to see that the set of equivalence classes under
B∼ is a linear vector space over R. Let B = ker R( d

dt ) be
a kernel representation of a given autonomous behavior
B. With every equivalence class of QDFs associated with
B, we associate a certain representative known as the R-
canonical representative. Below, we define the notion of
R-canonicity of QDFs.
Definition 4. Consider R ∈ Rw×w[ξ], and Φ ∈ Rw×w[ζ, η],
with det(R(ξ)) 6= 0. Then the QDF QΦ is R-canonical if
R(ζ)−>Φ(ζ, η)R(η)−1 is strictly proper.

If R ∈ R[ξ] and has degree n, then from the definition, it
follows that the two-variable polynomials associated with
R-canonical QDFs are spanned by monomials ζkηj , with
k, j ≤ n − 1. It is easy to see that every QDF has an
R-canonical representative.

2.4 Conserved quantities associated with an oscillatory
behavior

Definition 5. Consider B ∈ Lw. A QDF QΦ is a conserved
quantity associated with B if

d

dt
QΦ(w) = 0 ∀ w ∈ B.

Note that the trivial QDF QΦ = 0 is always conserved.
Any conserved QDF which is identically not equal to
zero will be called “nontrivial conserved quantity” in
the following. Consider an oscillatory behavior B = ker(
r( d

dt )
)
, where r ∈ R[ξ]. If r is an even polynomial of degree

2n, then it can be shown (see p. 188 of Rapisarda and
Willems [2005]) that the two-variable polynomials γi(ζ, η)
given by

γi(ζ, η) =
r(ζ)η2i+1 + r(η)ζ2i+1

ζ + η

i = 0, 1, . . . , n − 1, induce a basis for the space of r-
canonical conserved quantities over B. If r is an odd
polynomial of degree 2n + 1, then it can be shown that a
basis of r-canonical conserved quantities over B is induced
by the set {γ′i(ζ, η)}i=0,1,...,n, where

γ′i(ζ, η) =
r(ζ)η2i + r(η)ζ2i

ζ + η

2.5 Positivity of QDFs

Definition 6. Let Φ ∈ Rw×w
s [ζ, η]. QΦ is said to be positive

denoted by QΦ > 0, if QΦ(w) ≥ 0 for all w ∈ C∞(R, Rw),
and QΦ(w) = 0 implies w = 0.

It can shown (see p. 1712 of Willems and Trentelman
[1998]) that a QDF QΦ, where Φ ∈ Rw×w

s [ζ, η] is positive if
∃ D ∈ R•×w[ξ] such that Φ(ζ, η) = D(ζ)T D(η), and D(λ)
has full column rank w for all λ ∈ C.

3. AUTONOMOUS CONSERVATIVE SYSTEMS

In this section, we define an autonomous lossless system
as an autonomous system for which there exists a pos-
itive conserved quantity. We then prove the equivalence
between autonomous lossless and oscillatory systems. This
is the main result of the paper. This is first done for the
case of scalar systems (Theorem 12) and then extended
to the case of multivariable systems (Theorem 16). We
also discuss a few properties of energy functions of scalar
lossless systems.

We begin with the following definition for autonomous
lossless systems.
Definition 7. A linear autonomous behavior B ∈ Lw is
lossless if there exists a conserved quantity QE associated
with B, such that QE > 0. Such a QE is called an energy
function for the system.
Remark 8. The total energy of any physical system does
not have an absolute measure as such. It is always defined
with respect to an arbitrary choice of a reference level,
which is hence indeterminate. However this indeterminacy
is not important as in any physical application, it is
always the difference between the initial and final values
of energy that matters, and this difference is independent
of the reference level. Hence it is convenient to define
the reference level for the total energy of a system as its
lower bound. This point has been elaborated upon in Sears
[1946], pp. 128-129. While defining lossless systems, we fix
the reference level or lower bound of the energy functions
for the system at zero, which leads to positivity of energy
functions. We implicitly assume that an energy function
of a lossless system is bounded from below.

For proving that lossless autonomous systems are necessar-
ily oscillatory, we examine all the linear autonomous scalar
systems, for which conserved QDFs exist. To this end, we
first determine the conditions under which a linear system
has conserved QDFs associated with it, and the dimension
of the space of conserved QDFs for such systems. We begin
with the following definition.
Definition 9. Let r ∈ R[ξ]. The maximal even polynomial
factor of r is its monic even factor polynomial of maximal
degree.

For any given polynomial r ∈ R[ξ], it is easy to see that
there exists a unique maximal even polynomial factor. In
the next proposition, we examine the conditions under
which a linear behavior B has conserved QDFs associated
with it.
Proposition 10. Consider a linear behaviour B = ker(
r( d

dt )
)
, where r ∈ R[ξ]. There exists a nontrivial con-

served quantity for B if and only if either r has a non-unity
maximal even polynomial factor re or r(ξ) = ξ. Moreover
if p := r

re
is such that p(0) 6= 0, then the dimension of the

space of conserved QDFs is deg(re)
2 , otherwise it is equal

to deg(re)
2 + 1.

Proof. Let the degree of r be equal to n. Let r = rep.
Assume that B has a conserved QDF whose two-variable
polynomial representation is φ(ζ, η). Then

φ(ζ, η) =
r(ζ)f1(ζ, η) + r(η)f1(η, ζ)

ζ + η
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for some f1 ∈ R[ζ, η]. It is easy to see that since φ is
r-canonical, f1 is independent of ζ and is of degree less
than or equal to n − 1 in η. Let f(η) = f1(ζ, η). Since φ
exists, the numerator is divisible by ζ + η. Consequently
r(−ξ)f(ξ) + r(ξ)f(−ξ) = 0. This implies that g(ξ) =
r(ξ)f(−ξ) = re(ξ)p(ξ)f(−ξ) is an odd function. Hence

p(ξ)f(−ξ) = −p(−ξ)f(ξ) (4)

Two cases arise.

• Case 1: p(ξ) is not divisible by ξ. In this case, for
equation (4) to hold, it is easy to see that f should
be of the form

f(ξ) = p(ξ)fo(ξ)

where fo(ξ) is an odd function such that deg(f) ≤ n−
1. Hence, we obtain

deg(fo) ≤ deg(re)− 1 (5)

From property (5), it follows that the dimension of
the space of all possible polynomials fo(ξ) for a given
even polynomial re(ξ) and hence that of the space of

conserved QDFs in this case is deg(re(ξ))
2 .

• Case 2: p(ξ) is divisible by ξ. The proof for this case
is very similar to that of Case 1, and will not be given
explicitly.

For proving that lossless autonomous systems are neces-
sarily oscillatory, we make use of the following proposition.
Proposition 11. Let r′(ξ2) and ξr′′(ξ2), where r′, r′′ ∈
R[ξ], respectively be the even and odd parts of r(ξ), where
r ∈ R[ξ]. If r is Hurwitz then r′ and r′′ have distinct roots
on the negative real axis.

The above property can be deduced from Theorem 1,
p.106, Holtz [2003]. In order to prove the equivalence
between oscillatory systems and autonomous lossless sys-
tems, we first consider the case of scalar behaviors.
Theorem 12. A behavior B ∈ L1 is lossless if and only if
it is oscillatory.

Proof. (If ) We consider the two forms of scalar oscillatory
behaviors mentioned in section 2.1. For each of these forms
of oscillatory behavior, we construct an energy function
that is positive.

• Case 1: The oscillatory behavior is of the form B =
ker

(
r( d

dt )
)
, where r(ξ) = (ξ2 + ω2

0)(ξ2 + ω2
1) . . . (ξ2 +

ω2
n−1) and ω0, . . . , ωn−1 ∈ R+. From the discussion

of section 2.4, it can be said that the two-variable
polynomial associated with a general r-canonical con-
served quantity for this case has the form

φ(ζ, η) =
ηr(ζ)fe(η) + ζr(η)fe(ζ)

ζ + η
(6)

where fe is an even function of degree less than or
equal to 2n − 2. Define vp(ξ) := r(ξ)

ξ2+ω2
p
. It can be

seen that the set {vp(ξ)}p=0,...,n−1 is a basis of even
polynomials of degree less than or equal to 2n− 2. It
follows that there exist bp ∈ R, p = 0, . . . , n− 1, such
that fe(ξ) =

∑n−1
p=0 bpvp(ξ). Now

φ(ζ, η) =
n−1∑
p=0

bp

[
ηr(ζ)vp(η) + ζr(η)vp(ζ)

ζ + η

]

=
n−1∑
p=0

bpvp(ζ)vp(η)(ζη + ω2
p)

Define φp(ζ, η) := vp(ζ)vp(η)(ζη + ω2
p). From equa-

tion (6), it can be seen that linearly indepen-
dent fe’s produce linearly independent φ’s. Hence
{φp(ζ, η)}p=0,...,n−1 is a basis of the space of two-
variable polynomials that induce r-canonical con-
served quantities. Now consider E(ζ, η) =∑n−1

p=0 a2
pφp(ζ, η) = D(ζ)T D(η), where ap ∈ R\ {0}

for p = 0, . . . , n− 1 and

D(ξ) = col (a0ξv0(ξ), a0ω0v0(ξ), a1ξv1(ξ), a1ω1v1(ξ),

. . . , an−1ξvn−1(ξ), an−1ωn−1vn−1(ξ))
It can be verified that D(λ) 6= 02n×1 for any λ ∈ C.
This proves that E induces an energy function for
Case 1 oscillatory systems.

• Case 2: The oscillatory behavior is of the form B =
ker

(
r( d

dt )
)

where r(ξ) = ξ(ξ2 +ω2
0)(ξ2 +ω2

1) . . . (ξ2 +
ω2

n−1) = ξre(ξ) and ω0, . . . , ωn−1 ∈ R+. The proof for
this case is very similar the one for Case 1 oscillatory
systems and will not be given explicitly.

(Only if ) Assume that B has the kernel representation
r( d

dt )w = 0. Let r(ξ) = re(ξ)p(ξ) where re is the maximal
even polynomial factor of r. If p(ξ) is not a constant and
p(ξ) 6= aξ, where a ∈ R, then it has at least one root, say
λ ∈ R\ {0} or two roots, say λ, λ̄ ∈ C\R. From the proof of
Proposition 10, depending on whether p(ξ) is divisible by
ξ or not, any two-variable polynomial inducing conserved
QDF over B can either have the form

φ1(ζ, η) =
r(ζ)p1(η)fe(η) + r(η)p1(ζ)fe(ζ)

ζ + η

where p1(ξ) = p(ξ)
ξ and fe is an even function, or the form

φ2(ζ, η) =
r(ζ)p(η)fo(η) + r(η)p(ζ)fo(ζ)

ζ + η

where fo(ξ) is an odd function. It can be seen that both φ1

and φ2 are divisible by (ζ−λ)(η−λ) if λ ∈ R and divisible
by (ζ − λ)(ζ − λ̄)(η − λ)(η − λ̄) if λ ∈ C\R. Hence along
the trajectory w(t) = eλt + eλ̄t ∈ B, the QDFs induced by
φ1 and φ2 are equal to zero. This implies that B does not
have a positive conserved QDF. This eliminates all scalar
systems except those for which the kernel representation is
r( d

dt )w = 0, such that either r(ξ) is even, or r(ξ) = ξre(ξ),
where re(ξ) is an even function. We now consider two cases.

• Case 1 : r is even. Define r′(ξ2) := r(ξ). In this case,
from the proof of proposition 10, any conserved quan-
tity for B has its associated two-variable polynomial
of the form

Φ(ζ, η) =
ηr′(ζ2)r′′(η2) + ζr′(η2)r′′(ζ2)

ζ + η

where r′′ has degree less than that of r′. Assume
that QΦ > 0. Define r1(ξ) := r′(ξ2) + ξr′′(ξ2) and
B′ := ker

(
r1( d

dt )
)
. Let Φ̇(ζ, η) denote the two-

variable polynomial that induces the derivative of QΦ.
Then
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Φ̇(ζ, η) = (ζ + η)Φ(ζ, η)
= r1(ζ)r′′(η2) + r1(η)r′′(ζ2)− 2ζηr′′(ζ2)r′′(η2)

Hence QΦ̇
B′

= QΦ1 , where
Φ1(ζ, η) = −2ζηr′′(ζ2)r′′(η2)

This implies that QΦ̇

B′

< 0. Hence QΦ is a Lyapunov
function for B′, which implies that B′ is asymptoti-
cally stable or that r1 is Hurwitz. From Proposition
11, it follows that r is oscillatory.

• Case 2 : r is odd. The proof for this case is very similar
to the one for case 1 and will not be given explicitly.

We now discuss a few properties of energy functions for
scalar oscillatory behaviors. We first present an analysis
of the conditions under which a conserved quantity for a
scalar oscillatory behavior is positive. The following lemma
can be used to construct an energy function for a scalar
oscillatory behavior.
Lemma 13. Let r1 ∈ R[ξ] be given by r1(ξ) = (ξ2 +
ω2

0)(ξ2 + ω2
1) . . . (ξ2 + ω2

n−1), where ω0, . . . , ωn−1 ∈ R+

and n is a positive integer. Define vp(ξ) := r1(ξ)
ξ2+ω2

p
, p =

0, . . . , n − 1. Define r2(ξ) := ξr1(ξ). Then the following
hold:

(1) Let B1 = ker
(
r1( d

dt )
)
. If the conserved quantity for

B1 induced by φ1(ζ, η) =
∑n−1

p=0 bpvp(ζ)vp(η)(ζη+ω2
p)

is positive, then bp > 0 for p = 0, . . . , n− 1.
(2) Let B2 = ker

(
r2( d

dt )
)
. If the conserved quantity for

B2 induced by φ2(ζ, η) =
∑n−1

p=0 bpζηvp(ζ)vp(η)(ζη +
ω2

p) + bnr1(ζ)r1(η) is positive, then bp > 0 for p =
0, . . . , n.

Proof. Assume that bi ≤ 0 for some i ∈ {0, . . . , n− 1}.
Consider a trajectory w(t) = kejωit + k̄e−jωit ∈ B1,B2.
Along this trajectory, vp( d

dt )w = 0 for
p ∈ {0, . . . , n− 1} \ {i}. Since φp(ζ, η) = vp(ζ)vp(η)(ζη +
ω2

p) and ζηφp(ζ, η) are non-negative, the QDF induced by
φ1(ζ, η) and φ2(ζ, η) over B1 and B2 respectively along
this trajectory turns out to be non-positive. Hence by
contradiction, bp > 0 for p = 0, . . . , n− 1 in both cases.

In order to complete the proof, consider now statement 2
of the Lemma and assume by contradiction that bn ≤ 0.
Consider a trajectory w(t) = k ∈ B2. Along this trajectory
vp( d

dt )w = 0 for p ∈ {0, . . . , n− 1}. Since r1(ζ)r1(η) is
non-negative, the QDF induced by φ2(ζ, η) over B2 turns
out to be non-positive. Hence, bn > 0. This concludes the
proof.

The next Theorem relates the positivity of a conserved
quantity to an important property known as interlacing
property, which also arises in applications like electrical
network theory.
Theorem 14. Let r1 ∈ R[ξ] be given by r1(ξ) = (ξ2 +
ω2

0)(ξ2 + ω2
1) . . . (ξ2 + ω2

n−1), where ω0 < ω1 . . . < ωn−1 ∈
R+ and n is a positive integer. Define r′(ξ2) := r1(ξ);
r2(ξ) := ξr1(ξ) and r̆(ξ) := ξr′(ξ). Then the following
hold:

(1) Let B1 = ker
(
r1( d

dt )
)
. Let f1(ξ) be a polynomial

of degree less than or equal to n − 1. A conserved

quantity for B1 induced by

φ1(ζ, η) =
ηr′(ζ2)f1(η2) + ζr′(η2)f1(ζ2)

ζ + η
(7)

is positive if and only if f1(−ω2
0) > 0 and the roots

of f1 are interlaced between those of r′, i.e along the
real axis, exactly one root of f1 occurs between any
two consecutive roots of r′.

(2) Let B2 = ker
(
r2( d

dt )
)
. Let f2(ξ) be a polynomial of

degree less than or equal to n. A conserved quantity
associated with B2 induced by

φ2(ζ, η) =
ζr′(ζ2)f2(η2) + ηr′(η2)f2(ζ2)

ζ + η

is positive if and only if f2(0) > 0 and the roots of f2

are interlaced between those of r̆.

In the next corollary, we give the general expression for an
energy function of a scalar conservative behavior that has
no characteristic frequency at zero.
Corollary 15. Let B = ker

(
r( d

dt )
)

be an oscillatory be-
havior, where r(ξ) = (ξ2 + ω2

0)(ξ2 + ω2
1) . . . (ξ2 + ω2

n−1).
Define vp(ξ) := r(ξ)

ξ2+ω2
p
, V (ξ) := col(v0(ξ), v1(ξ),

. . . , vn−1(ξ)) and Ω :=diag(ω0, ω1, . . . , ωn−1). A two-
variable polynomial E induces an energy function for B, if
and only if there exists a diagonal matrix C ∈ Rn×n with
positive diagonal entries, such that

E(ζ, η) = ζηV (ζ)T C2V (η) + V (ζ)T C2Ω2V (η) (8)

Proof. The proof follows from the (if ) part of the proof
of Theorem 12 and the proof of Lemma 13.

We now describe a suitable method of splitting a given
energy function of a scalar autonomous lossless system into
its kinetic and potential energy components. We show that
with suitable choices for mass and stiffness matrices and
a suitable choice for a generalized position as a function
of the external variables of a scalar oscillatory system, we
can obtain equations that are very similar to the equations
describing a second order mechanical system. We use this
idea to obtain a splitting of the total energy into its kinetic
and potential energy components. Thus, with reference to
the previous Corollary, if we interpret q = V ( d

dt )w as a
generalized position, then dq

dt = d
dtV ( d

dt )w is a generalized
velocity. Define M := 2C2 and K := 2C2Ω2. Using
these expressions the system equations can be written in
a way similar to the equations describing a second order
mechanical system as

M
d2q

dt2
+ Kq = 0

C2(I
d2

dt2
+ Ω2)V (

d

dt
)w = 0

which reduces to col(r( d
dt ), r(

d
dt ), . . .)w(t) = 0. Thus M

and K can be interpreted as the mass and the stiffness
matrix respectively. This leads to the two-variable poly-
nomials K and P corresponding to the kinetic energy
( 1
2M(dq

dt )
2) and potential energy (1

2Kq2) respectively be-
ing given by

K(ζ, η) = ζηV (ζ)T C2V (η) (9)
P (ζ, η) = V (ζ)T C2Ω2V (η) (10)

We now illustrate the concepts discussed so far in this
section using the example of a mechanical system that was
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introduced earlier.

Example 1 revisited : With reference to example 1, let
m1 = m2 = 1, k1 = 2 and k2 = 3. Then r(ξ) = ξ4 + 7ξ2 +
6 = (ξ2 + 6)(ξ2 + 1). This system is oscillatory and hence
lossless. The natural frequencies of the system are given
by ω0 =

√
6 and ω1 = 1. The total kinetic energy and the

total potential energy for the system can be expressed as
QDFs in terms of only w1. The two variable polynomials
corresponding to these are

K(ζ, η) =
1
8
[ζ3η3 + 2(ζη3 + ζ3η) + 8ζη] (11)

P (ζ, η) =
1
8
[5ζ2η2 + 6(ζ2 + η2) + 12] (12)

The total energy of the system is a positive conserved
quantity and hence from Lemma 13 will correspond to the
two-variable polynomial of the form
E(ζ, η) = a2

0(ζη+6)(ζ2+1)(η2+1)+a2
1(ζη+1)(ζ2+6)(η2+6)

Indeed by comparison with equations (11) and (12), we
obtain real values for a0 and a1 as

a0 =
√

0.1 a1 =
√

0.025
In this case, with C =diag(a0, a1) and Ω =diag(ω0, ω1),
it can be verified that equations (9) and (10) reduce to
equations (11) and (12) respectively.

We now build upon the result of Theorem 12 and extend
it to the multivariable case.
Theorem 16. A linear autonomous system B ∈ Lw is
lossless if and only if it is oscillatory.

Proof. We proceed by reduction of the multivariable case
to the scalar case by use of the Smith form. Consider a
kernel representation of B given by B = ker

(
R( d

dt )
)
,

where R ∈ Rw×w[ξ] and det(R(ξ)) 6= 0. Let R = U∆V
be the Smith form decomposition of R. Let the behavior
B′ be given by B′ = ker

(
∆( d

dt )
)
. Denote the number

of invariant polynomials of R equal to one with w1 and
let {ri(ξ)}i=w1+1,...,w be the set consisting of the remaining
invariant polynomials of R. Let B′

i = ker
(
ri( d

dt )
)
.

(Only If ): We assume that B and hence B′ are lossless.
Consider a trajectory w′ ∈ B′. Let {w′i}i=1,...,w be the
components of w′. Consider an energy function Qφ of B

acting on w. Let φ′(ζ, η) = (V (ζ))−>φ(ζ, η)(V (η))−1. Let
φ′i(ζ, η) be the ith diagonal entry and φ′ik(ζ, η) be the
entry corresponding to the ith row and kth column of the
polynomial matrix φ′(ζ, η). Then

Qφ(w) = Qφ′(w′) =
w∑

i=1

Qφ′
i
(w′i) +

∑
i 6=k

Lφ′
ik

(w′i, w
′
k) (13)

Since Qφ > 0, also Qφ′ > 0. Since each component of w′

can be chosen independently of each other, it follows that
Qφ′

i
> 0 and is conserved over B′

i for i = 1, 2, . . . , w. This is
possible only if each of B′

i is oscillatory for i = 1, 2, . . . , w,
which implies that B′ and hence B is oscillatory.

(If ): Assume that B and hence B′ is oscillatory. We
construct a QDF that is positive and conserved along B
and hence prove that the system is lossless. For i = w1 +
1, . . . , w, let ri have nonzero roots at±jω0i,±jω1i,±jω2i, . . .

and maximal even polynomial factor equal to si. Define
vpq(ξ) := sq(ξ)

ξ2+ω2
pq

. Consider

D(ξ) =



0w1×w1 0 . . . . . . . . .
0•×w1 Dw1+1 0•×1 . . . . . . . . .
0•×w1 0•×1 Dw1+2 0•×1 . . . . . .

...
... 0•×1

. . . . . .
...

0•×w1 0•×1

...
. . . . . . 0•×1

0•×w1 0•×1 . . . . . . . . . Dw(ξ)


(14)

where Di = col (a0iξv0i(ξ), a0iω0iv0i(ξ), a1iξv1i(ξ),
a1iω1iv1i(ξ), . . .) if ri is even and Di = col (a0iξ

2v0i(ξ),
a0iω0iξv0i(ξ), a1iξ

2v1i(ξ), a1iω1iξv1i(ξ), . . .) if ri is odd,
aik ∈ R+ as in the proof of the sufficiency part of
Theorem 12. From the argument used in order to prove
the scalar case, it is easy to see that φ′(ζ, η) = D(ζ)T D(η)
is positive and conserved along B′, and hence φ(ζ, η) =
V (ζ)T D(ζ)T D(η)V (η) is positive and conserved along B.

4. CONCLUSION

In this paper, the main focus has been to give a char-
acterisation for higher order linear autonomous lossless
systems as opposed to the characterisation for first order
systems using state space method (Weiss et al. [2001] and
Weiss and Tucsnak [2003]). Using the material covered in
this paper, one can easily implement a computer program
wherein the input is a higher order description of a scalar
oscillatory system and the outputs are its energy functions
and the kinetic and potential energy components of a
given energy function for the system. Given a multivariable
oscillatory system, using the material in this paper, one
can implement a program to compute an energy function
for the system.
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