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Abstract:
An approach for the geometric control of a one-dimensional non-autonomous linear wave
equation is presented. The idea consists in reducing the wave equation to a set of first-order
linear hyperbolic equations. Then based on geometric control concepts, a distributed control law
that enforces stability and output tracking in the closed-loop system is designed. The presented
control approach is applied to obtain a distributed control law that brings a stretched uniform
string, modeled by a wave equation with Dirichlet boundary conditions, to rest in infinite time
by considering the displacement of the middle point of the string as the controlled output. The
controller performances have been evaluated in simulation.

Keywords: Distributed parameter systems, partial differential equation, wave equation,
geometric control.

1. INTRODUCTION

The behavior of distributed parameter systems or infinite-
dimensional systems is described by partial differential
equations (PDEs). It occupies an important place in con-
trol and systems theory and constitutes an important
research area, see e.g. Ray (1989); Omatu and Sein-
feld (1989); Curtain and Zwart (1995); Lasiecka (1995);
Christofides (2001a,b) for more information and refer-
ences. Typically such systems are characterized by vari-
ables depending both on spatial location and time, and
include the transport-reaction processes and wave equa-
tion problems.

In recent years, several control methods that directly
take into account the distributed nature of the processes
have been developed specifically for quasi-linear first-order
hyperbolic systems (e.g. convection-reaction processes)
and parabolic systems (e.g. diffusion-reaction processes).
The book by Christofides (2001a) includes many results,
applications and literature citations concerning transport-
reaction processes. Some books are devoted to linear
distributed parameter systems (Curtain and Zwart, 1995;
Bensoussan et al., 2007)

However, second-order hyperbolic equations arising in
wave propagation problems have been little studied with
respect to control design, and most contributions deal with
boundary control rather than distributed control. Control
contributions include boundary control (Gunzburger and
Nicolaides, 1989; Svobodny, 1992; Bastos, 1999), control-
lability studies (Vancostenoble, 2000; Curtain and Zwart,
1995; Bui, 2005), optimal control (Lagnese and Leugering,
2003) and the stabilization problem (Glowinski and He,
2003; Berrahmoune, 2004). To stabilize a system described
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by a one-dimensional linear wave equation in a bounded
domain with appropriate boundary conditions, Morgül
(1994) proposed a dynamic controller applied at the free
end of the system. Chambolle and Santosa (2002) studied
an initial boundary-value problem of a wave equation with
time-dependent sound speed. The objective is to determine
a sound-speed function which damps the vibration of the
system, and by considering the case where the sound speed
takes only two values, a simple control law is proposed.
Alli and Singh (2004) addressed the problem of design
of collocated and non collocated controllers for a uniform
bar whose dynamics are described by the wave equation,
without structural damping. The root-locus technique is
used to control the non-collocated system by means of a
time delay controller.

In this work, an approach, based on geometric control
concepts, is proposed to design a distributed control law
that ensures the stability and output tracking in closed-
loop for a system described by a one-dimensional wave
equation with a distributed input and an output defined
as a function of state variables.

The proposed design approach consists in reducing the
wave equation to a set of first-order linear hyperbolic
equations. Then a general distributed control law has
been derived for systems modeled by a wave equation, by
exploiting notions of geometric control such as exposed
in (Christofides, 2001a; Christofides and Daoutidis, 1996;
Isidori, 1995). The approach is illustrated by an applica-
tion concerning a transverse displacement of a uniform
string with Dirichlet boundary conditions. The objective
is to bring the string to rest in infinite time by imposing a
desired displacement of the string middle point. Simulation
results show that the proposed controller ensures a perfect
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tracking of the reference input. Finally, the implementa-
tion issue of the designed controller is discussed.

The remaining part of the paper is organized as follows:
in section 2, the formulation of the distributed control
problem of a wave equation is given. In section 3, the
proposed design approach of the controller is discussed
and followed by an illustrative application in Section 4.
Section 5 is devoted to the conclusion.

2. CONTROL PROBLEM

2.1 Problem formulation

Non-autonomous systems modelled by the one-dimensional
linear wave equation under the following state-space rep-
resentation are studied

∂2x(z, t)

∂t2
= γ2

∂2x(z, t)

∂z2
+ u(z, t), for 0 < z < L (1)

subject to the boundary conditions

x(0, t) = x0, x(L, t) = xL (2)

and the initial conditions

x(z, 0) = g1(z),
∂x(z, 0)

∂t
= g2(z) (3)

with γ > 0 and g1, g2 given functions. The output variable
y(z, t) to be controlled by manipulating the input u(z, t)
is

y(t) = C
(

h(x(z, t))
)

(4)

where h is a linear function of the form k x(z, t) and C( . )
is a bounded linear operator depending on the desired
performance specifications. In this work, this latter follows
the form

y(t) = C
(

k x(z, t)
)

=

L
∫

0

c(z) k x(z, t) dz (5)

where c(z) is a known smooth function of z and k is a
scalar. As a specification of the control problem, let us
assume that the distributed input u(z, t) is given as follows

u(z, t) = b(z) v(t) (6)

where b(z) is a known smooth function of z.

The control problem consists in determining the control
law v(t), as a function of the variable x(z, t), so as to
achieve desired performances of the controlled variable
y(t). In order to design such a control law, we propose
to reduce the wave equation (1) to a set of first-order
linear hyperbolic equations, which allows to synthesize a
state feedback controller that enforces output tracking and
stability of the closed-loop system, following the control
methodology proposed in (Christofides and Daoutidis,
1996; Christofides, 2001a).

Note that, in the formulation of the control problem, the
two functions b(z) and c(z) must be specified. Thus, the
following assumption ensures that, for systems of the form
(1), the relative order σ of y(t) with respect to v(t) exists
and is equal to 2.

Assumption.The functions b(z) and c(z) are smooth and
satisfy

L
∫

0

c(z) b(z) dz 6= 0 (7)

In addition, the approximate controllability and observ-
ability of the system (1) depend on the shaping functions
b(z) and c(z).

2.2 Controllability

This section gives the condition for approximate control-
lability of system (1). Since the considered system is an
infinite-dimensional one, the controllability property is
difficult to be proved, and it is often much simpler to prove
the approximate controllability (Curtain and Zwart, 1995).
According to Ray (1989), approximate controllability is
sufficient for adequate design of a controller.

The controllability of system (1) has been discussed in
detail by Curtain and Zwart (1995, page 165), and it is
shown that the system is approximately controllable if and
only if

L
∫

0

b(z)φn(z) dz 6= 0, for n ≥ 1 (8)

where

φn(z) = sin(
nπ z

L
) (9)

are the eigenfunctions for the partial differential equation
in (1).

3. CONTROLLER DESIGN

The proposed design approach is based on the reduction
of the wave equation to a set of first-linear hyperbolic
equations, then, by use of geometric control concepts, a
general control law is derived for the formulated control
problem.

As indicated above, in this section, it is assumed that the
shaping functions b(z) and c(z) satisfy the conditions (7)
and (8).

3.1 Reduction of the wave equation

To reduce the wave equation (1) to a set of first-order linear
hyperbolic equations, it can be noticed that it suffices to
introduce the new state vector and its auxiliary variables

X(z, t) =

[

x(z, t),
∂x(z, t)

∂t
,
∂x(z, t)

∂z

]T

=
[

X1(z, t),X2(z, t),X3(z, t)
]T

(10)

Thus equation (1) can be reduced to the following set of
first order linear hyperbolic equations (Wang, 2007)

∂X1(z, t)

∂t
= X2(z, t)

∂X3(z, t)

∂t
=

∂X2(z, t)

∂z
∂X2(z, t)

∂t
= γ2

∂X3(z, t)

∂z
+ b(z) v(t)

(11)
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with appropriate boundary and initial conditions, which
are not required to specify the control design.

Since equations (11) are linear, the control law v(t) takes
the following form

v(t) = QX(z, t) + q vext(t) (12)

which will be expressed, for implementation purpose, as a
function of the state variable x(z, t), of the original system
(1), using relations (10). So the control law (12) can be
written as

v(t) = S x(z, t) + s vext(t) (13)

Note that Q is a vector of linear operators while S is a
linear operator, q and s are invertible functionals, and
vext(t) is the reference or external input.

To solve the formulated control problem, the concept of
relative order is introduced.

3.2 Relative order

According to relation (6), it is clear that the relative
order between the output y(t) and the input u(t) is the
same as between the output y(t) and the input v(t).
Thus, to determine the relative order, one can consider
the successive derivatives of the output (4) with respect to
time, which yields

y(t) = C
(

kx(z, t)
)

dy(t)

dt
=

d

dt
C
(

kx(z, t)
)

= C
(

k
dx(z, t)

dt

)

= C
(

kX2(z, t)
)

dy2(t)

dt2
=

d

dt
C
(

kX2(z, t)
)

= C
(

k
∂X2(z, t)

∂t

)

= C
(

kγ2
∂X3(z, t)

∂z

)

+ C
(

kb(z)
)

v(t)

(14)

Now, since

C
(

kb(z)
)

= kC
(

b(z)
)

= k

L
∫

0

c(z) b(z) dz 6= 0 (15)

the relative order of y(t) with respect to v(t) is equal to 2.

In the same way, by substituting the control law (13) into
the system (11), the closed-loop system is obtained, and
by differentiating the output y(t) with respect to time, it
can be demonstrated that the control law (13) preserves
the relative order σ. This means that the relative order
of the output y(t) with respect to the external input
vext(t) in the closed-loop system is also equal to 2, which
suggests requesting the following input-output response of
the closed-loop system

d2y(t)

dt2
+ c1

dy(t)

dt
+ c0 y(t) = vext(t) (16)

where the adjustable controller parameters c0 and c1 are
chosen to guarantee the input-output stability and enforce
the desired performance specifications for the closed-loop
system (Christofides and Daoutidis, 1996; Christofides,
2001a).

3.3 State feedback control

As demonstrated above, a second-order input-output re-
sponse is requested in the closed loop system. Thus from
(14) and (16), it is easy to show that the control law v(t),
under the form (12), that enforces this response is

v(t) =
1

k C
(

b(z)
) ×

{

vext(t) − c0 k C
(

x(z, t)
)

− c1 k C
(

X2(z, t)
)

− k γ2 C
(

∂X3(z, t)

∂z

)} (17)

which can be written under the form (13) as follows

v(t) =
1

k C
(

b(z)
) ×

{

vext(t) − c0 k C
(

x(z, t)
)

− c1 k C
(

∂x(z, t)

∂t

)

− k γ2 C
(

∂2x(z, t)

∂z2

)} (18)

Thus, for on line implementation, the estimation of the
state x(z, t) is required, and since the controller is of dis-
tributed nature, the calculation of the control requires al-
gebraic manipulation, differentiation and integration with
respect to space.

4. APPLICATION EXAMPLE

4.1 System description and modeling

Consider the displacement applied to a uniform string of
length L in the coordinate system shown in Figure 1.
The extremities of a string are fixed at the z-axis. The
displacement x, from the z-axis, is a function of time t
and of the spatial coordinate z.

ρ being the mass density of the string expressed in units
of mass per unit length is assumed to be constant. α is
the tension in the string. When the string is plucked, it
is assumed that the tension remains constant throughout
the string which corresponds to a hypothesis of small
displacements. The force of gravity is also assumed to
be much weaker than the tension (ρ g L ≪ α) so that
it does not influence the motion of the string notably and
therefore can be neglected.

It is assumed that a distributed force u(z, t) = b′(z) v(t),
with units of force per unit length is applied to the string
with b′(z) following the quadratic Bezier function

b′(z) = ρ z (L − z) (19)

so that, at the boundaries, the force is not active, i.e.
u(0, t) = 0 and u(L, t) = 0.

Initially, the string is at rest, i.e. u(x, 0) = 0, therefore
x(z, 0) = 0 for 0 ≤ z ≤ L. Thus, the motion of the string
(Curtain and Zwart, 1995) is described by

ρ
∂2x(z, t)

∂t2
= α

∂2x(z, t)

∂z2
+ u(z, t) (20)

As the string is fixed at its extremities, this leads to
Dirichlet boundary conditions

x(0, t) = 0, x(L, t) = 0 (21)

The following initial conditions apply

x(z, 0) = 0,
∂x(z, 0)

∂t
= 0 (22)

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

220



u(z, t)

0
L z

x(z, t)

x(zi, t)

Under the force effect

At rest state

Fig. 1. Coordinate system for a string that will undergo
vertical displacements

4.2 Control law

Let us consider that the desired objective is to find the
control law v(t), i.e. a force, that allows to bring the string
to rest in infinite time by imposing a desired displacement
xd(t) at position z = L/2. In this case, the controlled
output takes the form

y(t) =

L
∫

0

δ(z − L/2)x(z, t) dz = x(
L

2
, t) (23)

which means that k = 1 and c(z) = δ(z − L/2) where δ is
the Dirac distribution.

Now, by setting γ2 = α/ρ, according to the derived control
law (18), taking into account a reference the control law
results

v(t) =
1

b(L/2)
×
{

vext(t) − c0 x(L/2, t)

− c1

∂x(z, t)

∂t

∣

∣

∣

∣

z=L/2

− α

ρ

∂2x(z, t)

∂z2

∣

∣

∣

∣

z=L/2

}

=
1

b(L/2)
×
{

vext(t) − c0 y(t)

− c1

∂y(t)

∂t
− α

ρ

∂2x(z, t)

∂z2

∣

∣

∣

∣

z=L/2

}

(24)

Note that for the formulated problem, the chosen functions
b(z) and c(z) satisfy the Eqs. (7) and (8) corresponding to
the existence of the relative order and the controllability
conditions, respectively. However, to take into account the
reference trajectory denoted as ”ref”, the previous control
law has been modified as

v(t) =
1

b(L/2)
×
{

vext(t) − c0 (y(t) − yref (t)) (25)

−c1

(

∂y(t)

∂t
−
(

∂y(t)

∂t

)ref
)

− α

ρ

∂2x(z, t)

∂z2

∣

∣

∣

∣

ref

z=L/2

}

The control law (26) can be seen as the addition of three
terms

v(t) =
1

b(L/2)
(vext(t) + vpole(t) + vsteady(t)) (26)

where vpole stands for the pole placement term based on
c0 and c1, while vsteady concerns the second order spatial

0 0.002 0.004 0.006 0.008 0.01
0

2

4

6

8

10

12

14

16

Reference output

St
ea

dy
 in

pu
t

Fig. 2. Steady input with respect to the reference output

derivative. Clearly, the nature of vsteady is different from
the other terms as it is related to the concavity of the
string. If the reference yref is known, the steady value of
this second order spatial derivative can be calculated a
priori as the solution of the following stationary equation
resulting from the dynamic model (20) of the string

0 = α
∂2x(z, t)

∂z2
+ b′(L/2)v (27)

This equation is solved iteratively until convergence of
x(L/2) towards yref , which yields the numerical value of
v = vsteady. Fig 2 shows that the steady input vsteady

depends linearly on the reference output.

The control law (26) allows the application of the linear
control theory to the resulting linear input-output system
to handle uncertainty and unmodeled dynamics, by adopt-
ing the control strategy given by Fig. 3. In our study, a PI
controller is used for this purpose, thus the external input
vext(t) is defined by means of a PI controller (Kravaris and
Kantor, 1990) as following

vext(t) = Kc



(yd(t) − y(t)) +
1

τI

t
∫

0

(yd(ξ) − y(ξ)) dξ



(28)

where Kc, τI and yd(t) are respectively the proportional
gain, the integral time constant and the desired output.

4.3 Evaluation of controller performance

In this section, the capabilities of the controller to track
the reference input in presence of model uncertainties
are addressed. In the control law (26), the term vsteady

plays the most important role. The other terms stand for
noise and model uncertainty. To evaluate the controller
robustness, the value of α considered for the calculation of
vsteady has been chosen equal to 0.8 × α (i.e. an error of
20%), whereas α is used for the model of the string.

The spatial partial derivative of the string model is ap-
proximated by the finite difference

∂2x(z, t)

∂z2
=

x(z + ∆z, t) − 2x(z, t) + x(z − ∆z, t)

(∆z)2

(29)

for z ∈ [∆z, L − ∆z] where ∆z = L/N is the distance be-
tween two adjacent discretization points, with N number
of discretization points taken as N = 21. For z = 0 and
z = L, specific non centered finite differences are used.
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The control law has been implemented under discrete
form and the sampling period is equal to Ts = 0.25s.
The values used for system and controller parameters are
given in Table 1 and Table 2. The controller parameters
are determined based on the pole placement technique.
The string undergoes severe sustained oscillations if it
is submitted to any sudden change step input. For this
reason, the set point and the input vsteady were filtered by
a second order filter with a time constant equal to 2 s and
damping factor equal to 1.2. The parameter c1 was chosen
small because of the large sensitivity of the string which
tends to oscillate to step variations, so that the derivative
undergoes large variations which could be also avoided by
adequate filtering.

In the simulation run, two set point steps have been spec-
ified at t = 100 s and t = 200 s corresponding respectively
to yd(t) = 8 mm and yd(t) = 4 mm. The output (Fig. 4)
converges slowly towards the desired reference trajectory
in spite of the parameter uncertainty, whereas the control
moves (Fig. 5) are physically acceptable. In addition, the
spatial profiles of the displacement x(z, t) at t = 100 s and
t = 200 s (Fig. 6) are realistic and correspond to the profile
defined by the choice of the shaping function b(z). In Fig 7,
it appears clearly that the steady term of control law (26)
takes the larger part in the manipulated input, but that the
other actions are necessary to obtain exactly the desired
trajectory. The output labelled as ”steady” obtained with
only the steady input displays a permanent deviation. A
faster convergence towards the reference trajectory could
be obtained by decreasing the value of the parameter β
of Table 2, corresponding to an increase of the role of
the PID with respect to the state feedback law. A three-
dimensional plot of the profiles (Fig. 8) during the tracking
of the reference trajectories confirms the good behavior of
the controller. In the case where no parameter uncertainty
is considered, the output follows very closely the reference
trajectory. This case was not illustrated in any figure as it
presents less interest than the robustness study.

Symbol Value Designation

ρ 0.5 String mass density [ kg .m−1 ]

α 20 String tension [ kg . m . s−2]

L 1 String length [m ]

Table 1. System parameters

State feedback law PI Controller

Parameter c0 c1 Kc τI

Value β 2.15ω2
0

0.01 ω0 (1 − β) 2.15ω2
0

0.5 Kc/ω3
0

Table 2. Controller tuning parameters (with
ω0 = 1.1

√
vsteady and β = 0.8)

5. CONCLUSION

In this paper, the geometric control of a one-dimensional
non autonomous linear wave equation is investigated, and
a general distributed control law, which enforces stability
and output tracking is derived. The main idea consists in
reducing the wave equation to a set of first-order linear

PI b
(

L
2

)

String
Output

map

c0

c1
d

dt

–

+ +

+

+

+

v(t) u(z, t) x(z, t) y(t)yd(t)

Steady

Solution

Fig. 3. Control strategy
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Fig. 4. Set point change: Controlled output
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Fig. 5. Set point change: Manipulated input

equations, then the design problem is solved based on
the concept of relative order. It is shown that under
certain assumptions made concerning the control problem
formulation, a second-order input/output response results
in closed loop, and desired dynamics can be achieved by
tuning the controller parameters. Note that the proposed
approach can be easily applied to a quasilinear wave
equation.

The effectiveness of the proposed approach is illustrated by
an application concerning the control of the displacement
of a string. In the final control law, a steady term playing
the larger role can be calculated a priori from the reference
trajectory. The robustness is demonstrated by imposing a
parameter uncertainty. In these conditions, the controller
still behaves correctly and ensures a satisfactory tracking.
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Fig. 6. Set point change: Profiles of the respective displace-
ments at t = 100 s and at t = 200 s.
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0

0.5

1 0
50

100
150

200

0

0.005

0.01

Time (s)Length (m)

D
is

p
la

c
e
m

e
n
t 

(m
)

Fig. 8. Set point change: Profile of evolution of the string
displacement

REFERENCES

H. Alli and T. Singh. On the feedback control of the wave
equation. Mathematical methods in the applied sciences,
234:625–640, 2004.

W.D. Bastos. Exact boundary control for the wave equa-
tion in a polyhedral time-dependent domain. Applied
Mathematics Letters, 12:1–5, 1999.

A. Bensoussan, G. Da Prato, M. C. Delfour, and S. K. Mit-
ter. Representation and Control of Infinite Dimensional
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Ö. Morgül. A dynamic control law of the wave equation.
Automatica, 30:1785–1792, 1994.

S. Omatu and J.H. Seinfeld. Distributed Parameter Sys-
tems: Theory and Applications. Oxford Science Publi-
cations, New York, 1989.

W. H. Ray. Advanced Process Control. Butterworths,
Boston, 1989.

T.P. Svobodny. Control of the wave equation at a rational
point. Systems & Control Letters, 19:83–86, 1992.

J. Vancostenoble. Exact controllability of a damped
wave equation with distributed controls. Journal of
Optimization Theory and Applications, 89:71–92, 2000.

Z. Wang. Exact boundary controllability for non-
autonomous quasilinear wave equation. Mathematical
methods in the applied sciences, 30:1311–1327, 2007.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

223


