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Abstract: In this paper, we propose a new ǫ-PID controller for DC motors. We provide
a systematic design steps of selecting the gains of the proposed ǫ-PID controller. We also
analytically show that the proposed controller provides robustness against system parameter
uncertainty and reduces the effect of unknown load torque to the order of ǫ. The benefit of our
control approach is that the PID gains are tuned conveniently by adjusting a single ǫ gain-factor.
An experiment of DC motor control with its application to humanoid robot arms demonstrates
the practical aspect of the proposed control method.

1. INTRODUCTION

In this paper, we consider a robust position control prob-
lem of DC motors (MAXON DC motor series) in the pres-
ence of parameter uncertainty and unknown load torque.
These DC motors are used as actuators at the joints of
humanoid robots such as arm, leg joints, etc. Among var-
ious linear/nonlinear robust control approaches, the PID
control approach (or PI controller for a simplified version
[12]) is one that has been continuously acknowledged and
used in many practical systems. There are linear or non-
linear form of PID controllers [2],[5] and the practicability
and robustness of PID controllers are well-documented in
the control and industrial literature. Also, since there is
usually no need to estimate the load torque with the PID
control scheme, the controller form is much simpler when
compared with control schemes which use the additional
load torque estimator [8]-[10], adaptive method [3], or
nonlinear observer [11].

Here, we propose a new PID controller with an aim of
achieving good robust tracking performance with much
simplified gain design process and rigorous robust stability
analysis. First, we utilize a feedback linearizing control
approach which erases known input matching terms. Then,
the ǫ gain-factor control method of [1] with an extended
integral term is utilized as an internal controller. The
resulting combined controller is a new ǫ-PID controller for
the considered DC motors. The benefits of our proposed
control scheme is verified through a single DC motor ex-
periment and position control experiment of the humanoid
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robot arms. Throughout the letter, the Euclidean norm
is used. Otherwise, it will be specifically denoted by a
subscript.

2. MODELING OF DC MOTORS

The DC motors (MAXON DC motors, e.g., RE35(11879),
etc) dynamics is given by

0 =
Km

rR
V −

Jm

r2
q̈ −

Bm + KbKm/R

r2
q̇ − Q(t) (1)

where q is the position of link, q̇ is the velocity of link, q̈
is the acceleration of link, Km is the torque constant, Jm

is the motor inertia, Bm is the damping coefficient, Kb is
the back emf constant, R is the armature resistance, r is
the gear ratio, Q(t) is the load torque, and V is the control
input in voltage.

The control goal is to send q to qd. Let x1 = q, x2 = q̇,
u = V . Then, we have

ẋ1 = x2

ẋ2 =−
Bm + KbKm/R

Jm

x2 +
rKm

JmR
u −

r2

Jm

Q(t) (2)

For convenience, we set q̇d = 0. Defining e1 = x1 − qd,
e2 = x2, we have an error dynamics as

ė1 = e2

ė2 = −ae2 + bu − cQ(t) (3)

where

a =
Bm + KbKm/R

Jm

, b =
rKm

JmR
, c =

r2

Jm

(4)
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Practically, there is uncertainty in the system parameters.
Thus, the actual system parameters are expressed as sums
of the nominal terms and uncertain terms, e.g., Bm =
B̄m + δBm where B̄m denotes a nominal value and δBm

denotes any possible uncertain value. The same is applied
to other terms Kb, Km, etc. Then, the error dynamics (3)
is rewritten as follows

ė1 = e2

ė2 =−āe2 − δae2 + (b̄ + δb)u − cQ(t) (5)

where ā, b̄ denote the parts consisting of nominal system
parameters and δa, δb denote the collecting terms of
uncertain system parameters.

Moreover, a direct measurement of the load torque is
difficult because high cost equipment is required [10].
Thus, the load torque Q(t) is usually considered to be
unknown. Now, our control goal is to make |e1| ≤ ǫ for
t ≥ tf in the presence of uncertain system parameters and
unknown load torque.

3. ǫ-PID CONTROLLER

First, we define µ := δb/b̄ and assume that |µ| < 1.
This assumption is reasonable because the nominal value
usually takes the large portion of the actual value. Also,
we assume that the load torque Q(t) is differentiable and

there exists a finite constant ρ such that Q̇(t) ≤ ρ for all
t ≥ 0. Take a time-derivative of (5). Then,

ë1 = ė2

ë2 =−āė2 − δaė2 + (b̄ + δb)u̇ − cQ̇(t) (6)

Let v = u̇ and define z = [z1, z2, z3]
T = [ė1, ė2, e1]

T . Then,
since ż3 = z1, we obtain the following state equation using
(6)

ż = Az + B{−āz2 − δaz2 + (b̄ + δb)v − cQ̇(t)} (7)

where

A =

[

0 1 0
0 0 0
1 0 0

]

, B =

[

0
1
0

]

(8)

Now, by using the nominal system parameters, we apply
the following feedback linearizing controller

v =
āz2 + ω

b̄
(9)

to the system (7). Then, we obtain

ż = Az + B{(µā − δa)z2 + (1 + µ)ω − cQ̇(t)} (10)

Now, for the internal controller ω, we set

ω =
k1

ǫ2
z1 +

k2

ǫ
z2 +

k3

ǫ3
z3 = ǫ−2KEǫz (11)

where K = [k1, k2, k3] and Eǫ = diag[1, ǫ, ǫ−1], ǫ > 0.

From (9) and (11), the resulting controller is

v =
k1

b̄ǫ2
z1 +

1

b̄

(

k2

ǫ
+ ā

)

z2 +
k3

b̄ǫ3
z3 (12)

From u̇ = v and letting e = e1, the ǫ-PID controller is
summarized as follows

u = KP (ǫ)e + KD(ǫ)ė + KI(ǫ)

t
∫

0

e(τ)dτ (13)

where

KP (ǫ) =
k1

b̄ǫ2
, KD(ǫ) =

k2

b̄ǫ
+

ā

b̄
, KI(ǫ) =

k3

b̄ǫ3
(14)

4. CONTROLLER DESIGN RULE AND ROBUST
STABILITY ANALYSIS

First, we state the following design steps for the proposed
ǫ-PID controller.

Design steps:

(1) (Basic gain selection) Select K such that AK = A +
B(1 + µ)K is Hurwitz.

(2) (Lyapunov equation solution) Obtain the solution P
of AT

KP + PAK = −In where In is an n × n identity
matrix.

(3) (ǫ-PID gain tuning) Select ǫ such that ǫ−1 − 2γ1 > 0
where γ1 = 2|µā − δa|‖P‖.

Note that design step 1 is equivalent to selecting K to
make all roots of the following polynomial have negative
real parts.

0 = s3 − (1 + µ)k2s
2 − (1 + µ)k1s − (1 + µ)k3 (15)

where |µ| < 1. The selection of such K can be obtained
systematically by utilizing Kharitonov’s theorem as ap-
proached in [4].

Lemma 1. If AK is Hurwitz, then AK(ǫ) := A + B(1 +
µ)ǫ−2KEǫ is Hurwitz for all ǫ > 0.

Proof: First, between AK and AK(ǫ), the following rela-
tion holds

AK = ǫEǫAK(ǫ)E−1

ǫ (16)

Here, we note that λ(EǫAK(ǫ)E−1

ǫ ) = λ(ǫ−1AK) and
λ(ǫ−1AK) = ǫ−1λ(AK) where λ(M) denotes the eigen-
values of a matrix M . This assures the Hurwtiz property
of AK(ǫ) for all ǫ > 0 given that AK is Hurwtiz. �

Now, we state the main theorem.

Theorem 1. Suppose that K and ǫ are selected by follow-
ing the design steps. Then, with the ǫ-PID controller (13),
the origin of (10) is ultimately bounded by O(ǫ). Moreover,
when Q(t) = Q, the origin of (10) is exponentially stable.

Proof: From (10), the closed-loop system is written as

ż = AK(ǫ)z + B{(µā − δa)z2 − cQ̇(t)} (17)

Since AK is Hurwitz, we have a Lyapunov equation

AT
KP + PAK = −In (18)

By applying the relation (16) to (18), we obtain a new
Lyapunov equation as

AT
K(ǫ)Pǫ + PǫAK(ǫ) = −ǫ−1E2

ǫ (19)

where Pǫ = EǫPEǫ.
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This derived Lyapunov equation (19) is valid because
AK(ǫ) is Hurwitz by Lemma 1 and Pǫ is positive definite.
Now, we set a Lyapunov function V (z) = zT Pǫz. Then,
along the trajectory of (17), its time-derivative is

V̇ (z) =−ǫ−1‖Eǫz‖
2 + 2zT EǫPEǫB{(µā − δa)z2

−cQ̇(t)} (20)

From (20), we have EǫB{(µā − δa)z2 − cQ̇(t)} ≤ |µā −
δa|‖Eǫz‖ + ǫcρ. Then, we have the following inequality

V̇ (z)≤−ǫ−1‖Eǫz‖
2 + γ1‖Eǫz‖

2 + ǫγ2‖Eǫz‖

=−(
1

2
ǫ−1 − γ1)‖Eǫz‖

2

−ǫ−1(
1

2
‖Eǫz‖ − ǫ2γ2)‖Eǫz‖ (21)

where γ1 = 2|µā − δa|‖P‖ and γ2 = 2cρ‖P‖ which are
ǫ-independent constants.

When we select ǫ such that ǫ−1 − 2γ1 > 0, ‖Eǫz‖ is
ultimately bounded by O(ǫ2) [6]. From the definition of
Eǫ, this implies that ‖z‖ is ultimately bounded by O(ǫ).
When the load torque is constant (Q(t) = Q), we have
ρ = 0. Then, the exponential stability is achieved from the
quadratic form of Lyapunov function. �

The selection of controller gain is divided into two steps.
The following is the observation on the meaning of each
gain selection step.

• The selection of K provides a way of robust design
in the presence of input uncertainty (δb term). More-
over, from the positions of the assigned eigenvalues
of AK , the behavior of the controlled system can
be roughly expected by examining the corresponding
damping ratio, etc.

• The selection of ǫ provides a way to robustly suppress
the parameter uncertainty and unknown load torque
without much restriction on γ1. Moreover, with the
role of ǫ, the effect of load torque Q(t) is reduced to
the order of ǫ. The fine tuning of the proposed ǫ-PID
controller is done by conveniently adjusting only a
single ǫ gain factor under the condition of step 3.

5. EXPERIMENTAL RESULT

Three MAXON DC motors(RE30(148877), RE35(11879),
2642W-048CR) are considered for the experiment. These
DC motors are used as actuators at the joints of a
humanoid robot such as arm, leg joints, etc. In particular,
as shown in Fig. 1, these motors are placed at the elbow,
shoulder, and wrist joints of humanoid robots (named as
MAHRU and AHRA [7]). So, when each motor tracks
certain positions, the whole arms can make a certain form
such as a greeting form, etc.

(i) Single DC motor control: First, by using a particular
DC motor (RE35(11879))) , we illustrate the gain-tuning
process of our proposed ǫ-PID controller. The experimen-
tal setup is shown in Fig. 2. Our developed DSP board is
directly connected to the DC motor to provide a designed
control input signal. For RE35(11879), the nominal system
parameters are as follows: Bm = 2.68042 × 10−5Nms,
Kb = 0.0603V s, Km = 0.060438586Nm/A, R = 1.16Ω,

Fig. 1. DC Motors placed at the joints of humanoid robot
arms

Jm = 0.0000134Kgm2, and r = 1. As the first design step,
we select K = [−3,−3,−1] to place the eigenvalues at
−1. Then, the ǫ gain-factor is selected with four choices
and each corresponding position response q is observed
as shown in Fig. 3. The dotted lines denote the reference
position qd and solid lines denote the measured output
position q. As consistent with our theorem, the system
response becomes faster and the tracking error is reduced
as ǫ is decreased. In particular, when ǫ is less than 0.05,
the tracking errors become small such that the tracking
error can be observed only in tracking error plots shown
in Fig. 3b. During the experiment, we could not make
ǫ smaller than 0.01 as the DSP board suffers a voltage
saturation. As a result, the PID gains are conveniently
tuned by only adjusting ǫ and tracking error is reduced
proportional to ǫ.

Fig. 2. Experiment setup

(ii) Multiple DC motors control: Once the tuning pro-
cess of the ǫ-PID controller is checked for a single motor
(RE35(11879)), the ǫ-PID controller gains for all other
motors are easily tuned by putting each nominal system
parameters and simply adjusting the ǫ gain-factor with
the same K. The final tuned value of ǫ is 0.01 for three
motors. The ultimate target reference angles for each mo-
tor (RE35, RE30, 2642W-048CR) are set as 25deg, 30deg,
and 20deg, respectively. As shown in Fig. 4, the proposed
ǫ-PID controllers are applied to each of three motors
and the experimental result shows good robust tracking
performances for each of three motors. In particular, the
tracking errors are small such that qd and q are almost
overlapped and the small errors can be seen in Fig. 4b.
By tracking these reference angles at the same time, the
humanoid robot arms form a greeting position from an
initial stand-up position as shown in Fig. 5
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Fig. 3. Control results with various values of ǫ: (a) plots
of qd and q, (b) plots of tracking errors

(iii) Comparison with the inverse optimal PID control
[2]: In [2], the authors suggest an inverse optimal PID
control design method for robust tracking problems.
Their gain-tuning process is done by coarse/fine per-
formance tuning laws and there are mainly two tuning
variables k and γ. Then, KP , KI , and KD are deter-
mined once k and γ are set. Thus, several tuning vari-
ables are mixed up with each other in [2] whereas our
tuning process is simpler and straightforward. By follow-
ing the design steps of [2], the optimally selected gains
(k, γ, KP , KI , KD) of the inverse optimal PID control are
set as (120, 0.09, 40, 200, 1) for RE35, (80.0, 0.1, 40, 200, 1)
for RE30, and (40.0, 0.2, 40, 200, 1) for 2642W-048CR, re-
spectively. As shown in Fig. 6, our proposed controller
shows a clearly improved performance (better convergence,
reduced error) with less gain-tuning effort. Also, note that
our ǫ-PID controller is designed based on pole-placement
approach such that the system output behavior is some-
what predictable unlike [2].

6. CONCLUSIONS

In this paper, we propose a new ǫ-PID controller for
DC motor systems. The robustness of the controller is
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Fig. 4. Control results of three DC motors, ǫ = 0.01: (a)
plots of qd and q, (b) plots of tracking errors

analytically shown. Especially, the single ǫ gain-factor is
effectively used in showing the robustness. Then, based on
the analysis, the controller gain design steps are suggested.
It turns out that the PID gains can be conveniently tuned
by adjusting the single ǫ gain-factor. The experimental
results agree with our analysis and demonstrate the im-
proved performance of our control method.
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