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Abstract: In this note we provide iterative procedures for the numerical computation of
stabilizing solutions of two types of coupled matrix Riccati differential equations arising in
connection with Nash differential games using open loop or feedback strategies. Here we assume
that these equations are associated with positive systems. The proposed procedures are based
on solutions of uncoupled symmetric or nonsymmetric Lyapunov equations and complement the
procedure proposed in DDFM [2005].
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1. INTRODUCTION AND PROBLEM
FORMULATION

A dynamic game could be considered as a decision problem
where several decision-makers (players or controllers) are
acting on the same system. Each player has to choose a
control to optimize his cost functional. When the system
is described by a set of differential equations, we will be
dealing with dynamic differential games. The study of
such decision problems was initiated by Isaacs Isaa [1965].
Two main classes of dynamic games are considered in
the literature: cooperative and non-cooperative games. In
cooperative games all players are trying to achieve the
same goal. Standard optimal control problems may be
considered as a special case of cooperative games. In non-
cooperative games each player is optimizing his individual
performance criterion. Zero-sum games were the first type
of non-cooperative games to be studied in relation with the
pursuit-evasion problem. In such differential games there
is a single performance index which is minimized by one
player and maximized by a second player. Zero-sum games
are intimately related to the H∞ robust control approach
for disturbance rejection. This topic and the associated
symmetric/Hermitian Riccati equation are discussed in
detail in Chapter 6 of AFIJ [2003] and also in BaOl [1995]
and other textbooks.

In this lecture (which is based on DDF [2007]) we are
concerned with coupled Riccati- equations related to non-
cooperative games. More precisely we study the existence
of stabilizing solutions of two pairs of coupled matrix Ric-
cati differential equations associated with linear-quadratic

games of the following form:
ẋ = A(t)x(t) + B1(t)u1(t) + B2(t)u2(t) ; x(0) = x0,

where x ∈ Rn, ui ∈ Rri (i = 1, 2),

and where the cost functionals associated with each player
are

J1 =
1
2
xT

f X1fxf

+
1
2

tf∫
t0

(xT Q1(t)x + uT
1 R11(t)u1 + uT

2 R12(t)u2) dt,

J2 =
1
2
xT

f X2fxf

+
1
2

tf∫
t0

(xT Q2(t)x + uT
1 R21(t)u1 + uT

2 R22(t)u2) dt,

xf = x(tf ).
The matrices are assumed to be real, symmetric with
Qi ≥ 0 and Rii > 0 (i = 1, 2).
The Riccati equations examined in this paper are asso-
ciated to two types of strategies of the two players: the
feedback Nash strategies and the open-loop Nash strate-
gies.
It is known from the literature (see AFIJ [2003], BaOl
[1995], Engw1 [2005] for precise definitions and further
details on this topic) that the optimal feedback and open-
loop Nash strategies have the form

u1(t) = −R−1
11 (t)BT

1 (t)X1(t) x(t),
u2(t) = −R−1

22 (t)BT
2 (t)X2(t) x(t),

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 3946 10.3182/20080706-5-KR-1001.1564



where x(t) can be determined from the initial value prob-
lem
ẋ = [A(t)− S1(t)X1(t)− S2(t)X2(t)]x(t) ; x(0) = x0,

provided it is possible to determine for all t ∈ [t0, tf ] the
solutions (X1(t), X2(t)) of the following coupled matrix
Riccati differential equations (1) and (2), respectively, with
terminal values Xi(tf ) = Xif , i = 1, 2 .

Using the abbreviations
Si(t) = Bi(t)R−1

ii (t)BT
i (t), 1 ≤ i ≤ 2,

and
Sij(t) = Bj(t)R−1

jj (t)Rij(t)R−1
jj (t)BT

j (t), 1 ≤ i, j ≤ 2,

we have to determine in the case of feedback Nash strate-
gies the solution (X1, X2) of the coupled system

d

dt
X1 + AT (t)X1 + X1A(t)−X1S1(t)X1 −X1S2(t)X2

−X2S2(t)X1 + X2S12(t)X2 + Q1(t) = 0,

(1)
d

dt
X2 + AT (t)X2 + X2A(t)−X2S2(t)X2 −X2S1(t)X1

−X1S1(t)X2 + X1S21(t)X1 + Q2(t) = 0,

and in the case of open-loop Nash strategies the solution
(X1, X2) of the system

d

dt
X1 + AT (t)X1 + X1A

T (t)−X1S1(t)X1

−X1S2(t)X2 + Q1(t) = 0,

(2)
d

dt
X2 + AT (t)X2 + X2A(t)−X2S1(t)X1

−X2S2(t)X2 + Q2(t) = 0,

where we assume for convenience that A : R →
Rn×n; Qi, Si : R → Sn, i = 1, 2; Sij : R → Sn, (ij) ∈
{(1, 2), (2, 1)} are bounded and continuous matrix valued
functions; here, as usual, Sn ⊂ Rn×n is the linear subspace
of all symmetric n× n matrices.

If the differential game is considered on an infinite time
horizon (i.e. tf = +∞), then the optimal strategy is
constructed using a special global solution of the equations
(1) and (2), respectively. Such solutions have to achieve
the exponentially stable behavior of the trajectories of
the closed-loop system. In this paper we are interested
to derive procedures for numerical computation of a such
global solutions of (1) and (2), respectively.

The equations (1) and (2) were investigated either as
mathematical objects with interest in themselves in AFIJ
[2003], Chapter 6, or in connection with several aspects
of two players Nash differential games (see AzJa [2005],
BaOl [1995], Engw1 [2005], JaKr [2004], Krem [2003], KrSt
[2002] and references therein).
We mention that the system (2) can be rewritten as a
non-symmetric (rectangular) matrix Riccati differential

equation for the block matrix
(

X1

X2

)
, therefore we can use

for its solution all results and methods known for this type
of equations (see AFIJ [2003], Chapter 6, FiGu [2006] and

Frei [2002]) – it is known that the global existence of the
solutions of such differential equations is only guaranteed
under rather restrictive conditions.
Existence results for the nonlinear coupled system (1)
are also rare; although the solutions Xj , 1 ≤ j ≤ 2,
of (1) are symmetric, if the terminal (or initial) values
Xjf , 1 ≤ j ≤ 2, are symmetric, the existence of the
corresponding solutions can frequently only be guaranteed
locally (see FJA [1996]).
The situation becomes better if one confines to differential
equations (1) or (2) under assumptions leading to positive
systems; in particular equation (1) and (2) were studied
under these restrictions in AzJa [2005], DDFM [2005] and
in JaKr [2004], respectively.

In the present paper we assume that the equations (1),
(2) are also in the case of positive systems. Therefore,
according with the assumptions from JaKr [2004], AzJa
[2005], DDFM [2005] we make the following hypothesis
concerning the coefficients of (1) and (2):

H1) (i) For each t ∈ R, A(t) = (aij(t)) is a Metzler matrix,
i.e. aij(t) ≥ 0 for i 6= j.

(ii) Si(t) � 0, i = 1, 2, ∀ t ∈ R.

(iii) Sij(t) � 0, (i, j) ∈ {(1, 2), (2, 1)}, ∀ t ∈ R.

(iv) Ql(t) � 0, t ∈ R, l = 1, 2.
Here and below � and � are denoting the corresponding
componentwise ordering.

Our aim is to construct sequences of iterates which con-
verge towards the stabilizing solution of (1) and (2) re-
spectively.

At each step we will have to solve two uncoupled symmet-
ric Lyapunov differential equations or uncoupled nonsym-
metric Lyapunov equations (Sylvester equations), respec-
tively.

2. STABILIZING SOLUTIONS

Since (1) and (2) are nonstandard (coupled) Riccati dif-
ferential equations, we consider that the obtained results
could be useful to clarify the concept of stabilizing solu-
tions of such equations.

To this end we regard these equations as nonlinear dif-
ferential equations on an Hilbert space X . For equation
(1) we take X = Sn ⊕ Sn while for equation (2) we take
X = Rn×n ⊕Rn×n. The usual inner product is given by

< X,Y >= Tr
[
Y T

1 X1

]
+ Tr

[
Y T

2 X2

]
(3)

for all X = (X1, X2), Y = (Y1, Y2) in X .

Let Q(t) = (Q1(t), Q2(t)),R(t, X) = (R1(t,X), R2(t, X))
then on X the equations (1) and (2) may be written in a
compact form as follows:

d

dt
X +R(t,X) + Q(t) = 0, (4)

with
R1(t, X) = AT (t)X1 + X1A(t)−X1S1(t)X1 −X1S2(t)X2
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−X2S2(t)X1 + X2S12(t)X2,

R2(t, X) = At(t)X2 + X2A(t)−X2S2(t)X2 −X2S1(t)X1

−X1S1(t)X2 + X1S21(t)X1,

in case of equation (1), and

R1(t, X) = AT (t)X1+X1A
T (t)−X1S1(t)X1−X1S2(t)X2,

R2(t, X) = AT (t)X2 +X2A(t)−X2S1(t)X1−X2S2(t)X2,

in case of equation (2).

For each solution X(t) = (X1(t), X2(t)) of equation (4)
we may construct the following operator valued function
LX : R → B[X] by LX(t)U = (L1X(t)U,L2X(t)U) where

L1X(t)U = (A(t)− S1(t)X1(t)− S2(t)X2(t))U1

+U1(A(t)− S1(t)X1(t)− S2(t)X2(t))T

−(S1(t)X2(t)− S21(t)X1(t))U2

−U2(X2(t)S1(t)−X1(t)S21(t)),

(5)

L2X(t)U = −(S2(t)X1(t)− S12(t)X2(t))U1

−U1(X1(t)S2(t)−X2(t)S12(t))
+(A(t)− S1(t)X1(t)− S2(t)X2(t))U2

+U2(A(t)− S1(t)X1(t)− S2(t)X2(t))T ,

in case of equation (1), and

L1X(t)U = (A(t)− S1(t)XT
1 (t))U1

+U1(A(t)− S1(t)X1(t)− S2(t)X2(t))T − S1(t)XT
2 (t)U2,

(6)

L2X(t)U = (A(t)− S2(t)XT
2 (t))U2

+U2(A(t)− S1(t)X1(t)− S2(t)X2(t))T − S2(t)XT
1 (t)U1,

in case of equation (2).

It is easy to see that

R′(t,X(t)) = L∗X(t), (7)

where R′(t, ·) is the Fréchet derivative of the function
X → R(t, X) while L∗X(t) is the adjoint operator of LX(t)
with respect to the inner product (3).

Definition 2.1 We say that a solution X̃(t) = (X̃1(t), X̃2(t))
of (4) is:

a) a stabilizing solution if the zero state equilibrium of the
linear differential equation on X :

d

dt
Z = LX̃(t)Z (8)

is exponentially stable.

b) a closed-loop stabilizing solution if the zero state equi-
librium of the linear differential equation on Rn:

d

dt
x = Acl(t)x (9)

is exponentially stable, where Acl(t) = A(t)−S1(t)X̃1(t)−
S2(t)X̃2(t).

Remark 2.2 a) Based on (7) it follows that in the
time invariant case, the concept for a stabilizing solution
introduced above can be characterized by the fact that the
eigenvalues of the operator R′(X) are located in the open
left half-plane Re λ < 0.

b) In DDFM [2005] it was shown that if X̃(t) is a
stabilizing solution of (1) then it is also a closed-loop
stabilizing solution of the same equation.

Reasoning as in Lemma 8.1 (ii), (iii) in DDFM [2005] one
obtains that if X̃(t) is a stabilizing solution of (2) then the
solution Zk = 0 of the linear differential equations

d

dt
Zk = Λk,X̃(t)Zk, k = 1, 2, (10)

is exponentially stable, where

Λk,X̃(t)Zk = (A(t)− Sk(t)X̃T
k (t))Zk

(11)

+Zk(A(t)− S1(t)X̃1(t)− S2(t)X̃2(t))T

is a nonsymmetric Lyapunov operator (i.e. a Sylvester
operator).

Unfortunately we are not able to show that the exponen-
tial stability of the evolution generated by the Sylvester
operator (11) implies the exponential stability of the cor-
responding closed-loop matrix Acl(t) defined by (9).

c) Necessary and sufficient conditions under which a
closed-loop stabilizing solution of (4) is also a stabilizing
solution can be derived using the developments from sec-
tion 6 in DDFM [2005].

In JaKr [2004], AzJa [2005], DDFM [2005] the sequences of
iterates Xj = (Xj

1 , Xj
2) converging towards the stabilizing

solution were provided.

In each step Xj is obtained either as solution of the linear
differential equations on X :

d

dt
Xj + L∗Xj−1(t)Xj + Qj(t) = 0 (12)

in the time-varying case or as solution of the algebraic
linear equations on X :

L∗Xj−1Xj + Qj = 0 (13)
in the time invariant case.

In this paper we replace equations (12) and (13) respec-
tively, by uncoupled Lyapunov differential equations or
uncoupled algebraic Lyapunov equations, respectively.

At the end of this section we introduce the following set
of functions related to equation (4):

Ω(R, Q) = (14)

{P : R → X|P (t) � 0,
d

dt
P (t) +R(t, P (t)) + Q(t) � 0}.

We recall that if H : R → X we shall write H(t) �� 0 if
there exists a positive constant δ such that H(t) � δ 1n �
0, where 1n is the n × n matrix with all ones (for details
see Ex. 2.5 (ii) in DDFM [2005]).
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We shall write H(t) ≺≺ 0 if −H(t) �� 0.

Remark 2.3 In (14) the operator R(·, ·) takes different
forms according to the fact that the set Ω(R, Q) is associ-
ated either to equation (1) or to equation (2).

3. LYAPUNOV TYPE ITERATIONS FOR (1)

Let {Xj(t)}j≥0 be the sequence of functions Xj : R →
X , Xj(t) = (Xj

1(t), Xj
2(t)) with Xj

l (t) being the unique
bounded on R solution of the Lyapunov differential equa-
tion (here and also below we suppress (t)):

d

dt
Xj

l + Qj−1
l + [A− S1X

j−1
1 − S2X

j−1
2 ]T Xj

l

+Xj
l [A− S1X

j−1
1 − S2X

j−1
2 ] = 0, (15)

l = 1, 2, X0
l (t) = 0, t ∈ R, where

Qj−1
1 = Q1 + Xj−1

1 S1X
j−1
1 + Xj−1

2 S12X
j−1
2 , (16)

Qj−1
2 = Q2 + Xj−1

2 S2X
j−1
2 + Xj−1

1 S21X
j−1
1 . (17)

Before stating the main result of this section we make the
following assumption:

H2) (i) The zero state equilibrium of the linear differential
equation on Rn:

d

dt
x(t) = A(t)x(t)

is exponentially stable.

(ii) The set Ω(R, Q) is not empty.

Now we prove:

Theorem 3.1 Under the assumptions H1 and H2 the
sequence {Xj(t)}j≥0 defined by
(15)-(17) is well defined and convergent.

If X̃(t) := limj→∞Xj(t) then X̃(t) is the stabilizing so-
lution of (1). Moreover X̃(t) is the minimal solution of
(1) with respect to the class of global bounded nonnegative
solutions of (1).

Proof: We shall show iteratively the following items.

aj) 0 � Xj(t) � P (t) for all P (t) ∈ Ω(R, Q).

bj) The zero state equilibrium of the linear differential
equation:

d

dt
x(t) = Aj(t)x(t)

is exponentially stable, where

Aj(t) = A(t)− S1(t)X
j
1(t)− S2(t)X

j
2(t). (18)

cj) Xj(t) � Xj+1(t) for all t ∈ R.

From assumption H2) together with X0
l (t) = 0 one obtains

that items aj) and bj) are fulfilled for j = 0.

To check that c0) is also true let us remark that X1
l (t) is

the unique bounded solution of the Lyapunov differential
equation:

d

dt
X1

l (t) + AT (t)X1
l (t) + X1

l (t)A(t) + Ql(t) = 0.

Since Ql(t) � 0, one obtains via Theorem 4.7 (iv) of
DDFM [2005] that X1

l (t) � 0 = X0
l (t), t ∈ R. This is

just c0).
Let us assume next that ai), bi), ci) are fulfilled for
0 ≤ i ≤ j − 1 and prove that then they also hold for
i = j.

If bj−1) is fulfilled then from Theorem 4.7 (i) of DDFM
[2005] it follows that equation (15) has an unique bounded
on R solution and thus Xj(t) is well defined.

If P (t) = (P1(t), P2(t)) ∈ Ω(R, Q) one can see that it
verifies the following differential equation:

d

dt
P (t) + R̃(t, P (t)) + Q(t) + Q̂(t) = 0, (19)

where Q̂(t) = (Q̂1(t), Q̂2(t)) � 0.

It is easy to check that Pl(t) verifies the following Lya-
punov equations:

d

dt
Pl + AT

j−1Pl + PlAj−1 + Hj−1
l = 0, l = 1, 2, (20)

where Aj−1(t) is as in (18) with Xj
l (t) replaced by Xj−1

l (t)
and where
Hj−1(t) = (Hj−1

1 (t),Hj−1
2 (t)) with

Hj−1
1 = −[P1 −Xj−1

1 ]S1[P1 −Xj−1
1 ]

−[P2 −Xj−1
2 ]S2P1 − P1S2[P2 −Xj−1

2 ]

+P2S12P2 + Xj−1
1 S1X

j−1
1 + Q1 + Q̂1, (21)

Hj−1
2 = −[P2 −Xj−1

2 ]S2[P2 −Xj−1
2 ]

−[P1 −Xj−1
1 ]S1P2 − P2S1[P1 −Xj−1

1 ]

+P1S21P1 + Xj−1
2 S2X

j−1
2 + Q2 + Q̂2. (22)

From (15) and (20) one obtains

d

dt
(Pl(t)−Xj

l (t)) + AT
j−1(t)(Pl(t)−Xj

l (t))

+(Pl(t)−Xj
l (t))Aj−1(t) + M j−1

l (t) = 0, (23)

where M j−1
l (t) = Hj−1

l (t)−Qj−1
l (t).

Since aj−1) is fulfilled one obtains from (16), (17) and
(21)-(22) that M j−1

l (t) �� 0, t ∈ R.

Applying Theorem 4.7 (iv) in DDFM [2005] to the equa-
tion (23) one concludes that for t ∈ R

Pl(t)−Xj
l (t) � c 1n, (24)

where c is a positive constant. Thus we deduce that aj) is
fulfilled.

To check that bj) is fulfilled we rewrite equation (20) in
the form:
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d

dt
Pl(t) + AT

j (t)Pl(t) + Pl(t)Aj(t) + HJ
l (t) = 0, (25)

where Aj(t) is as in (18) and the matrices Hj
l (t) are as in

(21)-(22) with Xj−1
l (t) replaced by Xj

l (t).

Equation (20) can be rewritten as

d

dt
Xj

l (t) + AT
j (t)Xj

l (t) + XJ
l (t)Aj(t) + Gj

l (t) = 0, (26)

where Aj(t) is given by (18) and

Gj
1 = Q1 + Xj−1

1 S1X
j−1
1 + Xj−1

2 S12X
j−1
2

−(Xj−1
1 −Xj

1)S1X
J
1 −Xj

1S1(X
j−1
1 −Xj

1)

−Xj
2X2(X

j−1
2 Xj

2)− (Xj−1
2 −Xj

2)S2X
j
2 , (27)

Gj
2 = Q2 + Xj−1

1 S21X
j−1
1 + Xj−1

2 S2X
j−1
2

−Xj
2S1(X

j−1
1 −Xj

1)− (Xj−1
1 −Xj

1)S1X
j
2

−XJ
2 S2(X

j−1
2 −Xj

2)− (Xj−1
2 −Xj

2)S2X
j
2 . (28)

Subtracting (26) from (25) and taking into account (24)
one obtains that the function t → Pl(t) − Xj

l (t) is a
bounded and uniform positive solution of the Lyapunov
equation

d

dt
Yl(t) + AT

j (t)Yl(t) + Yl(t)Aj(t) + Θj
l (t) = 0 (29)

with Θj
l (t) = Hj

l (t)−Gj
l (t).

It is easy to see that Θj
l (t) �� 0.

Applying the implication (vi) → (i) of Theorem 4.5 in
DDFM [2005] to equation (29) one concludes that the zero
state equilibrium of the equation

d

dt
x(t) = Aj(t)x(t)

is exponentially stable. Thus we obtained that item bj) is
fulfilled.

To check the validity of item cj) one subtracts equation
(26) from equation (15) written for Xj+1

l (t) and obtains:
d

dt
(Xj

l (t)−Xj+1
l (t)) = AT

j (t)(Xj+1
l (t)

(30)

−Xj
l (t)) + (Xj+1

l (t)−Xj
l (t))Aj(t) + ∆j

l (t),

where ∆j
l (t) = Qj

l (t)−Gj
l (t), l = 1, 2.

Combining (16)-(17) written for j + 1 instead of j with
(27)-(28) one can see that ∆j

l (t) � 0.

Applying Theorem 4.7 (iv) of DDFM [2005] to equation
(30) we conclude that

Xj+1
l (t)−XJ

l (t) ≥ 0, t ∈ R.

This shows that cj) is fulfilled.

From aj) and cj), j ≥ 0 it follows that the sequences
{Xj

l (t)}j≥0, l = 1, 2, t ∈ R are convergent. Set X̃l(t) =
limj→∞Xj

l (t), l = 1, 2, t ∈ R. By standard arguments one

obtains that t → X̃(t) = (X̃1(t), X̃2(t)) is a solution of
(1). As in DDFM [2005] one proves that X̃(t) is just the
stabilizing solution of (1).

In the same way as in the proof of item aj) one shows that
Xj

l (t) � Yl(t) for arbitrary Y (t) = ( Y1(t), Y2(t) ) which
verifies

d

dt
Y (t) +R(t, Y (t)) + Q(t) � 0, Yl(t) � 0.

This allows us to conclude that X̃(t) is the minimal solu-
tion of (1), thus the proof ends.

Remark 3.2 a) Applying Theorem 4.7 (iii) in DDFM
[2005] one deduces that in the time invariant case the
unique bounded solution of (15) is constant. Therefore in
the time invariant case, for each iteration we have to solve
two algebraic Lyapunov equations

AT
j−1X

J
l + XJ

l Aj−1 + Qj
l = 0, l = 1, 2,

with Aj−1 = A− S1X
j−1
1 − S2X

j−1
2 and Qj−1

l as in (16)-
(17).

b) If A(·), Sj(·), Skl(·), Ql(·) are periodic functions with
period θ > 0, then the unique bounded solution of (15)
is a periodic function with the same period θ.

The initial value Xj
l (0) is obtained as solution of the Stein

equation:

Xj
l (0) = ΦT

j−1(θ, 0)Xj
l (0)Φj−1(θ, 0)

+

θ∫
0

ΦT
j−1(s, 0)Qj−1

l (s)Φj−1(s, 0)ds,

where Φj−1(t, τ) is the fundamental matrix solution of
d
dtx(t) = Aj−1(t)x(t).

c) An alternative algorithm for the iterative solution of
(1), which is based on the solution of a sequence of two
coupled Lyapunov differential equations, has been derived
in DDFM [2005], where further details can be found.

4. LYAPUNOV TYPE ITERATIONS FOR (2)

We construct the following sequence of functions {Xj(t)}j≥0,
Xj(t) = (Xj

1(t), Xj
2(t)), where Xj

l : R → Rn×n is the
unique bounded solution of the following nonsymmetric
Lyapunov differential equations:

d

dt
Xj

l (t) + (AT (t)−Xj−1
l (t)Sl(t))X

j
l (t)

+Xj
l (t)(A(t)− S1(t)X

j−1
1 (t)− S2(t)X

j−1
2 (t))

+Ql(t) + Xj−1
l (t)Sl(t)X

j−1
l (t) = 0,

l = 1, 2, j ≥ 1, X0
l (t) = 0, l = 1, 2. (31)

The main result of this section is:

Theorem 4.1 Under the assumptions H1) and H2) the
sequence {Xj(t)}j≥0 is well defined and convergent. If

X̃(t) = lim
j→∞

Xj(t), t ∈ R (32)
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then X̃(t) is the stabilizing and minimal solution of (2).

The proof follows the same line as in the case of Theorem
3.1 and it is omitted for shortness.
However we remark that instead of the item bj) one proofs
the following new item

b∗j ) The zero state equilibrium of the linear differential
equation on Rn×n:

d

dt
Zl(t) = [A(t)− Sl(t)(X

j
l (t))T ]Zl(t)

+Zl(t)[A(t)− S1(t)X
j
1(t)− S2(t)X

j
2(t)]T

is exponentially stable.

Remark 4.2 a) If in (2), A(·), Sj(·), Ql(·) are constants,
then one obtains inductively that the unique solution of
(31) is constant. Therefore in the time invariant case
at each iteration we solve the following nonsymmetric
algebraic Lyapunov equations:

(AT −Xj−1
l (t)Sl)X

j
l + Xj

l (A− S1X
j−1
1 − S2X

j
2)

+Ql + Xj−1
l SlX

j−1
l = 0.

b) If in (2) A(·), Sj(·), Ql(·) are period functions with
period θ > 0, then one obtains via Theorem 4.7 (ii) in
DDFM [2005] that the unique bounded solution of (31)
is periodic function with the same period θ. In this case
the initial values Xj

l (0) are obtained as solutions of the
following nonsymmetric Stein equations

Xj
l (0) = ΘT

j−1,l(θ, 0)Xj
l (0)Φj−1(θ, 0)+

θ∫
0

ΘT
j−1,l(s, 0)[Ql(s) + Xj−1

l (s)Sl(s)X
j−1
l (s)]Φj−1(s, 0)ds

where Θj−1,l(t, τ) is the fundamental matrix solution of
the differential equation

d

dt
x(t) = [A(t)− Sl(t)(X

j−1
l (t))T ]x(t)

and Φj−1(t, τ) is the fundamental matrix solution of the
differential equation

d

dt
x(t) = [A(t)− S1(t)X

j−1
1 (t)− S2(t)X

j−1
2 (t)]x(t).

At the end of this section we provided the time varying
counterpart of Corollary 1 from JaKr [2004]:

Corollary 4.3 If there exists P (t) = (P1(t), P2(t)) ∈
Ω(R, Q) such that the zero solution of the linear differ-
ential equation

d

dt
z(t) = [A(t)− S1(t)P1(t)− S2(t)P2(t)]z(t)

is exponentially stable then X̃(t) = (X̃1(t), X̃2(t))defined
by (31) is a closed-loop stabilizing solution of equation (2).

Proof. From Theorem 4.1 one obtains that X̃l(t) �
Pl(t).The conclusion follows from Proposition 4.1 (ii) in
DDFM [2005].
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